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ABSTRACT
◥

Prior data have variably implicated the inactivation of the
mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF)
complex with increased tumor sensitivity to immune checkpoint
inhibitors (ICI). Herein, we examined the association between
mSWI/SNF variants and clinical outcomes to ICIs. We correlated
somatic loss-of-function (LOF) variants in a predefined set of
mSWI/SNF genes (ARID1A, ARID1B, SMARCA4, SMARCB1,
PBRM1, and ARID2) with clinical outcomes in patients with cancer
treated with systemic ICIs. We identified 676 patients from Dana-
Farber Cancer Institute (DFCI, Boston, MA) and 848 patients from
a publicly available database fromMemorial SloanKetteringCancer
Center (MSKCC, New York, NY) who met the inclusion criteria.
Multivariable analyses were conducted and adjusted for available
baseline factors and tumor mutational burden. Median follow-up

was 19.6 (17.6–22.0) months and 28.0 (25.0–29.0) months for
the DFCI and MSKCC cohorts, respectively. Seven solid tumor
subtypes were examined. In the DFCI cohort, LOF variants of
mSWI/SNF did not predict improved overall survival (OS), time-
to-treatment failure (TTF), or disease control rate. Only patients
with renal cell carcinoma with mSWI/SNF LOF showed signifi-
cantly improved OS and TTF with adjusted HRs (95% confidence
interval) of 0.33 (0.16–0.7) and 0.49 (0.27–0.88), respectively, and
this was mostly driven by PRBM1. In the MSKCC cohort, where
only OS was captured, LOF mSWI/SNF did not correlate with
improved outcomes across any tumor subtype. We did not find a
consistent association between mSWI/SNF LOF variants and
improved clinical outcomes to ICIs, suggesting that mSWI/SNF
variants should not be considered as biomarkers of response to ICIs.

Introduction
Since their introduction into clinical practice, immune checkpoint

inhibitors (ICI), namely anti–PD-1/PD-L1 and anti–CTLA-4, have

proven to be an effective antineoplastic drug class across several cancer
subtypes (1–15). Despite the durable responses achieved with ICIs, the
majority of patients do not respond, and universal determinants of
clinical benefit are still lacking (16, 17). Therefore, there remains an
unmet need to develop predictive biomarkers essential to improve
patient benefit, reduce the risk of toxicity, and advance combination
strategies.

Over the past few years, evidence from both preclinical and clinical
settings has implicated the mammalian SWItch/Sucrose Non-
Fermentable (mSWI/SNF) complex as one of the players impacting
response to ICIs. The mSWI/SNF complex is one of the key
factors regulating gene expression and thus plays an important
role in cell division, cell differentiation, and DNA replication (18, 19).
This complex exists in three large macromolecular complexes:
BRG1/BRM–associated factor (BAF), polybromo-associated BAF
(PBAF), and noncanonical BAF (ncBAF) complexes, which are col-
lectively composed of the protein products of 29 genes (19). Whole-
exome sequencing efforts have shown that 20% of human cancers
harbor mutations in at least one the 29 genes involved in this
complex (20). Notably, a wide range of mutation frequencies exists
among the different mSWI/SNF genes, with significant variation
across different cancer subtypes. These mutational patterns may be
partially explained by the cell type–specific expression and function of
the various subunits across cancers (20, 21). For example, SMARCA4
genomic alterations (GA) are relatively common in non–small cell
lung cancers (NSCLC, 11%; refs. 22, 23), ARID1A in ovarian clear-cell
carcinomas (�50%; ref. 24) and urothelial carcinoma (29%; ref. 25),
PBRM1 in renal cell carcinoma (RCC, 40%; ref. 26), and ARID2 in
melanoma (7%; ref. 27).

Preclinical evidence has associated mSWI/SNF inactivation
with increased CD8þ T-cell infiltration, enhanced sensitivity to
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T-cell–mediated cytotoxicity, and improved tumor response to ICIs in
some cancer types (28, 29). A study has shown that ARID1A-deficient
tumors in syngeneic mice demonstrate significantly increased tumor-
infiltrating lymphocytes and improved response to ICIs compared
with controls (29). Interestingly, analysis of The Cancer GenomeAtlas
(TCGA) data has linked decreased expression of multiple mSWI/SNF
genes (SMARCA4, PBRM1, ARID1A, ARID2) with increased
mRNA levels of stimulated 30 antisense retroviral coding sequences
(SPARCS), a subclass of endogenous retroviruses that triggers
innate immunity (30).

Clinically, several studies have assessed genetic correlates of
response to checkpoint blockade, with a focus on the mSWI/SNF
complex (Supplementary Table S1; refs. 31–41). A salient feature of
these studies is the variability of evidence in relation to whether loss
of the mSWI/SNF correlates with clinical benefit in patients treated
with ICIs across different lines of ICI therapy. For example, in RCC,
loss-of-function (LOF) mutations in PBRM1 in the post tyrosine-
kinase inhibitor (TKI) setting associates with clinical benefit to the
single-agent PD-1 inhibitor, nivolumab (40). This was later validated
in a more comprehensive analysis of a randomized controlled trial of
patients with RCC treated with nivolumab versus everolimus (32). In
contrast, two other clinical trials in the frontline RCC setting did not
find a significant association between PBRM1 alterations and
improved clinical outcomes in patients treated with either PD-L1–
based combination therapies or atezolizumab alone (8, 33, 39).

Nearly all prior studies on themSWI/SNF complex have focused on
individual tumor typeswithout studyingpan-cancer relationships (40).
These studies were also very heterogenous overall in their assessments,
including the examined tumor histologies, the considered line of
ICI therapy, the reported patient outcomes, as well as the assessed
mSWI/SNF GAs. Herein, in two independent cohorts, we systemat-
ically assessed the association between LOF variants in mSWI/SNF
subunits and outcomes of patients with cancer treated with ICIs, using

extensive clinical phenotyping and rigorous statistical analyses across
multiple cancer types.

Materials and Methods
Study design and patient cohorts

We tested our hypothesis in two independent cohorts: Dana-Farber
Cancer Institute (DFCI, Boston MA) cohort of 676 patients and an
external cohort from Memorial Sloan Kettering Cancer Center
(MSKCC, New York, NY) of 848 patients (42). We included patients
with solid tumor histologies, where ICIs were FDA approved for
therapy, who received at least one dose of an anti–PD-1/PD-L1 or
anti–CTLA-4 agent in the metastatic setting, and who had next-
generation targeted sequencing (NGS) of their tumor tissue performed
(as described below). Included tumor histologies were melanoma,
NSCLC, RCC, urothelial carcinoma, colorectal adenocarcinoma, eso-
phagogastric adenocarcinoma (EGC), head and neck squamous cell
carcinoma (HNSCC), cancer of unknown primary (CUP), and small-
cell lung cancer (SCLC). The number of patients per each tumor
histology is detailed inTable 1. Patients were excluded if they were lost
to follow-up, had no measurable disease, or had clinical deterioration
within one week of the first ICI dose. Tumors withmissense mutations
were excluded from the analysis, as we could not confidently assess
functional outcomes of these mutations. The patient studies were
conducted in accordance with the ethical guidelines of the Declaration
of Helsinki. This study was performed after approval by the Institu-
tional Review Board (IRB) of DFCI (Boston, MA), and informed
written consent was obtained from each subject or each subject's
guardian. The MSKCC data were de-identified and publicly available.
For the DFCI cohort, tissue collected encompassed primary and
metastatic tumors from core biopsies and/or surgical resections. In
addition to tumor tissue, patients in the MSKCC cohort also had
matched normal or blood collected. Tissue specimens were collected

Table 1. Baseline clinical characteristics of the overall population.

DFCI cohort MSKCC cohort
N (median) % (range) N (median) % (range)

Age at ICI 64 21–90 NA NA
Tumor type

Colorectal adenocarcinoma 35 5.2 63 7.4
EGC 66 9.8 59 7.0
HNSCC 31 4.6 68 8.0
Melanoma 86 12.7 192 22.6
Non–small cell lung carcinoma 334 49.4 255 30.1
RCC 68 10.1 118 13.9
Urothelial carcinoma 56 8.3 93 11.0

Site of specimen sequenced
Metastatic 347 51.3 NA NA
Primary 329 48.7 NA NA

ICI type
Combination 212 31.4 152 17.9
Single 464 68.6 696 82.1

ICI class
Anti–PD-1/PD-L1 589 87.1 636 75.0
Anti–CTLA-4 12 1.8 60 7.1
Anti–PD-1/PD-L1 þ anti–CTLA-4 75 11.1 152 17.9

Number of prior lines
0 329 48.7 NA NA
1 220 32.5 NA NA
≥2 127 18.7 NA NA
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between 2009–2018 for DFCI and between 2013–2017 for MSKCC
andwere stored as formalin-fixed paraffin-embedded tissue. DNAwas
extracted from blood after collection and was stored at �20�C if not
proceeding directly to the library preparation.

Data collection
The clinical variables assessed included gender, primary tumor site,

age at initiation of ICI therapy, type and class of ICI-based regimen for
both cohorts. Additional clinical variables available for the DFCI
cohort included lines of therapy prior to ICIs and site of lesion
subjected to targeted sequencing. Patients were excluded if they were
lost to follow-up, had no measurable disease, or had clinical deteri-
oration within one week of the first ICI dose. Microsatellite instability
(MSI) analysis for the DFCI colorectal adenocarcinoma cohort was
determined using IHC.

Genomic analysis
Details of the tissue collection, DNA extraction, and tumor targeted

sequencing using the Oncopanel/PROFILE and MSK-IMPACT for
DFCI and MSKCC cohorts, respectively, were described previously in
detail (panel of genes assessed in Supplementary Table S2; refs. 43–47).
Briefly, for the DFCI cohort, core biopsy and/or surgical resection
specimens were reviewed by Brigham and Women's Hospital (BWH,
Boston, MA) board-certified pathologists to confirm the diagnosis,
histologic subtype, tumor grade, and stage. Tumor regions consisting
of at least 20% tumor cells were macrodissected from unstained slides,
and DNA was isolated using the QIAamp DNA FFPE Tissue Kit
(Qiagen) according to the manufacturer's instructions. DNA quanti-
fication was performed by Nanodrop and Pico-Green assays. Targeted
gene sequencing was performed using an institutional analytic plat-
form, Oncopanel, that is certified for clinical use and patient reporting
under the Clinical Laboratory Improvement Amendments (CLIA)
Act. A total of 200 ng genomic DNA from each sample was subject to
targeted exon capture and sequencing using one of two versions of the
Oncopanel assay (V2-V3) developed at BWH (Boston, MA). The
Oncopanel gene panel includes capture probes for 275–447 cancer-
associated genes, as well as intronic portions of 60 genes for rear-
rangement detection (44). Targeted capture was performed using a
solution-phase Agilent SureSelect hybrid capture kit and custom bait-
sets. Sequencing libraries were prepared from captured DNA, as
described in detail elsewhere (44). Paired-end sequencing was per-
formed on an Illumina HiSeq 2500. Reads were demultiplexed using
Picard tools (http://picard.sourceforge.net) and aligned to human
reference genome b37 using the Burrows-Wheeler Aligner (48;
http://bio-bwa.sourceforge.net/bwa.shtml).

For the MSKCC cohort, a hematoxylin and eosin (H&E)-stained
slide was reviewed by a molecular pathology fellow and annotated for
relevant specimen information including tumor type, tumor purity,
and whether macrodissection of the indicated tumor region was
necessary prior to nucleic extraction. Genomic DNA extraction was
performed on the Chemagic STAR instrument (Hamilton) from
formalin-fixed, paraffin-embedded (FFPE) tumors and patient-
matched normal blood using the Chemagen Magnetic Bead Technol-
ogy (PerkinElmer). DNA samples were normalized to yield 50–250 ng
input and diluted in 55mL on the Biomek FXP LaboratoryAutomation
Workstation (Beckman Coulter) prior to shearing on the Covaris
instrument (46). Sequencing libraries were prepared using the KAPA
HTP Protocol (KapaBiosystems) and the Biomek FX System
(Beckman Coulter) through several enzymatic steps, including end
repair, A-base addition, ligation of Illumina sequence adaptors, fol-
lowed by PCR amplification and clean-up. Tumors and matched

normal were combined in pools of 24–36 libraries for multiplexed
captures using custom-designed biotinylated probes (Nimblegen).
Captured DNA fragments were sequenced on an Illumina HiSeq2500
as paired-end 100-base pair reads. Reads were demultiplexed using
BCL2FASTQ version 1.8.3 (Illumina) and aligned to human reference
genome b37 using the Burrows-Wheeler Aligner (48; http://bio-bwa.
sourceforge.net/bwa.shtml).

For both cohorts, low-quality reads and duplicates were filtered and
eliminated using Picard.We focused ourmutational and copy number
variation (CNV) analyses on the six genes most commonly altered
(reported in at least 5%ormore in a tumor type)within themSWI/SNF
complex: PBRM1, ARID2, ARID1A, ARID1B, SMARCA4, or
SMARCB1 (20). Tumor mutation burden (TMB) was defined as the
number of exonic, nonsynonymous base substitutions, and indel
mutations per megabase of genome examined.

Variant assessment
For the DFCI cohort, as the Oncopanel analysis was performed on

tumor samples only without germline analysis, we excluded variants
that were observed at a frequency ≥0.1% in the Exome Aggregation
Consortium (ExAC) database (49), as they were considered likely
germline variants (50). For theMSKCC cohort, germline variants were
eliminated through the use of patient-matched blood DNA (46).
Single-nucleotide variants (SNV) and small insertions/deletions
(indels) were analyzed using MuTect v.1 0.27200 (https://confluence.
broadinstitute.org/ display/CGATools/MuTect; accessed May 2013)
and annotated using Oncotator (http://www.broadinstitute.org/
oncotator; accessed May 2013). LOF variants were defined as
nonsense mutations, frameshift insertions or deletions, splice-site
variants affecting consensus nucleotides, or homozygous deletions.
Tumors with missense mutations were excluded from the analysis
as we could not confidently assess functional outcomes of these
mutations, consistent with prior studies of NGS (32, 51, 52). CNVs
were identified using a custom R-based tool (VisCap-Cancer; ref.
53) that compares read-depth at all genomic regions assayed among
different samples. For both cohorts, we focused on homozygous
deletion CNVs in this analysis, and we excluded heterozygous
deletions, as the latter are associated with background noise in the
Oncopanel and MSK-IMPACT sequencing platforms (44, 53).

Statistical analysis
The clinical outcomes included overall survival (OS) for both

cohorts. For the DFCI cohort, more clinical granularity in outcomes
was obtained, including time-to-treatment failure (TTF), overall
response rate (ORR), and disease control rate (DCR). OS was calcu-
lated from the date of ICI initiation to the date of death. Alive patients
were censored at the date of last follow-up. TTF was calculated from
the start date of ICI therapy to the start date of the next treatment or
death. Patients alive and not started on next line were censored at the
date of last follow-up. Response was investigator-assessed. ORR was
defined as complete response (CR) or partial response (PR). DCR was
defined as CR, PR, or stable disease for more than 8 weeks.

The association between GAs and other patient and disease char-
acteristics was evaluated using the Fisher exact test for categorical
variables and Kruskal–Wallis test for continuous variables. The dis-
tributions of OS and TTF were estimated with the Kaplan–Meier
method along with 95% confidence intervals (95% CI), and their
associations with GAs were examined with the Wald x2 test from the
Cox regression, adjusted for lines of therapy prior to ICI for the DFCI
cohort, and type of ICI (single vs. combination) for theMSKCCcohort.
For cohorts with significant associations, we further adjusted for
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TMB as a continuous variable when possible. The effects of GAs on
ORR and DCR were presented as ORs estimated from logistic regres-
sion models, adjusted for prior lines of therapy and TMB in the DFCI
cohort. All comparisons were conducted separately for each tumor
histology. No multiple comparison adjustment was made given the
exploratory nature. Statistical analyses were performed using SAS
version 9.4 (SAS Institute). Two-sided P values are reported.

Results
Study population and patient characteristics

Of 17,046 patients with tumor sequencing at Dana-Farber Cancer
Institute (Boston,MA), we identified 676 patients who received at least
one dose of ICI in the metastatic setting between June 2013 and
January 2019 and met the eligibility criteria for this study (Materials
and Methods; Supplementary Fig. S1; Supplementary Table S3). We
excluded two tumor types (SCLC and CUP) from the analysis because
of the small sample size (N ¼ 2 and N ¼ 6, respectively). From the
MSKCC cohort, we identified 848 patients who fit the inclusion criteria
of this study across the seven included tumor types (Supplementary
Table S4).

Median follow-up was 19.6 months (95% CI: 17.6–22.0) and
28.0 months (95% CI: 25.0–29.0) for the DFCI and MSKCC cohorts,

respectively (Supplementary Table S5). The most prevalent tumors in
the two cohorts, respectively, were NSCLC (DFCI: N ¼ 334, 49.4%;
MSKCC:N¼ 255, 30.1%), melanoma (DFCI:N¼ 86, 12.7%;MSKCC:
N ¼ 192, 22.6%), and RCC (DFCI: N ¼ 68, 10.1%; MSKCC: N¼ 118,
13.9%). Median age at first dose of ICI was 64 (range: 21–90) years for
the DFCI cohort. The most common age group in the MSKCC cohort
was 61–70 years (N¼ 269; 31.7%). Themajority of the cohort received
anti–PD-1– or anti–PD-L1–based therapy (DFCI: N ¼ 589, 87.1%;
MSKCC: N ¼ 636, 75.0%), most commonly as single agents (DFCI:
N ¼ 464, 68.6%; MSKCC: N ¼ 696, 82.1%; Table 1; Supplementary
Tables S3 and S4).

Spectrum of GAs within the mSWI/SNF complex
Themost commonly altered genes in theDFCI andMSKCC cohorts

(pan-cancer), respectively, were ARID1A (DFCI: N ¼ 89, 13%;
MSKCC: N ¼ 77, 9%) and PBRM1 (DFCI: N ¼ 70, 10%; MSKCC:
N ¼ 59, 7%; Fig. 1A; Supplementary Tables S6–S10). Among the
different tumor subtypes, RCC tumors harbored the highest rate of any
LOF mSWI/SNF (DFCI: N ¼ 38, 56%; MSKCC: N ¼ 48, 41%). BAF
complex, defined as ARID1A or ARID1B, LOF variants were more
prevalent in colorectal adenocarcinoma (DFCI:N¼ 16, 46%;MSKCC:
N¼ 13, 21%) and urothelial carcinoma (DFCI:N¼ 22, 39%; MSKCC:
N ¼ 23, 25%), whereas PBAF complex, defined as PBRM1 or ARID2,

Figure 1.

Spectrum of GAs in the mSWI/SNF complex across tumor histologies. A, Frequency and variant types detected across the 6 mSWI/SNF complex genes in the DFCI
(N¼ 676) and MSKCC (N¼ 848) cohorts. Number of patients per each gene is indicated. B, Frequency of detected mSWI/SNF subcomplex mutations across tumor
histologies in the DFCI cohort. Number of patients for each tumor type indicated. C, Frequency of detected mSWI/SNF subcomplex mutations across tumor
histologies in the MSKCC cohort. Number of patients for each tumor type indicated. CRC, colorectal cancer; MEL, melanoma; UC, urothelial carcinoma.
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LOF variants were most abundant in RCC (DFCI: N ¼ 33, 49%;
MSKCC:N¼ 41, 35%; Fig. 1B andC; Supplementary Tables S6–S10).
PBRM1 was the predominantly altered PBAF complex gene in RCC
(N ¼ 33/33 and N ¼ 39/41 in the DFCI and MSKCC cohorts,
respectively). Among the seven histologies examined, all tumors, with
the exception of HNSCC and EGC, harboring LOF variants within the
mSWI/SNF complex had significantly higher TMB compared with
wild-type (WT) in both cohorts (P < 0.05; Supplementary Fig. S2;
Supplementary Table S11).

Treatment outcomes of patients with LOF GAs in mSWI/SNF
genes

Multivariable analysis of the DFCI cohort showed significantly
improved OS and DCR in patients with colorectal adenocarcinoma

and RCC whose tumors carried LOF variants in the mSWI/SNF
complex. Conversely, patients with NSCLC showed worse OS in the
LOF group (Figs. 2–3; Supplementary Fig. S3; Table 2). OS and TTF
outcomes for the overall DFCI cohort across histologies are summa-
rized in Supplementary Table S5.

To explore whether the observed associations were driven by
individual members of the mSWI/SNF complex, we analyzed clinical
outcomes associated with GAs in the PBAF and BAF complexes
separately (Supplementary Figs. S4 and S5; Supplementary Tables
S12 and S13). In the colorectal adenocarcinoma DFCI cohort, the
adjusted OS HR was 0.30 (0.10–0.89), favoring LOF GAs in
mSWI/SNF genes (P¼ 0.03). In terms of response, significantly higher
ORR and DCR were associated with the presence of a LOF variant in
any of the mSWI/SNF genes (ORR: LOF ¼ 6/18, 33% vs. WT ¼ 0/17,

0.62 (0.26–1.45)
0.99 (0.49–2.01)
0.78 (0.23–2.68)
0.77 (0.43–1.39)
1.21 (0.92–1.59)
0.49 (0.27–0.88)
0.66 (0.34–1.27)
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0.56 (0.21–1.48)
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0.76 (0.26–2.22)
1.02 (0.57–1.85)
1.84 (0.56–1.24)
1.04 (0.58–1.84)
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0.30 (0.10–0.89)
0.70 (0.31–1.61)
0.74 (0.21–2.54)
1.70 (0.76–3.8)
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0.33 (0.16–0.7)
1.44 (0.68–3.03)

0.03 35 (18)
0.403 66 (37)
0.631 31 (24)
0.192 86 (27)
0.018 334 (187)
0.004 68 (30)
0.34 56 (29)
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Figure 2.

Analysis of survival outcomes in patients with LOF mSWI/SNF and WT across different tumor histologies. A, Adjusted HR for TTF in the DFCI cohort (N ¼ 676).
B,AdjustedHRs forOS in theDFCI cohort.C,AdjustedHRs forOS in theMSKCCcohort (N¼848).x2Wald statistic. Cohort adjustments indicated. Error bars, SD. CRC,
colorectal cancer; MEL, melanoma; UC, urothelial carcinoma.
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0%;DCR: LOF¼ 11/18, 61% vs.WT¼ 4/17, 24%;P¼ 0.019 and 0.041,
respectively). We observed similar trends for OS, TTF, ORR, andDCR
for both PBAF and BAF complexes separately (Supplementary Figs.
S4–S6; Supplementary Tables S12 and S13). TMB was significantly
higher in the mSWI/SNF LOF cohort compared with the WT cohort,
but the small sample size of the colorectal adenocarcinoma cohort
precluded TMB from being included into the multivariable analysis. A
positive correlation was observed between MSI-status and mutational
status of the mSWI/SNF genes in the colorectal adenocarcinoma
cohort. Of 18 patients with LOF mSWI/SNF, 16 (88.9%) had MSI-
high tumors versus only 1 of 15 (6.7%) patients within the WT group
(Supplementary Table S14).

Among patients with RCC in the DFCI cohort, the mutant cohort
showed significantly improved TTF andOS, with adjusted HRs of 0.49
(0.27–0.88) and 0.33 (0.16–0.7), respectively, compared with the WT
cohort (Fig. 2). Median TTF for themutant cohort was 11.3 (6.9–31.6)
months, and the OS was not reached (22 months–NR) compared with
median TTF of 5.6 (2.6–9.2) months and median OS of 10.9 (8–21.4)
months for theWTcohort (Fig. 3A andB). A significantly higherDCR
was observed for patients with LOF variants in the RCC cohort (LOF¼

27/38, 71% vs. WT ¼ 12/30, 40%, P ¼ 0.014) compared with patients
with WT variants (Table 2). After further adjusting for TMB, the OS
benefit wasmaintained [adjusted HR 0.41 (0.18–0.91), P¼ 0.029], and
the adjusted HR for TTFwas 0.70 (0.37–1.33, P¼ 0.278). The adjusted
ORs for DCR and ORR was 2.86 (0.91–8.99) and 1.81 (0.49–6.64),
respectively (P¼ 0.073, 0.371), after adjusting for TMB and prior lines
of therapy.

To further explore these associations, we analyzed PBRM1 LOF
variants and clinical outcomes in RCC, given that PBRM1 is the most
frequently altered mSWI/SNF gene in RCC (33/38; Fig. 3C and D;
Supplementary Table S10). Median TTF for PBRM1 mutant and WT
cohorts were 11.5 (6.9–NR) months and 5.6 (2.9–8.4), respectively.
Median OS for PBRM1 mutant was not reached (22–NR) compared
with a median OS of 13.1 (8.3–27.5) months for theWT.We observed
similar associations in terms of TTF, OS, and DCR for the mutant
cohort compared with theWT cohort, as well after correcting for TMB
as a continuous variable (Supplementary Table S15). We then com-
pared OS and ORR in PBRM1 LOF vs. WT across tertiles of TMB
(Fig. 3G). It was consistent thatPBRM1LOFwas associatedwith better
clinical outcomes compared withWT.However, meaningful statistical
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comparisons could not be performed given the small sample size in
each group. We obtained mirroring results when the analysis was
restricted to patients with metastatic RCC treated with single-agent
ICIs at DFCI (N¼ 28), supporting the notion that PBRM1 LOF results
in improved outcomes, but multivariate analysis could not be per-
formed given the small cohort size (Supplementary Table S16). In
contrast, patients in theNSCLCDFCI cohort with LOF variants within
the mSWI/SNF showed significantly worse OS compared with WT
adjusted HR¼ 1.44 (1.06–1.96), with no significant difference in TTF
[adjusted HR of 1.21 (0.92–1.59)] or ORR. After adjusting further for
TMB, mSWI/SNF LOF tumor variants portended worse OS and TTF
in theNSCLC cohort [adjustedHRs of 1.57 (1.13–2.17) and 1.38 (1.03–
1.85), respectively] (Supplementary Table S17). Patients in the DFCI
melanoma, HNSCC, EGC, and urothelial carcinoma cohorts did not
show any association between mutational status of the mSWI/SNF
complex or the individual subcomplexes PBAF and BAF, and either
OS, TTF, or ORR (Fig. 3; Supplementary Figs. S3–S5).

In the MSKCC cohort (N ¼ 848 patients), we did not detect any
significant associations across all tumor subtypes between LOF
variants in the mSWI/SNF genes explored and OS after adjusting
for the type of ICI administered (Fig. 3; Supplementary Fig. S7). For
this analysis, we could not adjust for other clinical variables, such as
lines of therapy prior to ICIs because these data were not available.
Similarly, TTF and response data were not available in the MSKCC
cohort.

Discussion
In this study, we evaluated the effect of GAs of mSWI/SNF complex

genes in patients treated with ICIs. Analysis of 676 and 848 solid
tumors from patients treated with ICIs at DFCI and MSKCC, respec-
tively, did not support the notion that loss of the mSWI/SNF complex
is a pan-cancer biomarker of clinical benefit from ICIs.

Findings from the colorectal adenocarcinoma cohort at DFCI
highlight an association between LOF mSWI/SNF complex genes
and MSI status, where 88.9% of patients with LOF mSWI/SNF had
MSI-high tumors by IHC. This is in line with previous literature
correlating loss of ARID1A with mismatch-repair deficiency in
endometrial, ovarian, and colorectal carcinomas (29, 54, 55). How-
ever, this creates uncertainty on whether the observed benefit is
driven by the MSI status or by loss of the mSWI/SNF complex genes
because it is well established in the literature that mismatch-repair
deficiency increases sensitivity to immune checkpoint block-
ers (56, 57). An OS benefit in mSWI/SNF LOF variants was not
observed in the MSKCC cohort, challenging the validity of this
association.

In the DFCI RCC cohort, a consistent OS, TTF, and DCR benefit
was observed in themSWI/SNF LOF compared withWT atDFCI. The
OS benefit was maintained after correcting for TMB, and these
associations were mostly driven by PBRM1 LOF variants. Conversely,
no association was observed between mSWI/SNF LOF and OS benefit
in theMSKCC cohort. This further adds to the variability in published
literature. Some studies have suggested that patients with RCC may
benefit from ICIs when their tumors carry LOF mSWI/SNF complex
variants because this creates an immune-responsive milieu, with
increased expression of immune-stimulatory gene sets related to
IL6-JAK-STAT3 signaling and TNFa signaling via NF-kB, increased
sensitization to T-cell–mediated killing, and enhanced accessibility to
IFNg-inducible genes (28, 40, 41). In contrast, others have reported
that PBRM1 loss reduces IFNg-STAT1 activity and promotes resis-
tance to immunotherapy in RCC (58). One of the possible causes of
these variable results in our studymaybe related to the different patient
populations or to the different factors taken into consideration in the
two independent cohorts.We corrected for prior lines of therapy in the
DFCI cohort and for type of ICI in the MSKCC cohort. Another
explanation could be due to the fragility of the correlation between

Table 2. Antitumor activity in the LOF and WT mSWI/SNF cohorts.

A: ORR in the LOF and WT mSWI/SNF cohorts
WT LOF mSWI/SNF

Total N ORR (%) Total N ORR (%) P

Colorectal adenocarcinomaa 17 0 0% 18 6 33.0% 0.019
EGC 53 9 17% 13 4 31.0% 0.267
HNSCC 27 3 11% 4 2 50.0% 0.112
Melanoma 47 17 36% 39 13 33.0% 0.824
Non–small cell lung carcinoma 230 60 26% 104 22 21.0% 0.41
RCC 30 5 17% 38 12 32.0% 0.259
Urothelial carcinoma 27 6 22% 29 7 24.0% 0.99

B: DCR in the LOF and WT mSWI/SNF cohorts
WT LOF mSWI/SNF

Total N DCR (%) Total N DCR (%) P

Colorectal adenocarcinomaa 17 4 24% 18 11 61% 0.0409
EGC 53 16 30% 13 7 54% 0.1921
HNSCC 27 6 22% 4 2 50% 0.2683
Melanoma 47 26 55% 39 24 62% 0.6619
Non–small cell lung carcinoma 230 126 55% 104 52 50% 0.4775
RCCa 30 12 40% 38 27 71% 0.0139
Urothelial carcinoma 27 10 37% 29 13 45% 0.5965

Note: Bold font signifies P < 0.05.
aP < 0.05.
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PBRM1 LOF and clinical benefit to immunotherapy, which can be
explored through prospective clinical trials (59). Finally, the evidence
supportingPBRM1LOFas a prognostic biomarker of benefit from ICIs
is derived frompatients receiving ICIs in the post-VEGF-TKI–targeted
therapy setting (32, 40). Given that data on prior lines of therapy from
the MSKCC cohort were not available, this may partially explain the
variable results.

Although no significant associations were demonstrated between
mSWI/SNF complex LOF and TTF or ORR in the NSCLC cohort,
these patients showed an inferior OS and TTF compared with patients
whose tumors carried the WT mSWI/SNF genes in the DFCI cohort.
Consistent with published data, SMARCA4 was the most frequently
mutated member of the mSWI/SNF complex in NSCLC at a rate of
12% (22). SMARCA4-deficient lung adenocarcinomas are associated
with poor prognosis and response to platinum-based therapies, not
ICIs (60, 61). This may explain the worse outcomes of these patients.
No significant association was observed between mSWI/SNF complex
mutations and OS in the MSKCC cohort, which may be attributed to
the different patient populations.

The question of correlating GAs with clinical outcomes is crucial to
address in the field of immunotherapy, given the variable response
rates with ICIs and the substantial toxicity these agents may have.
Although this study did not provide a pan-cancer biomarker predict-
ing response to checkpoint inhibitors, it provides evidence that LOF of
the mSWI/SNF complex in patients receiving an ICI-based therapy
may not be a key player driving the response. Despite previous
promising results in individual cancer cohorts (32, 37, 40, 41), in our
study, LOF variants of the mSWI/SNF complex genes were not
associated with improved clinical outcomes in patients with solid
cancer treated with ICIs.

Our study has several limitations, given that it is retrospective in
nature. First, this is a relatively select cohort of patients from two
tertiary cancer centers. Second, we used targeted-sequencing panels
that did not assess all 29 members of the mSWI/SNF complex.
However, we did assess the most frequently mutated genes within
this complex (20, 21). Third, we only evaluated two genotypes (LOF
and WT), while excluding missense mutations and heterozygous
deletions from our analysis. Nonetheless, we deemed that this type
of analysis was necessary to answer our hypothesis because we could
not assess with confidence the true functional impact of these GAs.
Fourth, this study did not investigate the possibility that driver
mutations in other genes may influence clinical benefit to ICIs. For
example, alterations in TP53, MYC, BRAF, EGFR, and HER2 have
previously been shown to impact clinical outcomes in patients
treated with ICIs (62–66). This could be addressed in future studies
by investigating how these genes interact with the mSWI/SNF
complex in neural networks and impact outcomes to ICIs (67).
Finally, we were unable to determine with certainty whether
variants were somatic versus germline in the DFCI cohort, but we
attempted to correct for that by excluding variants that were
observed at a frequency >0.1% in the Exome Aggregation Consor-
tium (ExAC) database.

In conclusion, this work provides a step forward in understand-
ing complex and multivariable mechanisms driving tumor response
to therapy, while validating and challenging simultaneously previ-
ously reported correlations from smaller studies on the association
of mSWI/SNF GAs and clinical benefit from ICIs. It also highlights
the intricacy of the mSWI/SNF complex and its disease-specific
function, advocating for further efforts to discern the biology of
mSWI/SNF complex and its interaction with immune checkpoint
blockade.
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