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Data Integration on Noncoding RNA Studies

ZHOU DU, TENG FEI, MYLES BROWN, X. SHIRLEY LIU,
AND YIWEN CHEN

Abstract

Recent genome-wide studies revealed that the human genome encodes over 10,000 long
non-coding RNAs (lncRNAs) with little protein-coding capacity. Growing evidence
suggests that many lncRNAs may have important functions in complex diseases and are
potentially a new class of therapeutic targets for treating complex disease. In contrast
to the fast pace of cataloguing lncRNAs in the human genome, the function of the vast
majority of lncRNAs remain unknown. In this chapter, we described data integration
strategies for identifying lncRNA that are associated with cancer subtypes and clinical
prognosis, and predicted those that are potential drivers of cancer progression.

18.1 Introduction

The advancement in high-throughput technologies such as microarray, next-
generation sequencing (NGS) has greatly facilitated cost-effective large-scale
data generation. As a result, the amount of genomic data deposited into various
public data sources such as Gene Expression Omnibus (GEO) (http://www.ncbi.
nlm.nih.gov/geo/) and ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) has
grown tremendously in the past several years. Taking NCBI short reads archive
database (http://www.ncbi.nlm.nih.gov/sra) as an example, the amount of data
in this database went from about 10 terabytes (TB) in 2008 to about 1000 TB in
2012, an around 100-fold increase in only four years. These public data sources
not only provide the raw data for the researchers to reproduce the discovery
that were reported in the original study but also provided opportunities for
using the same data for new discoveries. Moreover, integrating the data across
individual studies either horizontally or vertically offers unique opportunities
to make novel discoveries that would have been impossible based on the data
from a single study. The integration of genomic data from the same individual
under a specific disease condition is particularly powerful for disease-relevant

403

Downloaded from Cambridge Books Online by IP 38.122.225.74 on Tue Jul 26 00:08:43 BST 2016.
http://dx.doi.org/10.1017/CBO9781107706484.019

Cambridge Books Online © Cambridge University Press, 2016



404 Zhou Du, Teng Fei, Myles Brown, X. Shirley Liu, and Yiwen Chen

discoveries. In those genomics-based clinical studies, the orthogonal genomic
data and corresponding clinical information were systematically collected from
the same group of human subjects. These data can be integrated to discover
genes that play important roles in the etiology of the disease and those that may
serve as diagnostic, prognostic, and predictive biomarkers.

Recent transcriptome profiling in human cells from the ENCODE (http://
encodeproject.org/ENCODE/) and GENCODE (http://www.gencodegenes.
org/) projects showed that cumulatively ∼70% of the human genome [1] can
be transcribed, whereas only ∼2% of the genome encodes proteins. In contrast
to ∼20,000 protein encoding genes (PCGs), there are ∼35,000 (GENCODE)
noncoding RNA genes in the human genome. The noncoding RNAs can be
classified as either small noncoding RNAs (sncRNAs), which are shorter than
or equal to 200 base-pair (bp), or long noncoding RNAs (lncRNAs), which are
longer than 200 bp. Data integration has played a pivotal role in identifying the
sncRNAs, especially microRNAs (miRNAs) in different species, and predict-
ing the targets and biological function of miRNAs in physiology and disease
[2–7]. Although significant knowledge has been accumulated on the sncRNA
biology in the past decade with the joint effort of computational and experi-
mental research, the identity and function of the lncRNAs in human genome
are just beginning to be revealed. Data integration has played a critical role
in identifying the lncRNA genes from a variety of genomic data in different
biological contexts as well as in providing the evidence for lncRNA function
[8–10]. Systematic efforts to catalog lncRNAs by traditional cDNA Sanger
sequencing [11] and the integration of histone mark chromatin immunoprecip-
itation sequencing (ChIP-seq) [9, 12] and RNA sequencing (RNA-seq) [8, 13]
data have revealed that the human genome encodes more than 10,000 lncRNAs.
We refer the interested readers to other published reviews for data integration
studies on both sncRNAs [2–4, 7] and lncRNAs [8–10]. This chapter is dedi-
cated to describing the approaches to integrate the data from clinical studies for
elucidating lncRNA function and uncovering its potential utility in diagnosis
and prognosis in human diseases such as cancer [14].

Given their lower expression level compared with protein-coding genes
(PCGs) [8], it has been debated whether the lncRNAs are simply the tran-
scriptional noise in the cell or whether they may have biochemical function.
Although we do not know how many of them are functional, growing evidence
suggests that lncRNAs, similar to PCGs, may play important roles in both
development [15] and human diseases such as cancer [16]. A growing list of
lncRNAs has been shown to mediate oncogenic or tumor-suppressing effects
in cancer, and they promise to be a new class of cancer therapeutic targets [17].
Although a handful of lncRNAs have been functionally characterized, little
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is known about the functions of most lncRNAs in normal physiology or dis-
ease [18]. LncRNAs may serve as cancer diagnostic or prognostic biomarkers
that are independent of PCGs. A well-known example of a cancer diagnostic
biomarker is PCA3 [19], a prostate-specific lncRNA gene that is significantly
overexpressed in prostate cancer. Noninvasive monitoring of the ratio of uri-
nary PCA3 and prostate-specific antigen (PCA) transcript level was recently
approved by FDA as a diagnostic assay for prostate cancer [20].

In this chapter, we present a case study of data integration in a cancer-related
lncRNA study [14], in which we identified lncRNA that are associated with
cancer subtypes and clinical prognosis, and predicted those that are potential
drivers of cancer progression in multiple cancers, including glioblastoma multi-
forme (GBM) [21], ovarian cancer (OvCa) [22], lung squamous cell carcinoma
(lung SCC) [23], and prostate cancer [24]. We validated our predictions of two
tumorgenic lncRNAs by experimentally confirming the prostate cancer cell
growth dependence on these two lncRNAs. Our integrative analysis provided a
resource of clinically relevant lncRNA for development of lncRNA biomarkers
and identification of lncRNA therapeutic targets for human cancer.

18.2 Methods

18.2.1 Repurposing Microarray Data to Interrogate lncRNA Expression

As lncRNAs do not encode proteins, their functions are closely associated with
their transcript abundance. Though RNA-seq is a comprehensive way to pro-
file lncRNA expression, publicly available RNA-seq data sets of tumors are
relatively limited compared to array-based expression profiles because of the
high cost associated with the adoption of this technique. In addition, RNA-seq
data sets with low sequencing coverage or small sample numbers have only
limited statistical power to discover clinically relevant lncRNAs. In contrast,
there are a large number of data sets that contain array-based gene expression
profiles across hundreds of tumor samples. These array-based expression pro-
files are often accompanied by matched clinical annotation and/or genomic
alteration profiles of tumors such as somatic copy number alteration (SCNA).
Although lncRNAs are not the intended targets of measurement in the original
array design, microarray probes can be reannotated for interrogating lncRNA
expression [25–27]. Compared with RNA-seq data of low sequencing cov-
erage, array-based expression data may have lower technical variation and
better detection sensitivity for low-abundance transcripts [28, 29], which is
a prominent feature of lncRNAs [8]. Moreover, array-based expression data
contain strand information and allow for interrogating the expression of anti-
sense single-exon lncRNAs, whereas most current RNA-seq data in clinical
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Figure 18.1 (A) Affymetrix Human Exon array probe reannotation pipeline for lncRNA.
(B) Adopting the classification scheme from a previous study [34], lncRNA were clas-
sified into four categories, intergenic, overlapping, intronic, and exonic, on the basis
of their relationship with protein-coding genes. (C) Pie charts showing the number of
lncRNA in each category for all collected lncRNA and for those with at least four
uniquely mapped exon array probes.

applications do not have strand information and thus are unable to accurately
quantify the expression of this class of lncRNAs [30].

Among the different gene expression microarray platforms, we focused on
reannotating the probes from the Affymetrix microarrays. These arrays not
only have many more short probes that are likely to map to lncRNA genes but
also have been the most widely used platforms for gene expression profiling of
clinical studies. A computational pipeline was designed as follows to reannotate
the probes from five major Affymetrix array types (Figure 18.1A) using the
latest annotations of lncRNA and PCG. The lncRNA annotations were derived
from two sources: the catalog of lncRNAs from the Ensembl database [31]
(Homo sapiens GRCh37, release 67) and the catalog of lncRNAs generated on
the basis of transcriptome assembly from RNA-seq data [8]. For those lncRNA
transcripts with overlap on the same strand between these two sources, we
only kept the Ensembl annotation to avoid redundancy. This resulted in a
total of 15,857 lncRNA genes. We reannotated probe sets of the affymetrix
microarrays for lncRNAs by mapping all probes to the human genome (hg19)
by using SeqMap [32]. To avoid potential cross-hybridization of transcribed
regions in the genome other than lncRNAs, we only kept those probes that
mapped uniquely to the genome with no mismatch and removed all probes
that mapped to protein-coding transcripts (183,252) or pseudogene transcripts
(15,789) on the basis of the annotations from the Ensembl [31] and UCSC [33]
databases.
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Table 18.1 Number of probes corresponding to lncRNAs and number of lncRNAs
with at least four probes, coverage in five major Affymetrix array platforms

No. of probes No. of lncRNAs
corresponding to lncRNAs with at least four probes

Affymetrix Human Exon array 202,449 10,207
Affymetrix U95Av array 1865 76
Affymetrix U133 plus 2.0 array 43,752 2561
Affymetrix U133B array 21,880 1181
Affymetrix U133A array 2830 143

The preceding strategy was applied to generate the probes that corresponded
to lncRNA transcripts for both Affymetrix exon array and the other 3′ IVT
Affymetrix array platforms (Table 18.1). Among the five Affymetrix array
types, the Affymetrix Human Exon 1.0 ST array has the most comprehensive
coverage of the annotated human lncRNAs (Table 18.1), and we used the
case of Affymetrix exon array for demonstration. By matching the selected
probes to the lncRNA sequences, we obtained 202,449 probes from exon array
and 10,207 corresponding lncRNA genes with at least four probes covering
their annotated exons (Figure 18.1A), comprising approximately 64% of all
15,857 lncRNA genes (with over 60% coverage in each category [34] of the
lncRNA genes) collected in this study (Figures 18.1B and 18.1C). The raw
intensity of the exon array probes was corrected with a probe sequence–specific
background model, and the expression level of a lncRNA gene was calculated by
summarizing the background-corrected intensity of all probes corresponding to
this gene [35]. The lncRNA expression was quantile normalized across different
biological samples. The gene expression calculation was implemented with
Jetta [36]. When batch information was available, Combat [37], an empirical
Bayes method, was used to remove potential batch effects.

To gauge the reliability of our approach, we examined the correlation of
both lncRNA and PCG expression between exon array and RNA-seq data on
the same prostate cancer cell line LNCaP that were generated from two differ-
ent laboratories [24, 38]. RNA-seq-based gene expression was calculated with
Cufflinks1.0.2 [39] (default parameters and the –G option), and the exon array–
based gene expression was calculated by the same procedure as was described
earlier. The Pearson correlation coefficient was used to quantify the strength of
the associations between the exon array–based and RNA-seq-based expression
levels. We found that both PCGs (r = 0.70, P < 2.2 × 10–16) and lncRNAs (r=
0.29, P < 2.2 × 10–16) showed significant concordance of expression between
the exon array and RNA-seq data. This observation is consistent with the
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previous finding that the correlation between microarray and RNA-seq data is
lower in genes with low expression [40], as lncRNAs are generally expressed
at lower levels than PCGs [8]. As the level of probe coverage could also
influence the accuracy of lncRNA expression derived from a microarray, we
further investigated how the correlations of expression between the exon array
and RNA-seq data change at different probe coverages by examining those
PCGs with expression levels similar to those of lncRNAs. We found that the
correlation between exon array- and RNA-seq-based expression showed a mod-
erate increase when all probes (0.28) were used as compared with when only
four probes (0.20) were used. The correlations were similar for PCGs (0.28)
and lncRNAs (0.29) when we controlled for expression level. These results
suggest that although probe coverage may influence the array-based lncRNA
expression estimation, the dominant factor that governs the observed differ-
ence in correlation between array and RNA-seq data for PCGs and lncRNAs
is their expression level. A recent study, in which a 60-mer custom oligonu-
cleotide array was designed to investigate lncRNA expression, showed that
the correlation of lncRNA expression between the custom array and RNA-seq
data was between 0.24 and 0.31 [34]. Therefore, although the concordance
between exon array and RNA-seq data is lower for lncRNA expression than
for PCG expression, it may represent the typical performance in comparison
of lncRNA expression between an array-based platform and RNA-seq. These
examinations demonstrated the reliability of the usage of our reannotated exon
array in measuring lncRNAs’ expression and laid a foundation for our further
study.

18.2.2 Integrating lncRNA Expression, Somatic Copy Number
Alteration Data, and Clinical Information

One of the most important goals of disease research, especially in cancer
research, is to identify driver genes that causally contribute to the disease initi-
ation, progression, and maintenance, as these driver genes can potentially serve
as targets for therapeutic interventions. Reliable identification of driver genes
is challenging. The emergence of genomic technologies such as microarray and
next-generation sequencing has greatly facilitated the identification of driver
genes with the aid of computational methods. The expression data alone are
insufficient for indentifying driver genes because the aberrant gene expression
during the course of disease progression could be attributed to an indirect effect
that is secondary to the major disease-causing events. Therefore it is important
to integrate genomic data from different sources to enhance the specificity to
indentify genes that may play a causal function in disease etiology. Aside from
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expression data, an important data source that is informative for identifying
driver genes is genetic alteration data. For instance, in cancer, a disease with
the hallmark of genomic instability [41, 42], many types of somatic genetic
alterations are specific to the cancer genome but not to the genome of the
normal tissue. These somatic genetic alterations include nucleotide substitu-
tion mutations and small insertion/deletions (indels), copy number gains and
losses, and chromosomal rearrangements. The copy number gains and losses
is a particularly interesting type of somatic genetic alteration because it can
often be linked to aberrant gene expression, which makes it a powerful data
source in combination with expression profile to identify concordant genetic
and gene expression abnormality. The joint analysis of genome-wide somatic
copy number alteration profile can lead to the discovery of driver genes by
narrowing the vast number of genomic and expression changes in cancer to a
small subset that may be more functionally relevant [43, 44]. It can also lead
to improvements in cancer diagnosis by utilizing copy number alteration as
additional biomarkers [43, 45].

The high-resolution characterization of the SCNA profile in the cancer
genome has been made possible by the emergence of both array-based and
NGS-based genomic technologies. Array comparative genomic hybridization
(aCGH) is among the earliest techniques for characterizing genome-wide
somatic copy number alternation in cancer genome. All aCGH arrays are
two channel, and they work by first differentially labeling and hybridizing
tumor genomic DNA and normal genomic DNA on a microarray that contains
hundreds of thousands of probes [46–48]. The ratio between a tumor and
the matched normal sample is then calculated for each probe. To quantify the
change of copy number difference, the log of base 2 is usually used so that the
log-ratio of 1 and−1 corresponds to double or half as many copies, respectively.
The log-ratio of 0 corresponds to no change in the copy number in tumor sample
compared to the normal sample at that genomic location. Using the ratio values
from all the probes that correspond to different genomic locations, the copy
number alteration profile along the chromosome can be inferred. There are two
major types of aCGH. The first type of aCGH utilizes bacterial artificial chro-
mosome (BAC) probes, which are typically several hundred bp in length [46].
The BAC aCGH has a median genomic resolution of several mega-bases [46].
The second type of aCGH is the oligonucletide platform. Such oligonucleotide
platforms as those from Agilent and Nimblegen have probes shorter than 100
bp, and each array has from hundreds of thousands to more than 1 million
probes. Given the difference in design and manufacturing of the aCGHs (probe
length, hybridization chemistry, etc.), BAC and oligonucletide aCGH have
their own technical characteristics and may serve for different applications.
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With the longer probe, the BAC aCGH in general has higher specificity in the
hybridization signal of each probe, and each probe gives more accurate mea-
surement, but it has lower resolution than oligonucleotide aCGH. However,
for many applications, in which the aberration of interest is large, the resolu-
tion BAC aCGH is rather sufficient. In contrast, the oligonucleotide array has
shorter probes and gives more noisy measurement on the individual probe level
but provides higher genomic resolution.

In addition to the aCGH platforms, single nucleotide polymorphism (SNP)
arrays can also be used to infer somatic copy number alterations in the can-
cer genome. The SNP arrays are mostly single-color arrays, in which only a
tumor or a normal sample is hybridized on a microarray that contains oligonu-
cleotide probes (25–50 bp). The two most popular SNP array platforms are
the Affymetrix [49] and Illumina [50] SNP arrays. These arrays contained
from hundreds of thousands to more than 1 million probes for inferring SNPs
and/or copy number variations. The SNP arrays have the important advan-
tage of measuring copy number alterations and loss of heterozygosity (LOH)
simultaneously [51], but they have the disadvantage that the probe design and
positioning are not optimal for the estimation of copy number. The advent of
next-generation sequencing and the rapid increase in its throughput have made
it possible to characterize copy number alteration with a much higher resolu-
tion (<10 kb) than aCGH or SNP arrays via whole-genome or whole-exome
sequencing [52].

Characterizing somatic copy number amplifications and deletions in cancer
genome with high resolution is only the first step in inferring genomic regions,
the alteration of which are functionally important for the etiology of cancer.
Once the genomic alterations have been detected, the next challenge is to
distinguish between driver genomic alterations that confer a selective advantage
for the tumor to initiate, grow, or persist and passenger genomic alterations that
confer no selective advantages. To address this challenge, it is important to
perform joint analysis of the somatic genomic alteration profiles across many
tumors. Several algorithms [53] are designed for identifying those regions
with aberrations that occur significantly more often than would be expected
by chance, using permutation tests that are based on the overall pattern of
aberrations seen across the genome. In the current study, we used two well-
established algorithms, GISTIC [54, 55] and RAE [56], to identify the regions
that harbor recurrent SCNAs by using SNP and aCGH data, respectively. As
those regions with recurrent SCNAs often contain many lncRNA genes, we
further integrate SCNA data and expression data to identify potential driver
lncRNA genes based on the reasoning that functional SCNA should cause gene
expression change and the driver lncRNAs should show higher or lower gene
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Figure 18.2 The workflow of integrating SCNA data, lncRNA expression data, and
clinical information to identify the lncRNAs that are associated with cancer subtypes
and clinical prognosis and/or those that are potential drivers of cancer progression.

expression in tumors with the corresponding genomic amplification or deletion
compared with the rest tumors (Figure 18.2).

Besides the identification of potential driver lncRNAs, we integrated lncRNA
expression with clinical information of individual patient samples including
disease status (normal tissue vs. primary or metastatic tumor), subtype, and
overall or progression-free survival information of the corresponding patient to
predict those lncRNAs that showed different expression between disease status,
subtype-specific expression, and/or associations with disease prognosis (Fig-
ure 18.2). The significance of differential expression between different statuses
was assessed by Mann-Whitney U -test. To identify the lncRNAs that are asso-
ciated with prognosis, the expression of which is associated with prognosis,
we performed multivariate Cox proportional hazard (Cox regression) analy-
ses to assess the associations between lncRNA expression with overall and
progression-free survival while controlling for potentially cofounding clinical
variables, including ethnicity, age, and gender.

18.3 Application

Using the earlier described approaches, we performed integrative analyses
of lncRNA expression profiles, clinical information, and SCNA profiles of
tumors in four different cancer types, including 150 tumor samples of prostate
cancer from the Memorial Sloan-Kettering Cancer Center (MSKCC) Prostate
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Oncogenome Project [24] and 451 tumor samples of glioblastoma multiforme
(GBM) [21], 585 tumor samples of ovarian cancer (OvCa) [22], and 113 tumor
samples of lung squamous cell carcinoma (lung SCC) [23] from the Cancer
Genome Atlas Research Network (TCGA) project [21]. For prostate cancer, the
data set includes exon array data, clinical annotation and SCNA data from the
Gene expression Omnibus (GEO) (GSE21034). The SCNA regions were deter-
mined as the union of SCNA regions from two different studies [24, 57]. Recur-
rent SCNA regions across different tumors were identified by the algorithms,
GISTIC [54] and RAE [56]. The magnitude of the SCNAs was estimated as the
log2 ratios of segmented copy numbers between cancer and control DNAs. The
exon array data, clinical annotations, and SCNA data of GBM, OvCa, and lung
SCC were downloaded from TCGA (https://tcga-data.nci.nih.gov). We further
obtained exon array data of 11 human normal tissues from Affymetrix (http://
www.affymetrix.com/).

To validate the utility of exon array data in combination with clinical annota-
tion to identify cancer-related lncRNAs, we examined the expression patterns
of 13 literature-curated cancer-related lncRNAs [17] that have corresponding
exon array probes in a prostate cancer data set [24]. This data set consists
of 29 normal prostate samples, 131 primary prostate tumor samples, and 19
metastatic prostate tumor samples with exon array data [24] (Figure 18.3A).
Notably, 9 out of these 13 known cancer-related lncRNAs showed significantly
different expression between the tumor and normal prostate samples (Mann-
Whitney U -test, p < 0.05). Three out of these nine lncRNAs were directly
related to prostate cancer, including one known prostate cancer diagnostic
biomarker, PCA3 [19, 20], and two lncRNAs, PCAT-1 [38] and PCGEM1 [58],
that have been functionally implicated in prostate cancer progression. GAS5, a
tumor-suppressive lncRNA known to be down-regulated in breast cancer [59],
showed increased expression in prostate cancer (Table 18.2), a result suggest-
ing complex and context-dependent functions of lncRNAs in different cancer
types. Notably, several lncRNAs, such as NEAT1 [60], DANCR [61], HOTTIP
[62], PRINS [63], and EGOT [64], that have established functions in forming
nuclear speckles [60], in development [61] and in autoimmune disease [63],
but were not previously known to be related to cancer, showed differential
expression between tumor and normal prostate samples (Table 18.2), and this
suggests their potential function in prostate cancer.

We next sought to identify lncRNAs that showed significant expression
differences between tumors and normal prostate tissues and found 109 up-
regulated and 104 down-regulated lncRNAs (Mann-Whitney U -test, false dis-
covery rate < 0.05, fold change > 1.5) (Figure 18.3A). Notably, among the
lncRNAs with sufficient exon array probe coverage, we rediscovered seven out
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Table 18.2 Known cancer-related lncRNAs or lncRNAs with established
function in noncancer context and their regulation in cancer compared with

normal prostate tissue

MW-U test Cancer vs. Function
Ensembl ID Gene name p-value normal annotation

ENSG00000225937 PCA3 9.50E-12 Up Prostate cancer
ENSG00000234741 GAS5 1.77E-06 Up Breast cancer
ENSG00000249859 PVT1 4.93E-11 Up Multiple cancers
ENSG00000226950 DANCR 3.03E-08 Up Development
ENSG00000253438 PCAT1 1.12E-05 Up Prostate cancer
ENSG00000227418 PCGEM1 4.49E-04 Up Prostate cancer
ENSG00000245532 NEAT1 0.00642 Up Nuclear speckle

KCNQ1O
ENSG00000258492 T1 0.0103 Up Colon cancer
ENSG00000251164 HULC 0.0311 Up Multiple cancers
ENSG00000251562 MALAT1 0.285 – Multiple cancers
ENSG00000214548 MEG3 3.92E-08 Down Multiple cancers
ENSG00000238115 PRINS 1.37E-07 Down Autoimmune disease
ENSG00000243766 HOTTIP 1.95E-06 Down Development
ENSG00000235947 EGOT 2.48E-05 Down Development
ENSG00000214049 UCA1 2.11E-02 Down Bladder cancer
ENSG00000228630 HOTAIR 0.0573 – Multiple cancers
ENSG00000130600 H19 0.0842 – Multiple cancers
ENSG00000240498 ANRIL 0.699 – Prostate cancer

Note: The statistical significance of the expression difference between cancer and normal
prostate tissue was evaluated by Mann-Whitney U -test (MW-U test)

of eight lncRNAs that were reported to show higher expression in prostate can-
cer from an independent study based on RNA-seq data [38]. Furthermore, we
identified an additional 102 lncRNA genes that were up-regulated in prostate
cancer but were missed by the other study [38], and this suggests that arrays
and RNA-seq may be complementary methods to identify clinically relevant
lncRNAs.

Cancer is a clinically heterogeneous disease, and individual cancer types
can be further divided into molecular subtypes, each with specific biological
and clinical behaviors. Previous studies established four subtypes of GBM
(proneural, neural, classical, and mesenchymal) [21], four subtypes of OvCa
(immunoreactive, proliferative, mesenchymal, and differentiated) [22], and four
subtypes of lung SCC (basal, classical, primitive, and secretory) [23] on the
basis of the expression profiles of PCGs, and six subtypes of prostate cancer on
the basis of the SCNA profiles [24]. LncRNAs with subtype-specific expression
may have an important function in individual molecular subtypes. We compared
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Figure 18.3 (A) The expression level of lncRNA that showed significantly differential
expression between cancer and normal prostate tissues shown in heatmap across 29 nor-
mal prostate samples and 131 primary and 19 metastatic prostate tumor samples. Several
known cancer-related lncRNA or lncRNA with established function in a noncancer con-
text were highlighted. (B) Venn diagram representing the number of subtype-specific
lncRNA in three cancers. The expression profile of the top 100 lncRNA that exhibited
significantly higher expression in one subtype than the others for (C) GBM, (D) OvCa,
and (E) Lung SCC shown in heatmap. (Note: the rank was based on the ascending order
of the p-value.) Tumor samples were hierarchically clustered within each subtype.

lncRNA expression across different subtypes and identified hundreds of lncR-
NAs showing subtype-specific expression patterns in GBM, OvCa, and lung
SCC (FDR < 0.05; Figures 18.3B–18.3E). The same approach did not yield
any lncRNAs with significant subtype-specific expression in prostate cancer,
which was reminiscent of the lack of a robust PCG expression–based subtype
of prostate cancer [24]. In addition, 628 lncRNAs showed subtype-specific
expression in more than one cancer type (Figure 18.3B), and some of these
lncRNAs have been functionally implicated in other physiological or patholog-
ical processes. For example, MIAT, a lncRNA that showed specific expression
in the mesenchymal subtype of OvCa and the proneural subtype of GBM, is
known to confer risk of myocardial infarction [65] and regulate retinal cell fate
specification [66]. In addition, RMST, a lncRNA known to be differentially
expressed between rhabdomyosarcoma subtypes [67], also showed subtype-
specific expression patterns in GBM, OvCa, and lung SCC. The lncRNAs that
showed statistically higher expression (false discovery rate < 0.05) in only one
subtype were considered to be subtype specific.

A previous study of HOTAIR [16, 68] showed that patients with higher
HOTAIR expression had poorer prognosis in colorectal cancer [69]. To iden-
tify the lncRNAs that are associated with clinical outcome in prostate cancer,
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GBM, OvCa, and lung SCC, we performed multivariate Cox regression analy-
sis to evaluate the significance of the correlations between individual lncRNA
expression and overall and progression-free survival in the presence of other
confounding factors such as ethnicity, age, and gender. With these data, we are
able to identify lncRNAs in prostate cancer, GBM, OvCa, and lung SCC whose
expression was significantly correlated with overall or progression-free survival
(p < 0.01). Notably, nine lncRNAs showed consistent positive or negative cor-
relations between their expression and overall or progression-free survival in
different cancer types, and this suggests their potential as more general prognos-
tic biomarkers. The lncRNA gene with the Ensembl ID ENSG00000261582 is
an example of a lncRNA that showed negative correlation between its expres-
sion and overall survival in both lung SCC and OvCa (Figure 18.4A). This
lncRNA also showed subtype-specific expression in OvCa but not in lung SCC.
Additionally, five lncRNAs showed marked and consistent positive or negative
correlations between both overall and progression-free survival in OvCa (one
such example, Ensembl ID ENSG00000225128, is shown in Figure 18.4B).

An important form of somatic genetic alteration in cancer is SCNAs, in
which a genomic region is either amplified or deleted. Some of the genes
within amplified (or deleted) regions show increased (or decreased) expression
levels, leading to altered activity in cancer cells. Studies have suggested that
the genes with causal roles in oncogenesis are often located in the SCNAs
that are frequently altered across tumors [57, 69, 70]. To reveal the lncRNAs
that may have tumor-promoting or -suppressing functions, we identified hun-
dreds of lncRNAs that map to regions of recurrent SCNAs across tumors for
prostate cancer, GBM, OvCa, and lung SCC (Figure 18.4C). Some of these
lncRNAs also showed marked correlation between overall or progression-free
survival [14]. In addition, we identified lncRNAs that were consistently located
in regions of SCNAs across different cancers (Figure 18.4C) and found a signif-
icant overlap of the lncRNA genes that are located in SCNA gain or loss regions
between some of the cancer types [14]. Among the many genes located within
regions of SCNAs, probably only a fraction of them are drivers of cancer. To
further distinguish driver from passenger lncRNAs in the regions of SCNAs,
we integrated SCNA and expression profiles of lncRNAs in tumors. We rea-
soned that driver lncRNAs with SCNAs should result in corresponding gene
expression changes [70, 71], as only those SCNAs that cause changes in tran-
script abundance could possibly alter lncRNA activity. Therefore, we selected
lncRNAs whose SCNAs showed positive correlations with expression level
changes as candidate drivers for prostate cancer, GBM, OvCa, and lung SCC.
Among the lncRNAs in the SCNA regions, we selected those that showed sig-
nificant and concordant expression changes (one-tailed Mann-Whitney U -test,
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ENSG00000261582 was expressed higher in the “differentiated” subtype of OvCa than
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p < 0.05) in tumor samples with a corresponding somatic copy number gain
(log2 ratio > 0.2) or loss (log2 ratio < −0.2) compared to the other samples
[14].

To further validate the reliability of the integrative studies, and as it is pro-
hibitive to validate all candidate driver lncRNAs in the four cancer types, we
focused our experimental validation and comprehensive annotation on can-
didate lncRNAs that may have tumor-promoting functions in prostate cancer
(i.e., those in recurrent SCNA (gain) regions that showed positive correla-
tions between their SCNAs and expression levels). Among all the candidate
driver lncRNAs that showed increasing expression from normal to primary to
metastatic prostate cancer, we chose the two that showed the most significant
expression difference between tumor and normal prostate tissue (i.e., the two
with the smallest p-values calculated by Mann-Whitney U -test) for experimen-
tal validation. The criterion of increasing expression from normal to primary
to metastatic prostate cancer aimed to uncover lncRNAs that may be important
therapeutic targets for both primary and metastatic cancers.

We named these two lncRNAs prostate cancer–associated noncoding RNAs 1
and 2, abbreviated as PCAN-R1 (Ensembl ID ENSG00000228288) and PCAN-
R2 (Ensembl ID ENSG00000231806), respectively. Both lncRNAs showed
positive correlations between gene expression and the advancement of the
disease status and SCNAs (Figures 18.5A and 18.5B). To confirm that the
two lncRNAs PCAN-R1 and PCAN-R2 are noncoding, we used two differ-
ent methods, txCdsPredict from UCSC and phyloCSF [72], to calculate their
coding potential. For coding-potential calculations with phyloCSF, we used
the multiple sequence alignment of 29 mammalian genomes [73]. We chose
the thresholds used previously (txCdsPredict = 800 [38] and phyloCSF = 100
[8]), below which the transcripts were considered to be noncoding. We found
that the scores of all possible opening reading frames from the PCAN-R1 and
PCAN-R2 transcripts were well below the thresholds (txCdsPredict scores:
PCAN-R1, 470 and PCAN-R2, 359; phyloCSF scores: PCAN-R1, –123.1434
and PCAN-R2, –148.5448), supporting that these two lncRNA genes are
noncoding.

We chose the prostate cancer cell line LNCaP, in which both lncRNAs have
moderate or higher expression levels compared with their expression in other
prostate cancer or non–prostate cancer cell lines, for experimental validation.
Using 5′ and 3′ rapid amplification of cDNA ends (RACE), we found that for
PCAN-R1, although one isoform (PCAN-R1-A) was almost identical to the
Ensembl annotated transcript ENST00000425295 (Figure 18.5C), the other
isoform (PCAN-R1-B) was a spliced variant of PCAN-R1-A with an intron
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Figure 18.5 Experimental validation of lnc-P1 and lnc-P2 function. (A) Heatmap show-
ing the expression of lnc-P1 and lnc-P2 in normal prostate tissue, primary and metastatic
prostate cancer. (B) Box plot of lnc-P1 and lnc-P2 expression in tumors with genomic
amplification and in the tumors without genomic amplification. (C) Transcript structure
of lnc-P1 and lnc-P2 from Ensembl annotation and determined by 5′ and 3′ RACE
experiments in LNCaP cell. In addition, the H3K4me3 and DNase I hypersensitive
region profiles in the same cell line are shown. (D) The Northern blot of lnc-P1 and
lnc-P2 transcripts. (E) Relative expression level of lnc-P1 and lnc-P2 upon knockdown
by two different siRNA (purple and orange) and upon control siRNA treatment (green).
(F) Growth curves of LNCaP cell with or without targeted siRNA-mediated knock-
down of lnc-P1 or lnc-P2. The growth curves of control siRNA-treated cells and the
growth curves of two targeted siRNA-treated cells plotted in purple, orange, and green,
respectively. (G) Number of soft-agar colony formation of LNCaP cell with or without
targeted siRNA-mediated knockdown of lnc-P1 or lnc-P2.
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retention (Figure 18.5C). Notably, for PCAN-R2, the major isoform had an
extra exon in the 5′ end, and the remaining two exons also had different lengths
from the Ensembl annotation (Figure 18.5C). The new 5′ exon of PCAN-R2 was
more consistent with the profile of histone H3 Lys4 trimethylation (H3K4me3),
a histone mark of an active promoter and the profile of DNase I hypersensitive
regions (i.e., the regions with an open chromatin state) in LNCaP cells.

We confirmed the transcript structures of PCAN-R1 and PCAN-R2 by north-
ern blot and performed short interfering RNAs (siRNAs) knockdown experi-
ments and observed the substantial decreases in cell growth. Additional experi-
ments were further conducted and concordantly proved the influence on cancer
cell growth caused by the expression of two lncRNAs. As a lncRNA may act
in cis and influence the expression of its neighboring PCG, we investigated
whether the expression of the neighboring PCG was regulated by PCAN-R1
or PCAN-R2. siRNA knockdown of PCAN-R1 or PCAN-R2 had no effect on
the expression of their neighboring PCGs KDM5B and FBP2, respectively,
and this suggests that the functional mechanisms of PCAN-R1 and PCAN-R2
are not directly through their neighboring PCGs. Notably, in normal tissues,
PCAN-R1 and its neighboring PCG KDM5B showed the highest expression in
testis. In contrast, although PCAN-R2 showed similar expression across dif-
ferent tissues, its neighboring PCG FBP2 showed a muscle-specific expression
pattern, thus suggesting that the expressions of PCAN-R2 and FBP2 may be
differently regulated.

18.4 Discussion

The case study presented in this chapter has demonstrated that integrating the
orthogonal genomic data, such as lncRNA expression profiles, and somatic
copy number alteration along with clinical information can greatly facilitate
the discovery of lncRNA that may serve as therapeutic targets and diagnostic
or prognostic biomarkers. Our analyses also indicate that repurposing microar-
ray probes to construct a lncRNA expression profile in a patient sample is a
cost-effective approach given the large number of such data sets available in
public repositories. The constructed gene expression profiles of both lncRNAs
and PCGs from our analyses are a valuable resource for understanding the
similarities and differences of transcriptional (e.g., antisense RNA [74]) regu-
lation of PCGs by lncRNAs across different cancer types. In the combination of
matched SCNA profile and clinical information, these gene expression profiles
also allow network models to be inferred [75, 76], which will help advance the
understanding of lncRNA function in cancer etiology.
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The experimental validation of two lncRNAs without previous implica-
tion in cancer suggests the effectiveness of our integrative analyses in finding
functionally important lncRNAs in cancer. Our analyses predicted about 80–
300 candidate driver lncRNAs that may have tumor-promoting functions in
each of the four cancer types. An intersection of such a list of candidate driver
lncRNAs with a list of lncRNAs generated from orthogonal functional genomic
data sets, such as that generated by ribonucleoprotein immunoprecipitation
followed by sequencing [77] (a genomic technique for identifying lncRNAs
physically associated with the protein of interest), would greatly help prioritize
their functional valuation in different biological contexts, including epigenetic
regulation, and facilitate the discovery of lncRNA therapeutic targets.

In our current study, we only used SCNA and expression data in combination
with clinical information for our integrative analysis. It is conceivable that other
types of genomic data, such as SNP array [78] and genome sequencing data
[52], can be further integrated to reveal the multifaceted relationship between
the mutation spectrum and expression of lncRNAs, disease status, and clinical
outcome.

In summary, we report a proof-of-principle study for identifying clinically
relevant lncRNAs through integrative analyses of orthogonal genomic data sets
and clinical information. Our study opens new avenues for leveraging publicly
available genomic data to study the functions and mechanisms of lncRNAs in
human disease.
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