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ABSTRACT
◥

Purpose:Whole-exome (WES) and RNA sequencing (RNA-seq)
are key components of cancer immunogenomic analyses. To eval-
uate the consistency of tumor WES and RNA-seq profiling plat-
forms across different centers, the Cancer ImmuneMonitoring and
Analysis Centers (CIMAC) and the Cancer Immunologic Data
Commons (CIDC) conducted a systematic harmonization study.

Experimental Design: DNA and RNA were centrally extracted
from fresh frozen and formalin-fixed paraffin-embedded non–
small cell lung carcinoma tumors and distributed to three centers
for WES and RNA-seq profiling. In addition, two 10-plex HapMap
cell line pools with known mutations were used to evaluate the
accuracy of the WES platforms.

Results:TheWES platforms achieved high precision (> 0.98) and
recall (> 0.87) on the HapMap pools when evaluated on loci using >
50� common coverage. Nonsynonymous mutations clustered by

tumor sample, achieving an index of specific agreement above 0.67
among replicates, centers, and sample processing. A DV200 > 24%
for RNA, as a putative presequencing RNA quality control (QC)
metric, was found to be a reliable threshold for generating consistent
expression readouts in RNA-seq and NanoString data. MedTIN >
30 was likewise assessed as a reliable RNA-seq QC metric, above
which samples from the same tumor across replicates, centers, and
sample processing runs could be robustly clustered andHLA typing,
immune infiltration, and immune repertoire inference could be
performed.

Conclusions: The CIMAC collaborating laboratory platforms
effectively generated consistent WES and RNA-seq data and enable
robust cross-trial comparisons and meta-analyses of highly com-
plex immuno-oncology biomarker data across the NCI CIMAC-
CIDC Network.
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Introduction
The Cancer Immune Monitoring and Analysis Centers-Cancer

Immunologic Data Commons (CIMAC-CIDC) Network (https://
cimac-network.org/) is an NCI Cancer Moonshot initiative that
provides cutting-edge technology and expertise in genomic, prote-
omic, and functional molecular analysis to enhance clinical
trials in cancer immune therapies. CIMACs serve as the main
units of the network for correlative studies in clinical trials involv-
ing cancer immunotherapy, functioning as platforms for deep
molecular characterization of tumor and immune profiling
using state-of-the-art analytically validated and standardized plat-
forms. The CIDC, hosted by Dana-Farber Cancer Institute, is
dedicated to providing a bioinformatics infrastructure for CIMACs
as well as to build a biomarker database. The CIMACs work
collaboratively with the CIDC to enable data standardization and
the development of uniform analysis pipelines across studies within
the Network.

Given the biological complexity of most immunotherapy strategies,
data generated from cross-site clinical trials are often confounded by
technical variations or artifacts. Objective quality control (QC) stan-
dards are indispensable for minimizing the variations due to differ-
ences in reference genomes, gene models, analytic algorithms,
and processing pipelines. Harmonization of center-specific protocols
and assay performance is necessary to establish standard operating
procedures to overcome the variability of methods and data
collection (1–5). In addition, assay harmonization is expected to
facilitate objective interpretation and data comparison across different
studies and multiple sites, thereby achieving a unified network for
cross-trial comparisons and meta-analyses.

Whole-exome sequencing (WES) and RNA sequencing (RNA-seq)
data provide a wealth of information for understanding tumor
immune responses in clinical studies (6–12). WES can provide a
comprehensive characterization of tumor mutations, from which
neoantigens, mutational burden, and clonality can be inferred (6–8).
Accumulating evidence has suggested the usage of tumor mutation

burden and tumor neoantigen load as biomarkers for cancer
immunotherapy response (7, 13–16). Likewise, RNA-seq provides a
powerful tool to define response-driving factors from the tumor
microenvironment (9, 10). Advanced computational methods are now
making it possible to utilize RNA-seq data to estimate the composition
of the tumor immune infiltrates (17–21) and infer infiltrating immune
B- and T-cell receptor repertoires (22, 23). These immunologic
characterizations have yielded valuable insights, with the potential to
guide immunotherapy (9, 11, 12, 17, 22, 24, 25). Formalin fixation of
tissue sample remains the standard protocol for tissue preservation in
the clinical arena (26, 27). Successful use of formalin-fixed paraffin-
embedded (FFPE) derived material in next-generation sequencing
(NGS) applications has been reported previously (28–30). However,
data evaluating whether sequencing data generated from FFPE can be
used to robustly estimate immunologic characteristics, such as
immune gene expression, neoantigens, HLA typing, immune infiltra-
tion, and immune repertoires, is lacking. In addition, many existing
studies to date have not consistently used matched normal samples as
germline comparison and therefore somatic mutation detection could
not be rigorously evaluated (26, 27, 31–33).

In this study, the CIMACs and CIDC performed a cross-site
harmonization of WES and RNA-seq data generated from three
centers (A, B, and C). They include, but not necessarily in this order,
the MDAnderson Cancer Center (MDACC, Houston, TX), the Broad
Institute of Harvard and MIT, and the Molecular Characterization
(MoCha) Lab at the Frederick National Laboratory for Cancer
Research. Here, we describe the CIMAC-CIDC harmonization strat-
egy for evaluating DNA sequencing and RNA-seq data generated
across distinct platforms and tissue preparation methods. Moreover,
we discuss the keymetrics needed for successful harmonization within
and among the three sites.

Materials and Methods
Sample preparation and sequencing

Two mixed HapMap cell line pools with well-characterized muta-
tional profiles were used as truth data for the evaluation of WES
(Supplementary Table S1; ref. 34). Matched FFPE tumor, fresh frozen
(FF) tumor, and peripheral blood mononuclear cells (PBMC) from 8
patients with non–small cell lung cancer (NSCLC) of squamous cell
carcinoma histology were also studied; the tumors were collected
between the years 2012 and 2015. Ethical approval for this study was
obtained under a lab protocol (ProtocolLAB90-020) and was reviewed
by The University of TexasMDAnderson Cancer Center Institutional
Review Board (IRB). All samples used in this study and article were
obtained from patients consented under an IRB-approved informed
consent. For the tumor specimens, percent tumor content, quantity,
and quality of DNA and RNA were assessed at the originating center
for sample preparation before distribution to all three centers forWES
and RNA-seq (Supplementary Tables S2 and S3). All samples were
sequenced to at least 200� mean target coverage (Supplementary
Table S4) for WES and at a minimum depth of 50M paired-end
fragments for RNA-seq following each center’s QC criteria (Supple-
mentary Table S5). As an alternative to RNA-seq, RNA from FFPE
samples were profiled by NanoString using the nCounter PanCancer
Immune Profiling Panel (35). RNA quantity (ng) was determined with
the qubit fluorometer while the quality was determined with the
TapeStation by measuring the DV200 (Supplementary Table S6).
Center C distributed the extracted RNA from the macrodissected and
non-macrodissected samples to each site. All NanoString data were
analyzed with NanoString’s nSolver (v4.0).

Translational Relevance

Given the biological complexity of immunotherapy strategies,
data generated from cross-site clinical trials are often confound-
ed by technical variations or artifacts. The Cancer Immune
Monitoring and Analysis Centers (CIMAC) function to interface
collaboratively with the Cancer Immunologic Data Commons
(CIDC) to enable data standardization and the development
of uniform analysis pipelines across clinical trials within the
network.

This study details the CIMACs-CIDCs harmonization strategy
for evaluating DNA and RNA sequencing data generated across
distinct platforms and tissue preparation methods. This work also
provides a roadmap for harmonizing diverse sequencing assays
that employ different chemistries and data analysis pipelines. The
key metrics for successful harmonization described herein are
expected to further advance interlaboratory data comparison and
database development to facilitate integrative cross-cohort analy-
sis. This work is anticipated to facilitate biomarker development
across trial networks and organizations and ultimately address the
critically important mission of improving the therapeutic man-
agement of patients with cancer.
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Centralized data processing by the CIMAC-CIDC bioinformatics
pipeline

After sequencing, raw data were transferred to the CIDC for
centralized analyses using CIDC common pipelines (Supplementary
Figs. S1 and S2). Reference files for human hg38 (GRCh38.d1.vd1)
were obtained from the NCI Genomic Data Commons. For the WES
analysis, the CIMAC-CIDC platform incorporated the Sentieon
(2018.08.05) workflow for read alignment and variant calling, in which
read alignment was performedwith Burrows-Wheeler Aligner (ref. 36;
0.7.15-r1140). Aligned and recalibrated BAM files were subjected to
somatic mutation calling using Sentieon TNsnv algorithm. Low-
quality mutations were filtered by VCFtools (ref. 37; 0.1.16), and
remaining somatic mutations were annotated by VEP (ref. 38; v91).
For RNA-seq analysis, read alignment was performed with STAR
(ref. 39; v.2.4.2a). RNA-seq QC examination was performed on the
aligned BAM files using RSeQC (40). Expression levels were quantified
by SALMON (ref. 41; v.0.14.0). Batch effect removal was performed
with Limma (ref. 42; 3.42.2). The immune cell repertoireswere inferred
from aligned BAM files using TRUST4 (ref. 22; v0.1.2). Expression
profiles were subjected to immune infiltration estimation using Immu-
nedeconv (43), which integrates six state-of-the-art estimation algo-
rithms, including TIMER (17), xCell (18), MCPCounter (19), CIBER-
SORT (20), EPIC (21), and quanTIseq (44). Patient HLA types were
estimated from both RNA-seq andWES using Optitype (ref. 45; 1.3.2).
Expression profiles, somatic mutations, and HLA types from WES
were integrated for neoantigen prediction using pVAC-Seq (ref. 24;
4.0.10) with NetMHC (ref. 46; v4.0), that leveraged information from
both binding affinity and eluted ligand data (46).

Statistical analysis for assay and sample harmonization
Index of specific agreement (ISA), defined as 2 � Jaccard/(1 þ

Jaccard), was used to measure mutation agreements. ISA between
samples was used as it has the potential to address downward bias in
platform agreement on mutation detection when the true mutations
are not prespecified (47). RNA-seq harmonization was assessed by the
correlation level between replicates, sample tissue type (FF, FFPE), and
sequencing centers. Spearman correlation was used to measure the
agreements because it is a more robust measure in settings when the
data deviate from a Gaussian distribution and is less influenced by
outliers (47). Hierarchical clustering was performed on the ISA or
Spearman correlation coefficient derived distance matrix with the
average linkage to measure sample similarities.

WES and RNA-seq harmonization baseline and concordance
evaluation

The Cancer Genome Atlas (TCGA) lung cancer (NSCLC) cohort
(519 adenocarcinomas) was retrieved, processed, and analyzed to
establish reference data from which to assess the agreement of muta-
tions from different callers (48). Mutation calls made by different
TCGA-approved mutation callers (MuSE, MuTect2, SomaticSniper,
VarScan2) on identical WES raw data were found to have an ISA
concordance between 0.22 and 0.90 (mean ¼ 0.71). It has been noted
that although there is no uniform criterion of “acceptable” agreement,
a correlation of greater than 0.7, 0.8, and 0.9 can be considered as
having adequate, good, and excellent correlation, respectively. Of
the published studies, depending on the sequencing depth, mutation
allele frequency, mutation calling tools, and sample processing, there
is a large variation in the reported concordance level. The con-
cordance levels between FF and FFPE have been reported to be around
70% in previous studies (1, 49). Therefore, if the different WES
platforms applied to the same DNA sample yielded mutation calls

with similar or higher ISA, these sequencing platforms were consid-
ered reasonably harmonized. Mutation agreement assessment was
performed on the overlapping exon regions to ensure that data
generated by different capture kits across centers were comparable.
Mutation concordance in cancer driver genes was evaluated, wherein
50 cancer driver genes from Ion AmpliSeq Cancer Hotspot Panel (v2)
and the 310 lung cancer oncogenes from COSMIC database (50, 51)
were selected.

From the same TCGA NSCLC samples, we evaluated the pairwise
correlations among RNA-seq data to create a harmonization baseline.
Because tumors of the same cancer type are expected to have
similar gene expression levels, we set minimum acceptance criteria
of the RNA-seq platform harmonization at 0.94, which is the top
95% Spearman correlation coefficient of the studied TCGA samples
(Supplementary Fig. S3). If the analysis of the same RNA-seq data
by different transcriptome platforms revealed the samples to have
expression levels with similar or higher correlation than TCGA
baseline, then these RNA-seq platforms were considered reasonably
harmonized. Secondary analyses, including expression-based immune
cell infiltration estimated by TIMER (17), xCell (18), MCPCounter
(19), CIBERSORT (20), EPIC (21), and quanTIseq (44), immune
repertoires estimated by TRUST4 (22), and HLA typing inferred by
Optitype (45) were evaluated for their concordance. The Spearman
correlation coefficient, the proportion of overlapped unique CDR3s,
and the Jaccard index were used as concordance metrics for the
immune cell infiltration estimates, immune cell repertoires, and HLA
types, respectively.

Data availability
All human WES and RNA-seq data presented in this article have

been deposited at The database of Genotypes and Phenotypes (dbGaP)
under accession number phs002295.v1.p1.

Results
Central sample preparation and distributed sequencing

We generated data from two sample formats: (i) HapMap cell line
pools (n ¼ 2); and (ii) NSCLC tumors with squamous cell carcinoma
histology (n¼ 8). DNA from two HapMap cell line pools (xx and yy),
each consisting of a mixture of 10 well-characterized HapMap cell
lines, was equally mixed at Center C (Fig. 1A; ref. 34). In addition,
DNA and RNA were centrally extracted from matched FF tumor and
FFPE tumor of 8 patients withNSCLCatCenter B (Fig. 1B). For tumor
samples, germline DNAwas also extracted frommatched PBMC from
the corresponding patients. Library preparation and sequencing were
performed on two different days as technical replicates in all three
centers (Fig. 1A and B). For both WES and RNA-seq, the capture kits
used per sequencing center were distinct (Fig. 1C andD; Supplemen-
tary Table S7). For WES-seq, the overlap target regions between kits
was increased if we focused on the exons (overlap region increased
from 59.4% to 88.7%; Fig. 1C).

CIMAC genomic platforms achieved high precision and recall in
WES calling from the HapMap cell line pools

Utilizing the known mutations and allele fractions in the HapMap
cell line pools, we evaluated key determinants of WES platform
harmonization. Despite the inherent complexity of the assays and
independent protocol development between sites, the WES data
generated at different sites and replicates had comparable read cov-
erage and variant allele frequency (VAF; Fig. 2A). The sequencing data
for the HapMap samples were highly concordant between technical
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replicates for all mutations, as well as for nonsynonymous mutations
only (ISA >0.874 and ISA >0.875, respectively) (Fig. 2B). These results
suggested that potential technical bias and variation introduced during
library preparation and sequencing within centers are acceptable.

We next examined the extent to which there was agreement in
mutational burden among the three centers. Agreement assessments
were performed on the overlap exon regions to ensure that data
generated by different capture kits were comparable (Fig. 1C). Upon
comparison of mutations called between center-specific data and
ground truth data, we obtained an ISA of 0.827 and 0.817 for the xx
and yy pools, respectively (Fig. 2C). Mutation agreement among the

centers was further investigated as a function of coverage and VAF. At
each coverage andVAF cutoff, agreement was evaluated on the basis of
the likelihood that amutationwould be detected in common by at least
two centers. Overall, a higher level of concordance was observed with
increased VAF and with greater in-depth coverage (Fig. 2D). Specif-
ically, a VAF of 10% and 50� coverage cutoff yielded a 95% likelihood
that a mutation would be called in common by at least two centers
(Fig. 2D). The truth data provided by the HapMap pools gave us an
opportunity to evaluate cross-site data variability and reproducibility.
In evaluating the VAFs derived from the overlap target regions with
common coverage greater than 50�, precision was greater than 0.98

Figure 1.

Illustration of study design and capture kits.A, Two HapMap cell line pools were generated and used to provide “ground truth” data. The HapMap cell lines xx and yy,
each consisting of 10 individual HapMap cell lines mixed in equal proportions, were prepared and processed at Center C and distributed to all three centers forWES.
Each HapMap pool was paired with a single cell line as germline control for mutation calls. The sequenced data were transferred to CIDC for centralized analyses.
B, Tumor samples from 8 patients diagnosed with NSCLC were selected. DNA and RNA extraction was performed by Center B from both FF and FFPE processing.
Germline DNAwas also extracted frommatched PBMCs from the corresponding patients. For all samples, two sets of aliquots were prepared as technical replicates.
Extracted DNA and RNAwere distributed to the three centers: Center A, B, and C forWES and RNA-seq.C,Overlap ofWES target regions between the three centers
were evaluated. Left, Venn diagram of overall covered regions from the different centers. Right, Venn diagram of the overlap in exome regions. D, Overlap regions
were evaluated on the different RNA-seq capture kits used by the three centers.
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and recall was greater than 0.87 at 10% VAF at all three centers
(Fig. 2E). Altogether, the clustering results, the high precision and the
high recall in WES called from the HapMap cell line pools lead us to
conclude that the CIMAC genomic platforms and the CIDC analysis
pipelines have been adequately optimized to ensure reliability and
reproducibility in data generation.

Biological differences between tumors are much greater than
platform/process-specific differences on WES

To validate the robustness of the center-specific reagents, pro-
tocols, data-transferring procedures, and range of acceptance cri-

teria, we performed additional evaluations using the FF and FFPE
NSCLC samples. Of note, deamination of nucleotides causes C:
G>T:A changes in FFPE tissue samples and can produce false
positives during NGS (52, 53). DNA from matched FF and FFPE
NSCLC tumors and PBMC in the corresponding patients were
subjected to WES. Although generated at different centers using
distinct protocols, the coverage, VAF calls, and nonsynonymous
mutation loads were comparable across replicates, centers, and
sample preparations (FF vs. FFPE; Fig. 3A and B). Mutations
called from FF and FFPE were comparable with an overlap rate
of approximately 85% in the 50-gene panel (Materials and

Figure 2.

Evaluation and harmonization of somatic mutations identified in the HapMap cell line pools. A, The read depth and VAF of the somatic mutations detected in the
HapMap pools xx and yy across the three centers. B, Reproducibility between technical replicates in each center measured by ISA. The evaluations were performed
using all mutations and nonsynonymous mutations (NS). C, Agreement assessment between centers and the truth data, based on mutation call agreement (ISA
concordance score) on overlap of target exons.D,Mutation agreement between the three centers was evaluated as a function of coverage and VAF. Red, mutations
identified in only one center; Gray,mutations identified by two centers; Blue, mutations identified by all three centers. Numbers indicate the percentage ofmutations
called by at least two centers. E, Precision and recall for mutation calling at different VAFs when evaluated against truth data.

Cross-Site Concordance Evaluation of Tumor WES and RNA-seq

AACRJournals.org Clin Cancer Res; 27(18) September 15, 2021 5053

on October 24, 2021. © 2021 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst December 15, 2020; DOI: 10.1158/1078-0432.CCR-20-3251 

http://clincancerres.aacrjournals.org/


Methods; Fig. 3C). Furthermore, nucleotide changes shared similar
distributions between mutations derived from FF and FFPE tissues
(Fig. 3D), suggesting that the deamination effect was not a dom-
inant bias in mutation call from the FFPE specimens. Of note, the
similar mutational signature patterns between FF and FFPE were
consistent with observations previously detected in large cohorts of
whole-genome sequencing data (1, 54). These data together sug-
gested that the mutations obtained from FFPE tissues collected in
clinical settings are comparable with FF samples.

Across multiple studies conducted over the years, no single best
strategy has been identified for somatic mutation calling from cancer

specimens (55, 56). VAF, sequencing depth, and sequencing technique
are multiple factors that determine whether a variant can be
detected (55). We found that although the NSCLC specimens were
sequenced and processed at different centers as technical replicates, the
mutations clustered by patient with concordance levels above 0.67
among all samples (Fig. 3E; Supplementary Fig. S4). Of note, the ISAs
we reported were based on the lowest ISA among samples generated in
different replicates, centers, and sample preparation (FF vs. FFPE) for
the same tumor. The vast majority of ISAs (96.1%) we obtained is
greater than 0.7, with amedian of 0.81, which outperformed previously
reported concordances between FF and FFPE samples (1, 49). To

Figure 3.

Evaluation and harmonization of
somatic mutations identified in NSCLC
samples.A, The read depth andVAFof
the somaticmutations generated from
the three centers, separated by FF and
FFPE samples.B, The nonsynonymous
mutation loads of NSCLC samples
across the three centers, separated by
FF and FFPE samples. C, Agreement
between somatic mutations derived
from FF and FFPE samples. The bars
are the proportions of FF- and FFPE-
unique mutations, and their overlaps.
D, Distributions of the nucleotide
changes for the FF and FFPE muta-
tions, and their overlaps.E,Agreement
assessment between mutations gen-
erated across replicates, centers, and
sample processing (FF and FFPE).
Clustering was performed upon the
pairwise mutation call agreements
reflected by ISA scores. F, Mutation
agreement between the three centers
was evaluated as a function of cover-
age and VAF. Red, mutations identi-
fied in one center; Gray, mutations
identified in common by two centers;
Blue, mutations identified by all three
centers. Numbers indicate the per-
centage ofmutations called by at least
two centers at the corresponding
cutoffs.
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evaluate the key determinants of harmonization, we further eval-
uated agreement in mutation burden as a function of coverage and
VAF. Overall, filtering by increasing VAF and coverage yielded
fewer mutations and higher accuracy (Fig. 3F). For FF and FFPE, a
cutoff at 10% VAF and 50� coverage resulted in a 93% and 87%

likelihood for a mutation to be called in common by at least two
centers (Fig. 3F). The high concordance level indicated to us
that technical differences between replicates, centers, and sample
preparation (FF vs. FFPE) were much smaller than the biological
differences across tumors.

Figure 4.

RNA-seq harmonization and QCmatrix evaluation.A andB,Hierarchical clustering based on Spearman correlation coefficient of log2-transcripts per kilobasemillion
(TPM) values for FF and FFPE samples with medTIN > 50 (91 samples, A), along with QC metrics. B,With medTIN > 30 (DV200 > 24%; 134 samples). C, Scatterplot
of medTIN and DV200 scores for the 150 sequenced samples. Outliers (yellow) are the samples that did not cluster by patients. D, Scatterplot of medTIN scores
and exome mapping rate for the 150 sequenced samples. Outliers are the samples that did not cluster by patient. Spearman correlation was performed to calculate
the association between the two QC metrics in C and D.
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RNA-seq data generated from NSCLC are comparable between
replicates, sample preparations, and centers

For the RNA-seq data generated across centers, concordance was
assessed by correlating the gene expression among replicates, by
sample preparation (FF, FFPE) and per sequencing center. Supple-
mentary Figure S5 shows the clustering result of the 150 samples based
on Spearman correlation coefficient of log-transformed expression
data. Multiple medTIN cutoffs were evaluated to determine the
minimum cutoff at which the RNA samples could harmonize. Of
note, medTIN score is a postsequencing QC metric to measure RNA
integrity and RNA degradation (57). At a medTIN cutoff of >50, the
resultant 91 samples clustered by patient, with a minimum Spearman
correlation above 0.94 among samples from the same tumor, thereby
achieving a concordance level consistent with the prespecified TCGA-
based acceptance criteria (Materials and Methods; Fig. 4A). In addi-
tion, a cutoff of medTIN >30 was tested, and the resultant 134 samples
achieved concordance levels above 0.90. Although the concordance
level did not satisfy the prespecified criterion (0.94, based on TCGA
NSCLC data), samples still clustered by patient regardless of replicates,
centers, or sample preparations (FFPE vs. FF; Fig. 4B). Together, these
data suggested that medTIN > 50 could be used as a postsequencing
QC criterion to ensure all the samples cluster by tumors and to meet
the prespecified concordance cutoff, while medTIN > 30 could be used
to ensure that all samples cluster by tumors.

To determine a set of criteria for the generation of reliable RNA-seq
data, we further evaluated other QC metrics, including DV200 and
exonmapping rate. DV200, a presequencing qualitymetric, was highly
associated withmedTIN score (Spearman correlation¼ 0.63; Fig. 4C).
While themanufacturer has recommended that sampleswithDV200>
30% usually yield better RNA-seq data quality, our data showed
concordance among samples even at DV200 > 24% (Fig. 4B). Using
DV200 > 24% as cutoff, we could rule out the samples that did not
cluster by tumor ID (Fig. 4C). Exon mapping rate (EMR), another
commonly used QC metric to quantify the percentage of reads
mapping to exon regions, was also associated with medTIN score
(P ¼ 0.04). However, we did not find EMR as a useful QC metric for
ruling out outliers (Fig. 4D). These analyses together showed that
DV200 of 24% is an effective presequencing QC metric for the
generation of RNA-seq data.

We next performed simulation studies to investigate whether the
read number or gene number is a key determinant for successful
harmonization. We downsampled the data from FFPE samples of
Center C from 113M paired-end reads to 50M. Using the expression
profiles derived from the downsampled reads, we could cluster the
samples by tumor with concordance levels above 0.97 (Supplementary
Fig. S6). These high correlations suggested to us that 50M paired-end
reads was an adequate read number to yield concordance. The effects
of gene number on the harmonization were evaluated as well. The top
3,000 most variable genes were selected on the basis of variance
distribution in the log-transformed expression profile. When the
3,000 most variable genes were used for clustering, the lower bound
correlation level decreased to 0.88 (Supplementary Fig. S7). Despite the
decreased concordance result, the samples still clustered by tumor ID.
In addition, the clustering result was better than the baseline derived
from TCGA NSCLC samples using the 3,000 most variable genes
(0.88 vs. 0.85; Supplementary Fig. S3).

QCmetrics were evaluated to determine optimal cutoffs to generate
acceptable secondary immunogenomic characteristics from RNA-seq
data, including HLA typing, immune cell infiltration, and immune
repertoire. Attempts were made to evaluate the sample data quality
across differentmedTIN scores. All samples from the same tumorwere

inferred to have identical HLA type when a medTIN cutoff of 50 was
used. In contrast, seven samples (8.3%) were noted to have off-target
HLA typing when a medTIN cutoff of 30 was used. Agreement
between FF and FFPE, measured by the Jaccard index, was similar
whether a medTIN cutoff of 50 or 30 was used (1.0 and 0.99,
respectively). Overall, FF and FFPE samples clustered by tumor in
both medTIN 50 and 30 cut-off groups (Fig. 5A and B), and matched
FF and FFPE samples per tumor shared similar immune infiltration
patterns (Fig. 5C andD). The average Spearman correlations between
the FF and FFPE samples were 0.88 and 0.87 for themedTIN 50 and 30
cut-off groups, respectively. When we examined the immune reper-
toires estimated from the RNA-seq data using TRUST4 (22), in which
the inferred CDR3 clonotypes included TCRA, TCRB, TCRD, IGH,
IGK, and IGL, the immune repertoires inferred from the matched FF
and FFPE were highly concordant among samples from the same
tumor regardless of medTIN cutoff (50 or 30; Fig. 5E and F). The
immune repertoire clonality correlation between FF and FFPE was
slightly higher in the medTIN 50 cut-off group, compared with the
medTIN30 group (Rho 0.58 vs. 0.55;Fig. 5G andH). Overall, when the
cutoff of medTIN was above 30, immune cell infiltration and reper-
toires mostly clustered on a per patient basis; HLA typing estimation
clearly distinguished between tumors. Together, these results sug-
gested that the quality of secondary immunogenomic characteristics
were acceptable when inferred from RNA-seq data with medTIN
above 30 (or, equivalently, DV200 > 24%).

The NanoString platform was evaluated for its potential to serve
as an alternative approach for transcriptome profiling in cases of
low-quality RNA samples. RNA extracted and processed from 7
patients with NSCLC of squamous cell carcinoma histology were
subjected to the NanoString PanCancer Immune Profiling Panel for
transcriptomic quantification (35) at Centers B and C. DV200
cutoffs were evaluated by hierarchical clustering to determine the
minimum cutoff at which the NanoString-generated data could
harmonize between different sample processing (macrodissected
and non-macrodissected) and centers. Overall, the majority of
samples with DV200 below 24% failed to cluster by patient (15/
20 failed, 75%; Supplementary Fig. S8), a few samples with DV200
above 24% failed to cluster as well (3/44 failed, 6.81%). In summary,
while NanoString gene expression data can be generated even from
samples with very low DV200 that failed to produce RNA-seq
libraries, our hierarchical clustering analysis indicates that the
quality of such NanoString data originating from samples with
very low DV200 may not be reliable.

Integrated DNA and RNA analyses revealed important
immunogenomic features in NSCLC

Transcriptomics is a critical adjunct to genomics when interrogat-
ing patient tumors for actionable alterations (58). We therefore
explored the potential of utilizing matched WES and RNA-seq to
derive reliable cancer immunogenomic characteristics across centers
and sample preparations (FF vs. FFPE). Analysis of the somatic
mutations among the samples highlighted the consistent detection
of multiple known recurrently mutated drivers of NSCLC across
replicates, centers, and sample preparation (Fig. 6A; Materials and
Methods). The majority (48/51, 94%) of mutated cancer driver genes
were confirmed to have high expression levels (Fig. 6A, left). TP53
was the most frequent mutated cancer driver gene (6/7 samples),
consistent with TCGA squamous cell lung carcinomas data (48).
These results suggested that the CIMAC-CIDC analysis pipeline can
reliably identify cancer driver mutations across replicates, centers,
and preparations.
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Figure 5.

HLA typing, immune cell infiltration, and immune repertoire inferred from RNA-seq of FF and FFPE tumors robustly cluster together.A andB, Clustering assessment
between FF and FFPE samples using HLA typing inferred from RNA-seq using the tool Optitype (45).A,medTIN >50 as a cutoff for sample selection, or medTIN >30
as cutoff (B). C and D, Clustering analysis between FF and FFPE using immune infiltration as features. The infiltration was estimated by immunedeconv (43), which
integrates six state-of-the-art estimation algorithms, including TIMER (17), xCell (18), MCPCounter (19), CIBERSORT (20), EPIC (21), and quanTIseq (44). As cutoffs,
medTIN>50 (C) andmedTIN >30 (D)were assessed.E andF,Clustering results between FFand FFPEusing immune repertoires as features. Immune repertoireswere
estimated by TRUST4, which is an updated version of the original TRUST (22) to infer CDR3 clonal types for TCRA, TCRB, TCRD, IGH, IGK, and IGL in tumor immune
repertoires, usingmedTIN >50 (E) ormedTIN >30 (F) as cutoffs.G andH, Scatterplot of immune repertoire clonality inferred in FF and FFPE tumors (using Spearman
correlations) using medTIN >50 (G) or medTIN >30 (H) as cutoffs.
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With the matched WES and RNA-seq data available, HLA typing
derived from both assays were compared. The four-digit level of
accuracy for HLA typing was inferred using Optitype (45) on both
assay data. Overall, HLA typing inferred fromWES and RNA-seq was
highly concordant for both FF and FFPE. The Jaccard index of HLA

typing between the two platforms was 1.0 and 0.98 for FF and FFPE.
HLA typing inferred from WES and RNA-seq clustered by tumor,
suggesting the CIMAC-CIDC genomics platforms could generate
reliable HLA typing regardless of sample preparations, sequencing
centers, and sequencing platforms (Fig. 6B). The number of

Figure 6.

Integrated DNAandRNA analyses in FF and FFPENSCLC tumors.A,Comutation plot usingWES andRNA-seq of theNSCLC tumors. The average log TPMexpression
is shown on the left panel. Mutations were called by the TnSnv algorithm from the Sentieon pipeline. Average log expression was calculated from SALMON counts.
B,HLA typeswere estimated for bothWES andRNA-seq data using the tool Optitype (45). Jaccard indexwas calculated per patient using RNA-seq (y-axis) andWES
(x-axis) data. C, Comparison of mutation and neoantigen load per patient specimen between FF and FFPE. Neoantigens were inferred by pVAC-Seq (24). Mutation
load is the total number of nonsynonymous mutations.
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neoantigen calls, using the pVAC-Seq analysis pipeline (24), was
performed on both FF and FFPE samples, and was highly associated
withmutation burden in both FF (Rho¼ 0.71) and FFPE (Rho¼ 0.66)
across centers.

Discussion
The CIMAC-CIDC network undertook an effort to establish har-

monized platforms for the genomic analyses of clinical specimens from
immunotherapy trials including WES and RNA-seq. This study
provides a roadmap for how to harmonize diverse sequencing assays
that may employ different chemistries and data analysis pipelines.
The cross-center concordance evaluation assessed the factors
that contributed to the discrepancies and those that facilitate sample
harmonization. During the harmonization process, each participating
center evaluated and confirmed the validity of center-specific
reagents, standards, analytic methods, protocols, and data-reporting
procedures throughout assay development and implementation. The
discrepancies in somatic mutation calls and expression levels were
found to be acceptable between replicates, sample preparation (FF vs.
FFPE), and centers. Overall, this study demonstrated the feasibility of
leveraging the resources available at different facilities to achieve high
throughput at an acceptable level of consistency.

In this harmonization effort, CIMAC-CIDC rigorously evaluated
sequencing data generated from multiple assays, including WES,
RNA-seq, and NanoString. This study affirmed multiple key deter-
minants to achieve sequencing-assay harmonization, including (i) use
of rigorously validated assays at all centers, (ii) focus on the overlap of
capture regions, (iii) use of a common data analysis pipeline, and (iv)
application of appropriate metrics for reporting the data, including a
requirement for 50� coverage and 10% VAF for WES data, and
medTIN > 30 and DV200 > 24% for RNA-seq. Studies have reported
concordance level of somatic mutation calls generated from different
sequencing centers and different pipelines (59, 60). In our study, we
leveraged the replicated sequencing data [3 centers � 2 replicates � 2
processing (FF and FFPE)] and the HapMap data to systematically
evaluate the key determinants for harmonization. In addition to
evaluating somatic mutation calls, we have investigated a set of criteria
to harmonize the expression profile, immune infiltration, CDR3
immune repertoire, and neoantigen calls. Together, these evaluation
efforts will provide an analysis roadmap for our multisite sequencing
data harmonization.

One caveat in our study is the limited number of samples
evaluated, namely, two HapMap cell lines and eight NSCLC tumor
samples. This study aimed to establish protocols for WES and RNA-
seq library preparation and QC metrics to allow reliable and robust
cross-site data generation. We have replicated the WES and RNA-
seq in twelve aliquots [3 centers � 2 replicates � 2 processing (FF
and FFPE)] for each of the eight NSCLC samples and each of the
two mixed HapMap cell pools. The high replicate number allowed
us to robustly identify factors introducing variability and to set up
criteria to ensure comparable results across CIMAC sites while
using a centralized analysis pipeline.

WES provides the opportunity to evaluate a spectrum of somatic
alterations, whereas RNA-seq provides cell immunologic phenotypes,
including tumor immune infiltration, HLA typing, and immune
repertoire. Here we report a harmonization effort carried out by
CIMAC-CIDC to ensure reproducibleWES and RNA-seq results both
between centers and sample preparation (FF vs. FFPE) that meet the
minimum prespecified QC criteria. The high level of concordance
found supports interpretability of datasets across CIMACs and studies

and will facilitate development of a database for secondary analyses.
These efforts are particularly important and relevant in an era when
evidence-based precision medicine is becoming more prevalent.
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