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SUMMARY
Androgen receptor (AR) is reactivated in castration-resistant prostate cancer (CRPC) through mechanisms
including marked increases in AR gene expression. We identify an enhancer in the AR second intron contrib-
uting to increased AR expression at low androgen levels in CRPC. Moreover, at increased androgen levels,
theARbinds this site and repressesARgene expression through recruitment of lysine-specific demethylase 1
(LSD1) and H3K4me1,2 demethylation. AR similarly represses expression of multiple genes mediating
androgen synthesis, DNA synthesis, and proliferation while stimulating genes mediating lipid and protein
biosynthesis. Androgen levels in CRPC appear adequate to stimulate AR activity on enhancer elements,
but not suppressor elements, resulting in increased expression of AR and AR repressed genes that
contribute to cellular proliferation.
INTRODUCTION

The standard treatment for metastatic prostate cancer (PCa) is

surgical or medical castration to reduce circulating androgens

(androgen deprivation therapy [ADT]) and suppress activity of the

androgen receptor (AR), but patients invariably relapse with

more aggressive castration-resistant prostate cancer (CRPC).

Significantly, early studies showed that AR was highly expressed

in CRPC (Ruizeveld de Winter et al., 1994), and further studies in

clinical samples and xenograft models have confirmed that AR

mRNA is highly expressed and consistently increased in CRPC

compared to levels prior to ADT (Taplin et al., 1995; Gregory

et al., 2001; Holzbeierlein et al., 2004; Chen et al., 2004; Stan-

brough et al., 2006).Multiple androgen regulated-genes, including
Significance

This study shows that AR can function through a suppressor e
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high androgen levels but allows increased AR and androgen s
CRPC, although adequate to stimulate AR on enhancer elem
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prostate-specific antigen (PSA) and the TMPRSS2:ERG fusion

gene, are also highly expressed in CRPC, indicating that AR tran-

scriptional activity has been reactivated despite castrate serum

androgen levels (Stanbrough et al., 2006; Cai et al., 2009).Mecha-

nisms thatmay contribute to restoring AR activity in CRPC include

AR mutations or alternative splicing, increased intratumoral

androgen synthesis, increased coactivator expression, and acti-

vation of several kinases that may directly or indirectly sensitize

AR to low levels of androgens (Yuan and Balk, 2009). Moreover,

studies in xenograft models indicate that even modest increases

in AR protein expression may alone render tumors resistant to

castration and to available AR antagonists (Chen et al., 2004).

Despite the critical role AR plays in PCa development

and progression to CRPC, the mechanisms that regulate its
lement to repress its own expression and the expression of
sis. This negative feedback loop suppresses AR signaling at
ynthesis in CRPC. Moreover, decreased androgen levels in
ents, may relieve AR suppression of genes mediating DNA
th. Distinct mechanisms of AR action on enhancer versus
gment AR transcriptional repressor function and thereby

ancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc. 457

mailto:sbalk@bidmc.harvard.edu
http://dx.doi.org/10.1016/j.ccr.2011.09.001


Figure 1. Androgen Decreases AR Protein Expression in VCaP Cells

(A) LNCaP, CWR22Rv1, LAPC4, or VCaP cells were treated with 0, 1, or 10 nM DHT for 24 hr and AR or b-actin were immunoblotted.

(B) VCaP cells were treated with and without DHT for 4, 8, or 24 hr, and AR, PSA, or b-actin were immunoblotted.

(C) VCaP cells were treated with 0, 0.1, 1, or 10 nM DHT and with 0, 10, or 40 mM bicalutamide for 24 hr and immunoblotted for AR, Ser 81 phosphorylated AR,

PSA, or b-actin.

(D) VCaP or LNCaP cells were pretreated with and without 10 nM DHT for 24 hr and then treated with MG115/MG132 for 4 hr.

(E) VCaP or LNCaP cells were pretreated with and without DHT for 2 hr and then treated with cycloheximide (10 ng/mL) for 0, 2, 4, or 6 hr.

(F) VCaP or LNCaP cells were transiently transfected with empty vector or 3xFlag-AR. After 24 hr, cells were treated with and without 10 nM DHT for 24 hr (note:

the prostate cancer cells were steroid-depleted by culturing in medium with charcoal/dextran stripped serum, CSS, for 3 days before treatments in all experi-

ments). See also Figure S1.
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expression and contribute to its increased expression in CRPC

are not well understood. AR mRNA levels may be controlled

physiologically by a suppressor element in the 50 UTR of the

AR gene that regulates transcription (Kumar et al., 1994; Wang

et al., 2004, 2008) and by an element in the 30 UTR that regulates

mRNA stability (Yeap et al., 2002). Mechanisms contributing to

the increased AR mRNA in CRPC include AR gene amplification

in about one-third of patients with CRPC (Visakorpi et al., 1995)

and increased E2F activity in RB-deficient tumors (Sharma et al.,

2010). Previous studies in androgen-sensitive rodent tissues and

in LNCaP PCa cells have shown that androgens can negatively

regulate AR gene transcription, suggesting that AR mRNA may

also increase after ADT as a result of relief from this negative

regulation (Quarmby et al., 1990; Shan et al., 1990; Krongrad

et al., 1991; Blok et al., 1992). However, the androgen-mediated

changes in AR mRNA levels in LNCaP cells are modest, and

the molecular basis for this negative regulation has not been

determined. In contrast to these findings in LNCaP cells, we

reported recently that AR mRNA levels in VCaP PCa cells and

xenografts were rapidly and substantially increased in response

to androgen deprivation, suggesting that relief from AR-medi-

ated negative regulation of AR gene expression may make a

significant contribution to increasing AR mRNA in CRPC (Cai

et al., 2009). This study addresses the molecular basis for this
458 Cancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc.
negative regulation of AR gene expression by the androgen

liganded AR.

RESULTS

Androgen Decreases AR Protein in VCaP Cells
The VCaP PCa cell line was derived from a vertebral metastasis

in a patient with CRPC, and it expresses wild-type (WT) AR and

AR-regulated genes, such as PSA and the TMPRSS2:ERG

fusion gene (Korenchuk et al., 2001; Loberg et al., 2006; Cai

et al., 2009). In the absence of exogenous androgen, AR protein

expression in VCaP cells was higher than in other PCa cell lines,

including LNCaP, LAPC4, and CWR22Rv1 cells (the latter

express a mutant AR with a duplicated exon 3) (Figure 1A). AR

protein was increased by 24 hr of DHT treatment in LNCaP,

LAPC4, and CWR22Rv1 cells, consistent with previous data

showing that androgen binding increases AR protein stability

(Kemppainen et al., 1992). In contrast, although AR protein in

VCaP was modestly increased after 4 hr of DHT (Figure 1B), it

was markedly decreased at 24 hr (Figure 1A) and after 3 days

of DHT (see Figure S1, which is available with this article online).

This decrease could be blocked by bicalutamide, an AR antago-

nist, indicating it was dependent on the agonist liganded AR (Fig-

ure 1C). Although AR protein was decreased by DHT, serine 81



Figure 2. Agonist-Liganded AR Negatively Regulates AR Gene Transcription

(A) VCaP or LNCaP cells were treated with 0, 0.01, 0.1, 1, or 10 nM DHT for 4, 8, or 24 hr and AR mRNA was measured using qRT-PCR.

(B) VCaP cells were DHT stimulated for 24 hr and mRNA for PSA and ERG were measured by qRT-PCR.

(C) VCaP cells were treated with cycloheximide (10 ng/mL) and DHT or vehicle, and AR mRNA was then measured by qRT-PCR after 0, 1, 4, 8, or 24h (mRNA

expression was normalized to internal control 18S RNA in all the experiments).

(D) VCaP cells were treated with 0, 0.1, 1, or 10 nM DHT and with 0, 10, or 40 mM bicalutamide for 24 hr and AR mRNA was measured by qRT-PCR.

(E) Left panel: androgen-starved VCaP cells were pretreated with DHT or vehicle for 2 hr followed by addition of actinomycin D (10 mM); right panel: VCaP cells

growing in medium with DHT were switched to the same medium with or without DHT for 16 hr, followed by addition of actinomycin D. AR mRNA was measured

by qRT-PCR at the indicated times after actinomycin D addition. Levels at time 0 were normalized to 1 under both conditions in the left panel and under the DHT

removal condition in the right panel. Dotted lines indicate 50% maximal level.

(F) VCaP cells were treated with or without DHT for 4 hr. The DNA bound to RNA polymerase II or active RNA polymerase II (phospho-Ser5) was immunopre-

cipitated and measured by qPCR. Error bars in each experiment indicate standard deviation (SD).
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phosphorylation (associated with AR transcriptional activity) and

PSA expression were markedly increased, indicating that DHT

was strongly inducing AR transcriptional activity (Figures 1B

and 1C).

AR protein levels in VCaP and LNCaP cells were increased by

proteasome inhibitors (MG115 and MG132, MG) in the absence

of DHT, but these inhibitors did not prevent themarked decrease

in AR protein in response to DHT in VCaP cells, indicating that

the molecular basis for this decline was not increased protea-

some-mediated AR degradation (Figure 1D). To directly address

whether the DHT liganded AR was less stable in VCaP versus

LNCaP cells, we pretreated androgen-depleted cells with DHT

or vehicle for 2 hr and then added cycloheximide (CHX) to block

new protein synthesis. Significantly, AR protein half-life in VCaP

cells, similarly to LNCaP cells, was not decreased by DHT,

demonstrating that DHT was not directly (through binding to

the AR) enhancing AR degradation (Figure 1E). Finally, DHT in

VCaP cells markedly increased expression of transiently trans-

fected Flag-tagged AR regulated by a CMV promoter, further

indicating that DHT was not enhancing AR protein degradation

(Figure 1F). Therefore, we next examined effects on AR mRNA.
C

Agonist-Liganded AR Negatively Regulates AR Gene
Transcription
Androgen has been reported to cause a modest decrease in

AR mRNA in LNCaP cells (Krongrad et al., 1991), but DHT in

VCaP caused a rapid and more dramatic decrease in AR

mRNA (Figure 2A). Interestingly, a higher DHT concentration

was required to suppress AR mRNA compared to the levels for

induction of PSA and ERG mRNA (the latter from the

androgen-regulated TMPRSS2:ERG fusion gene), which were

half-maximal at <0.1 nM DHT (Figure 2B). To determine whether

this decrease in AR mRNA required new protein synthesis,

including the synthesis of ERG that was recently reported to

suppress AR gene expression (Yu et al., 2010), we treated

androgen-starved cells with cycloheximide and DHT and then

measured AR mRNA levels over 24 hr. Significantly, treatment

with cycloheximide did not prevent the enhanced decline in AR

mRNA, indicating that it was not dependent on the DHT-stimu-

lated synthesis of new proteins (Figure 2C). Bicalutamide

blocked the suppression of AR mRNA by DHT (Figure 2D), con-

sistent with the effect being dependent on the agonist-liganded

AR. To determine whether DHT was increasing AR mRNA
ancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc. 459
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degradation, we pretreated androgen-starved VCaP cells with

DHT for 2 hr and then added actinomycin D to block new

mRNA synthesis. Significantly, AR mRNA half-life was not

decreased by DHT (Figure 2E, left panel), suggesting that DHT

was decreasing AR gene transcription. We also assessed AR

mRNA half-life in VCaP cells growing in mediumwith DHT versus

cells where DHT was removed for 16 hr before the addition of

actinomycin D. Although AR mRNA was decreased in the pres-

ence of DHT, there was no evident decrease in AR half-life (Fig-

ure 2E, right panel). Finally, we found by chromatin immunopre-

cipitation (ChIP) that DHT decreased the binding of RNA

polymerase II to exon 1 in the AR gene (Figure 2F, left panel)

and also decreased binding of active RNA polymerase II as

shown by anti-phospho-RNA polymerase II ChiP (Figure 2F, right

panel). Together these results indicated that the DHT liganded

AR in VCaP cells was directly repressing AR gene transcription.

Androgen Stimulates AR Recruitment to a Conserved
Site in Intron 2 of the AR Gene
Data from a recent ChIP-chip analysis of AR binding sites

(ARBSs) in LNCaP cells identified three sites linked to the AR

gene: ARBS1 in the promoter region (10% FDR), ARBS2 in intron

2 (5% FDR), and ARBS3 in the 30 downstream region (5% FDR)

(Wang et al., 2009) (Figure S2A). To assess these binding sites in

VCaP cells, we designed two pairs of primers for each ARBS and

utilized ChIP coupledwith quantitative real-time PCR tomeasure

AR binding. Only the ARBS2 site (ARBS2-1) showed clear DHT

induced AR binding, although basal and androgen-induced AR

binding to the well-characterized major ARE upstream of the

PSA gene (ARE III) were higher (Figure 3A). Because important

regulatory elements may be conserved between species, we

compared the human ARBS2 region to the corresponding

regions in other species. Interestingly, a fragment of ARBS2

(�400 bp) that overlapped ARBS2-1 was highly conserved

among species (100% identical between mouse and rat and

88% identical between mouse or rat and human) and contained

multiple binding sites for FOXA1, a pioneer transcription factor

that interacts with AR and is generally found at steroid-respon-

sive enhancer elements (Figure 3B and Figure S2B). Therefore,

we synthesized an additional set of primer pairs spanning this

conserved region (ARBS2a, 2b, and 2c) and repeated the AR

ChIP assays. AR binding to all three sites was substantially

increased by DHT, and this binding was blocked by the AR

antagonist bicalutamide (Figure 3C). The DHT-stimulated

increase was comparable to the �5-fold increase on the AREs

in the control PSA and TMPRSS2 enhancers, but basal binding

to ARBS2 was again lower (Figure 3C). As observed on the

PSA enhancer, DHT-stimulated AR recruitment to ARBS2 was

maximal at early times (2 hr) but still persisted after 24 hr (Fig-

ure S2C). As noted for suppression of ARmRNA versus induction

of PSA and ERGmRNA (Figure 2), AR binding to ARBS2 required

higher DHT concentrations (Figure 3D). Finally, anti-FOXA1 ChIP

showed that FOXA1 was associated constitutively with ARBS2

(Figure 3E).

Androgen Stimulates Demethylation
of H3K4 Associated with ARBS2
Consistent with ARBS2 functioning as an enhancer, ChIP with an

anti-TATA binding protein (TBP) antibody indicated that there
460 Cancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc.
was an interaction between this site and AR gene promoter (Fig-

ure S3A). Significantly, we also detected a basal association

between activated RNA polymerase II and ARBS2 that was

decreased by DHT, suggesting that the agonist liganded AR

may be mediating repression through this site (Figure 4A).

Further evidence for an interaction between the AR recruited to

ARBS2 and the AR gene promoter was obtained by anti-AR

ChIP followed by a chromatin conformation capture (3C) assay,

which identified a DHT-dependent association between AR,

ARBS2, and the AR gene promoter (Figure S3B).

The agonist liganded AR generally stimulates transcription

through recruitment of coactivator proteins and histone acetyl-

transferases, but can more weakly mediate recruitment of

transcriptional corepressors, such as NCoR or SMRT, and their

associated histone deacetylases (HDACs) (Cheng et al., 2002).

Therefore, we next used ChIP to determine whether DHT

was directly or indirectly stimulating recruitment of an HDAC to

AR-binding sites in the AR gene. Interestingly, control experi-

ments indicated that HDAC3 (which forms a complex with

NCoR and SMRT) was associated with ARE III in the PSA

enhancer and that this association was decreased by DHT (Fig-

ure S3C). There also appeared to be a very weak association of

HDAC3 with each of the ChIP-chip identified AR-binding sites

(ARBS1, 2, and 3) in the AR gene, but these were not increased

by DHT (Figure S3C). Moreover, ChIP with antibodies against

acetylated H3K9/14 did not detect decreases in histone acetyla-

tion at any of the sites in response toDHT (Figure S3D). As a posi-

tive control, in the absence of DHT, we detected high levels of

histone acetylation in AR exon 1 and this decreased in response

to DHT, consistent with down-regulation of AR gene expression.

Because interaction with the promoter and FOXA1 binding

suggested that ARBS2 may function as an enhancer, we next

assessed changes in histone marks that are associated with

active enhancers (H3K4 mono- and dimethylation) at ARBS1,

2, and 3. Substantial H3K4 methylation was detected at each

site, but there were no changes in response to DHT at ARBS1

or ARBS3, or at the ARE III site in the PSA enhancer (Figure 4B).

The TMPRSS2 enhancer ARE was similarly unaffected (Fig-

ure 4C). In contrast, DHT caused a decrease in both H3K4me1

and H3K4me2 levels at ARBS2-1 (Figure 4B), and this was con-

firmed using the set of ARBS2 primers (ARBS2a, b, and c) span-

ning the conserved region (Figure 4C). Taken together, these

results suggested that ARBS2 contains an enhancer that is

rapidly inactivated by androgen.

VCaP xenografts that relapse after castration have higher

levels of AR mRNA and renewed expression of AR-regulated

genes, similarly to what is observed in patients who progress

to CRPC (Cai et al., 2009). To determine whether the ARBS2

site contributes to the increased AR gene expression in these

relapsed tumors, we generated a cell line (VCS2) from a relapsed

VCaP xenograft tumor. VCS2 cells in steroid-depleted medium

had higher levels of AR, PSA, and ERG (from the androgen-regu-

lated TMPRSS2:ERG fusion gene) relative to the parental VCaP

cells (Figure 4D) and were less dependent on androgens for

cell survival (Figure S3E), but AR protein was still markedly

decreased by DHT. An analysis of basal (in steroid depleted

medium without exogenous DHT) mRNA levels confirmed that

AR, PSA, and ERG mRNA were increased in VCS2 cells com-

pared to VCaP and showed that AR mRNA was markedly



Figure 3. Androgen Stimulates AR Recruitment to a Site in Intron 2 of the AR Gene

(A) VCaP cells in steroid-depleted medium (CSSmedium) were treated with 0, 1, or 10 nMDHT for 4 hr and the DNA bound to ARwasmeasured by ChIP followed

by qPCR.

(B) The conserved region of ARBS2 (intron2) among 17 vertebrate species was plotted using UCSC Genome Browser.

(C) VCaP cells were pretreated with or without 10 mMbicalutamide for 4 hr followed by treatment with 10 nMDHT for 4 hr. The DNA bound to ARwasmeasured by

ChIP followed by qPCR.

(D) VCaP cells were treated for 4 hr with 0, 0.1, 1, or 10 nM DHT. AR binding to ARBS2 or the PSA enhancer ARE were measured by ChIP followed by qPCR.

(E) VCaP cells were treated with or without 10 nM DHT for 4 hr and the DNA bound to FOXA1 was measured by ChIP and qPCR. Error bars in each experiment

indicate SD. See also Figure S2 and see Table S1 for raw qPCR data for experiments shown.
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decreased in response to DHT (Figure 4E). AR ChIP showed that

DHT stimulated recruitment of AR to ARBS2 in the VCS2 cells,

with the increased binding compared to VCaP being consistent

with higher AR levels in the VCS2 cells (Figure 4F, left panel).

Significantly, basal ARBS2 H3K4 methylation was increased in
C

the VCS2 cells compared to VCaP, but was still decreased by

DHT (Figure 4F, right panel). Finally, transcription factors shown

previously to interact with AR on enhancers, Oct1 and GATA-2

(Wang et al., 2007), were associated with ARBS2 and were

increased in VCS2 (Figure 4G). Overall, these findings further
ancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc. 461



Figure 4. Androgen Stimulates Rapid Demethylation of H3K4 in VCaP and VCaP-Derived VCS2 Cells

(A–C) VCaP cells were treated with or without DHT for 4 hr and the DNA bound to active RNA polymerase II, mono- or di-methylated H3K4 were measured ChIP

and qPCR.

(D and E) VCaP or VCS2 cells were treated with 0, 1, or 10 nM DHT for 24 hr and AR, PSA, ERG, and b-tubulin proteins were immunoblotted or mRNA were

measured by ChIP followed by qRT-PCR (18S as internal control).

(F and G) VCaP or VCS2 cells were treated with or without DHT for 4 hr and the DNA bound to AR, mono-methylated H3K4, Oct1, or GATA2 were measured by

ChIP followed by qPCR. Error bars in each experiment indicate SD. See also Figure S3 and see Table S2 for raw qPCR data for experiments shown.
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Figure 5. Androgen Deprivation Activates the ARBS2 Site in LNCaP Cells

(A) LNCaP cells were treated with or without 10 nM DHT for 4 hr and the DNA bound to AR was immunoprecipitated and measured by qPCR.

(B) LNCaP cells were treated with or without 10 nMDHT for 4 hr and the DNA bound to AR, mono- or di-methylated H3K4 was immunoprecipitated andmeasured

by qPCR.

(C) LNCaP or LNCaP-CSS3 (adapted to steroid-depleted medium for > 3 w) were treated with 0, 1, or 10 nM DHT for 24 hr and AR mRNA was measured by

qRT-PCR (18S as internal control).

(D) LNCaP or LNCaP-CSS3 cells were treatedwith or without 10 nMDHT for 4 hr and the DNA bound to AR ormono-methylated H3K4wasmeasured by ChIP and

qPCR. Error bars in each experiment indicate SD. See Table S3 for raw qPCR data for experiments shown.
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supported the conclusion that ARBS2 contains an enhancer that

contributes to increased AR gene expression at low androgen

levels in CRPC and indicated that this enhancer is repressed

by the agonist liganded AR.

Androgen Deprivation Activates the ARBS2 Site
in LNCaP Cells
We next examined the LNCaP PCa cell line, which shows only

a small decrease in ARmRNA in response toDHT (see Figure 2A).

Anti-AR ChIP showed DHT stimulated recruitment of AR to

ARBS2-1 (Figure 5A), which was confirmed using the ARBS2a,

b, and c primers (Figure 5B, left panel). However, in contrast to

VCaP cells, there was less AR binding to ARBS2 and no marked

DHT stimulated decreases in H3K4me1 or me2 (Figure 5B, right

panel). On the basis of the results above in VCaP versus VCS2

cells, we next examined LNCaP cells that were passaged

in vitro in steroid-depletedmedium (basal mediumwith 5%char-

coal/dextran stripped serum, CSS). As shown in Figure 5C, after

3 weeks in steroid-depleted medium, the cells expressed higher

levels of AR mRNA, which markedly declined in response to

DHT. AR ChIP in these LNCaP-CSS3 cells showed increased

DHT-stimulated AR recruitment to ARBS2 relative to the parental

LNCaP cells (Figure 5D, upper panel). Most significantly, basal

H3K4 methylation of ARBS2 was increased in the LNCaP-
C

CSS3 cells, and it declined in response to DHT (Figure 5D, lower

panel). These results in LNCaP cells further support the conclu-

sion that ARBS2 contains an androgen-repressed enhancer that

contributes to increased AR gene expression in response to

androgen deprivation.

Lysine-Specific Demethylase 1 (LSD1) Is Recruited
to ARBS2 In Vitro and In Vivo by the DHT Liganded
AR and Mediates Repression
The decrease in H3K4 mono- and dimethylation over the ARBS2

site indicated that AR was either suppressing the activity of a

histone methyltransferase or increasing a histone demethylase.

Significantly, lysine-specific demethylase 1 (LSD1) has been

shown to interact with AR (Metzger et al., 2005; Wissmann

et al., 2007), and we confirmed this interaction by coimmunopre-

cipitation of endogenous AR and LSD1 (Figure 6A). LSD1 is re-

ported to function as an AR coactivator on the PSA gene ARE

III enhancer through demethylation of repressive mono- and di-

methylated H3K9 (Metzger et al., 2005; Wissmann et al., 2007).

However, mono- and dimethylated H3K4 are also substrates

for LSD1, and in most contexts LSD1 appears to function as a

repressor through H3K4me1 and H3K4me2 demethylation (Shi

et al., 2004). Therefore, we next tested the hypothesis that

DHT stimulates LSD1 recruitment to ARBS2. An association
ancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc. 463



Figure 6. LSD1 Is Recruited to ARBS2 by the DHT Liganded AR In Vitro and In Vivo

(A) VCaP cells were treated with or without 10 nM DHT for 24 hr and protein was then immunoprecipitated using anti-AR antibody or IgG control, followed by

immunoblotting for LSD1 and AR.

(B) VCS2 cells were treated with 0 or 10 nM DHT for 4 hr and the DNA bound to LSD1 was measured by ChIP and qPCR.

(C) VCaP cells were grown in steroid-depleted medium supplemented with 10 nMDHT for 3 days and then DHTwas removed for 3 days. The DNA bound to AR or

LSD1 was measured by ChIP and qPCR.

(D) The tissue of VCaP xenograft tumor (precastrated [�] or 4-day postcastration [+] mice) was formalin fixed, lysed, and sonicated. The DNA bound to ARor LSD1

was immunoprecipitated and measured by qPCR.

(E) VCaP cells were transfected with 20 nM LSD1 siRNA (Dharmacon) for 2 days and then treated with or without DHT for 24 hr. AR, LSD1, and b-actin were

immunoblotted.

(F)VCaPcells transfectedwithLSD1orcontrol siRNAwerestimulatedwith10nMDHTandLSD1,AR,AKR1C3,orHSD17B6mRNAweremeasuredusingqRT-PCR.

(G) VCaP cells were pretreated with pargyline (2 mM) for 8 hr and then treated with or without DHT for 16 hr. LSD1, AR, AKR1C3, or HSD17B6 mRNA were

measured using qRT-PCR (normalized to GAPDH as internal control).

(H) VCaP cells were transfectedwith 20 nM LSD1 siRNA for 2 days and then treatedwith or without 10 nMDHT for 4 hr. The DNA bound tomono- or di-methylated

H3K4 was immunoprecipitated and measured by qPCR. Error bars in each experiment indicate SD. See also Figure S4 and see Table S4 for raw qPCR data for

experiments shown.
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between LSD1 and ARBS2 was detected by ChIP in VCaP cells

(Figure S4A) and in VCS2 cells (Figure 6B), and this interaction

was increased by DHT. Consistent with previous reports in

LNCaP cells (Metzger et al., 2005; Wissmann et al., 2007),

LSD1 was constitutively associated with the ARE III in the PSA

enhancer and was not clearly increased by DHT (Figure 6B).

LSD1 was similarly constitutively associated with the ARE in

the TMPRSS2 enhancer (Figure 6B). Finally, we confirmed that

DHT stimulated the recruitment of LSD1 to ARBS2 in LNCaP

cells and found that LSD1 recruitment to ARBS2 was increased

in the LNCaP-CSS3 cells (Figure S4B).

In the converse experiment, we examined VCaP cells cultured

in medium with androgen that were then shifted to steroid-

depleted medium for 3 days. As shown in Figure 6C, both AR

and LSD1 binding to ARBS2 were decreased in the steroid-

depleted cells. We showed previously that AR mRNA levels in

VCaP xenografts were markedly increased at 4 days after

castration (Cai et al., 2009). To determine whether this increase

in AR mRNA in vivo correlated with decreased binding of AR

and LSD1 to ARBS2, we used ChIP to examine VCaP xenografts

prior to castration and at 4 days after castration. As shown in Fig-

ure 6D, both AR and LSD1 were associated with ARBS2 prior to

castration, and these associations were markedly decreased

4 days after castration.

LSD1 can potentially function as a coactivator or corepressor

by demethylating H3K9 or H3K4, respectively, and we found

that DHT also stimulated a decline in H3K9 methylation as well

as H3K4 methylation across the ARBS2 site (Figure S4C, left

panel). In contrast, DHT did not cause a decrease in H3K4me3,

which is associated with both promoters and enhancers but is

not a substrate for LSD1 (Figure S4C, right panel). Therefore,

as these changes in methylation would be consistent with

LSD1 functioning as a coactivator or corepressor, we next

utilized siRNA to address directly whether LSD1 was mediating

the down-regulation of AR gene expression in response to

DHT. Expression of LSD1 protein (Figure 6E) and mRNA (Fig-

ure 6F) were substantially decreased by the LSD1 siRNA, and

the DHT-stimulated decrease in AR protein was diminished (Fig-

ure 6E). An analysis of AR mRNA confirmed that the DHT-stimu-

lated decrease in AR expression was blunted by LSD1 siRNA

(Figure 6F).

To determine whether this LSD1-dependent suppression was

unique to the AR gene, we also examined expression of AKR1C3

and HSD17B6, which are androgen repressed and increased

in CRPC. AKR1C3 catalyzes synthesis of testosterone from

androstenedione and HSD17B6 oxidizes 5a-androstene-3a,

17b-diol back to DHT (Bauman et al., 2006). Similarly to AR,

we reported previously that mRNA expression of AKR1C3 was

consistently increased in CRPC (Stanbrough et al., 2006), and

both AKR1C3 and HSD17B6 were negatively regulated by

androgens in VCaP cells (Cai et al., 2009). As shown in Figure 6F,

the DHT-stimulated declines in AKR1C3 and HSD17B6 mRNA

were abrogated by the LSD1 siRNA. Similar results were ob-

tained using a chemical inhibitor of LSD1, pargyline (Figure 6G),

which also prevented the DHT-stimulated decline in AR protein

(Figure S4D). Consistent with previous data showing that LSD1

functions as a coactivator on the PSA gene (Metzger et al.,

2005; Wissmann et al., 2007), pargyline also blocked the DHT

stimulated increase in PSA protein (Figure S4D).
C

The LSD1 siRNA did not decrease the DHT-stimulated recruit-

ment of AR to ARBS2 (Figure S4E, left panel). However, the DHT-

stimulated declines in H3K9methylation (Figure S4E, right panel)

and H3K4 methylation (Figure 6H) across ARBS2 were impaired

or abrogated by the LSD1 siRNA. Pargyline similarly impaired

DHT-stimulated H3K4me1 demethylation across ARBS2 (Fig-

ure S4F). Together, these data indicated that AR was mediating

repression through recruitment of LSD1 and H3K4 demethyla-

tion. Finally, we used pargyline to assess whether LSD1 was

mediating the DHT-stimulated repression of AR gene expression

in other PCa cell lines. C4-2 cells were derived from a castration-

resistant LNCaP xenograft and CWR22Rv1 cells were from

a castration-resistant CWR22 xenograft. In both cells, pargyline

abrogated the DHT-stimulated decrease in AR mRNA (Fig-

ure S4G). Moreover, consistent with LSD1 functioning as an

AR coactivator on androgen-stimulated genes, pargyline sup-

pressed the DHT-stimulated increase in FKBP5.

Previous studies have shown that LSD1 functions as a coacti-

vator for AR on the PSA (KLK3) and KLK2 genes because of

phosphorylation of H3T6 and H3T11, which suppress LSD1-

mediated H3K4 demethylation and enhance H3K9 demethyla-

tion, respectively (Metzger et al., 2008; Metzger et al., 2010).

Therefore, we next used ChIP to determine whether differences

in H3T6 or H3T11 phosphorylation were a basis for the distinct

effects of AR and LSD1 on the AR gene versus AR-stimulated

genes. Significantly, DHT-stimulated H3T6 and H3T11 phos-

phorylation were lower across ARBS2 and were also lower in

the androgen-suppressed OPRK1 (see Figure 7) and AKR1C3

genes, compared to AREs in the androgen-stimulated PSA,

KLK2, and FKBP5 genes (Figure S4G). However, H3T6 and

H3T11 phosphoryation were also low in the strongly androgen-

stimulated TMPRSS2 gene. These findings are consistent with

the conclusion that phosphorylation of H3T6 and H3T11

contribute to the regulation of LSD1 substrate specificity, but

additional mechanisms may also contribute to this regulation.

Expression of Androgen Repressed Genes Is Increased
in CRPC Xenografts
Expression microarrays were used to identify genes that were

androgen repressed in both VCaP and VCS2 cells in vitro, and

to then assess the expression of these genes in vivo in an-

drogen-dependent versus relapsed castration-resistant VCaP

xenografts. AR, AKR1C3, and HSD17B6 were again found to

be androgen repressed in VCaP (4.2-, 2.8-, and 3.7-fold higher

in the absence of androgen, respectively) and were even

more highly androgen repressed in VCS2 cells (6.4-, 8.5-, and

4.7-fold, respectively) (Table S5). In contrast, expression of these

genes was highly up-regulated in the relapsed VCaP xenografts

(5.4-, 2.3-, and 3.5-fold for AR, AKR1C3, and HSD17B6, respec-

tively). These findings, in conjunction with the low intratumoral

androgen levels in these castration-resistant tumors (Fig-

ure S5A), support a feedback mechanism that negatively regu-

lates AR signaling at high androgen levels and enhances

signaling at the lower androgen levels.

To more systematically assess the significance of additional

in vitro identified androgen-repressed genes, we next focused

on the 411 genes that were repressed by >2-fold in VCS2

and >1.5-fold in VCaP (the lower threshold in VCaP being based

on the more robust repression of AR, AKR1C3, and HSD17B6 in
ancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc. 465



Figure 7. Identification of Androgen-Repressed Genes in VCaP Cells and Xenografts

(A) VCaP or VCS2 cells were treated with or without 10 nM DHT for 24 hr and were analyzed on Affymetrix U133A microarrays. The numbers of DHT-repressed

genes or DHT-induced genes in VCaP and VCS2 cells and their overlaps are shown.

(B) VCaP xenografts were established and biopsied at three stages: androgen-dependent tumor (AD), 4 days after castration (CS), and castration-resistant

relapsed tumor (CRPC). mRNA were extracted from the biopsies of tumors of AD or CRPC stages and analyzed on Agilient microarrays. The data was analyzed

using SAM software (Significance Analysis of Microarrays). The top 30 genes with lowest q-value are shown, with black arrows indicating DHT-repressed genes.

(C) GO term analysis of DHT-repressed genes (left panel) versus androgen-induced genes (right panel). See also Figure S5 and Table S5.
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VCS2 cells) (Figure 7A and Table S5). Remarkably, among the

top 30 genes with most significantly elevated expression in the

castration-resistant VCaP xenografts, 12 were in this group of

411 androgen-repressed genes (Figure 7B). In addition, further

genes among this group of 30 that appeared to be androgen-

repressed were ANKRD22 (1.64-fold in VCaP and 1.82-fold in

VCS2), MMP10 (1.32-fold in VCaP and 4.2-fold in VCS2), and

STXBP6 (1.60-fold in VCaP and 1.93-fold in VCS2).

We next took advantage of recent AR ChIP-seq data in VCaP

cells (Yu et al., 2010) to assess the frequency of AR-binding sites

in androgen-repressed versus androgen-activated genes in

VCaP cells. AR-binding sites were found in 20% of AR-activated

genes and in 14% of AR-repressed genes, with the background

being 11% (fraction of total 31,810 genes that contain AR-
466 Cancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc.
binding sites), indicating that there is enrichment for AR-binding

sites within the AR-repressed genes (Figure S5B). The lower

enrichment versus the AR-activated genes could mean that

more genes in the AR-activated group are directly regulated by

AR, but could also be in part technical and reflect somewhat

weaker binding of AR to AR-repressed genes. To further assess

whether suppression of these genes was mediated directly by

AR through an LSD1-dependent mechanism, we focused on

another androgen-repressed gene (OPRK1) that was strongly

up-regulated in the VCaP CRPC xenografts. Using real-time

RT-PCR, we first confirmed that DHT markedly decreases

OPRK1 mRNA in VCaP cells, similarly to the decreases in AR,

AKR1C3, and HSD17B6 (Figure S5C). Using AR siRNA we also

showed that AR down-regulation could blunt the DHT-mediated
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repression of these genes, providing further evidence that the

repression was AR mediated (Figure S5C). The AR siRNA also

decreased basal, but not DHT stimulated PSA or TMPRSS2

expression, consistent with AR functioning more efficiently on

AR-stimulated genes. OPRK1 has a single AR-binding site in

its 30 UTR based on ChIP-chip and ChIP-seq data in both LNCaP

and VCaP cells (Wang et al., 2009; Yu et al., 2010) (Figure S5D).

Therefore, we usedChIPwith primers covering this site to assess

AR and LSD1 binding. Significantly, DHT stimulated AR and

LSD1 recruitment to this site and also decreased H3K4 methyl-

ation (Figure S5E). Together, these data indicate that AR is

directly negatively regulating a set of genes that are up-regulated

in the VCaP CRPC xenografts.

To assess the potential functional consequences of failing to

suppress androgen-repressed genes after castration, we deter-

mined the pathways that were associated with the 411

androgen-repressed genes identified in VCaP and VCS2 cells.

Importantly, expression of these genes was most significantly

associated with increased DNA replication and cell cycle

progression (Figure 7C, left panel), whereas genes that were

increased in response to DHT in VCaP and VCS2 cells were

associated with synthesis of lipids, proteins, and other metabolic

processes distinct from DNA replication (Figure 7C, right panel).

Finally, we treated VCaP CRPC xenografts with testosterone to

assess effects on AR repressed genes in vivo, and found by

RT-PCR that AR, AKR1C3, HSD17B6, and OPRK1 were

repressed (Figure S5F). Testosterone also suppressed expres-

sion of BCL11A, another strongly AR repressed gene that was

increased in castration-resistant VCaP xenografts, but did not

clearly suppress PSA or TMPRSS2.Moreover, therewasmarked

regression in the xenografts (Figure S5G). These findings indi-

cated that a partial restoration of androgen levels and AR

transcriptional activity in CRPC cells may drive tumor growth

by activating cellular metabolism while failing to suppress DNA

replication and proliferation.

Increased Expression of Androgen Repressed Genes
in Patients with CRPC
To determine whether increased expression of androgen-

repressed genes may contribute to CRPC in patients, we used

expression data from a set of CRPC bone marrow metastases

versus primary prostate cancers that had not received hormonal

therapy (Stanbrough et al., 2006; Mendiratta et al., 2009). Con-

sistent with lower androgen levels and reduced AR transcrip-

tional activity in CRPC, only a small fraction of the genes that

were androgen induced in VCaP/VCS2 were overexpressed in

CRPC (18/556), whereas a much larger fraction were underex-

pressed (71/556) (Figure 8A). Similarly, very few of the AR re-

pressed genes were underexpressed in CRPC (9/411), whereas

many more were overexpressed (53/411) (Table S6). As noted

previously, genes that are overexpressed in CRPC are highly

associated with proliferation (Stanbrough et al., 2006; Wang

et al., 2009) (Figure 8B), whereas genes that are underexpressed

are more associated with developmental pathways (Figure S6A).

Significantly, the set of 53 androgen-repressed genes that were

overexpressed in the CRPCbiopsy samples were similarly highly

associated with DNA replication and proliferation (Figure 8C).

To further assess the biological importance of these 53

androgen-repressed genes in CRPC, we removed them from
C

the set of 1490 genes that were overexpressed in the CRPC

biopsy samples and repeated the Gene Ontology analysis on

the remaining 1437 genes. Although these 1437 genes were still

associated with cell cycle progression and DNAmetabolism, the

significance of all these associations was markedly decreased,

and DNA replication was no longer among the most highly asso-

ciated pathways in the absence of these 53 androgen-repressed

genes (Figure S6B). Finally, we selected for further analysis a set

of eight genes that were androgen repressed in VCaP/VCS2 cells

andwere also overexpressed in the relapsed VCaP xenografts or

the clinical CRPC biopsies. Quantitative real-time RT-PCR

confirmed that they were all DHT repressed in VCaP and VCS2

cells, and that this could be prevented with bicalutamide (Fig-

ure S6C). Moreover, in all cases the androgen-stimulated

down-regulation was decreased or abrogated by treatment

with pargyline, indicating that it was mediated by LSD1 (Fig-

ure 8D). Together, these findings elucidate a mechanism by

which loss of negative regulation by the agonist liganded AR,

in association with LSD1, increases the expression of AR and

of multiple genes that contribute to increased androgen

synthesis, DNA replication, and proliferation in CRPC.

DISCUSSION

Studies in clinical samples and xenograft models indicate that

increased AR gene expression plays a major role in the progres-

sion to CRPC. We observed previously in VCaP cells in vitro and

in VCaP xenografts in vivo that ARmRNA levels decline rapidly in

response to androgen stimulation and increase rapidly in

response to androgen withdrawal (Cai et al., 2009). In this report

we have identified a highly conserved site in the second intron of

the AR gene that regulates its expression in response to

androgen stimulation and withdrawal. RNA polymerase II and

FOXA1 are associated with this ARBS2 site, as are OCT1,

GATA2, and substantial levels of H3K4 mono- and dimethylation

that are further increased in cells adapted to androgen depriva-

tion, consistent with this element functioning as an enhancer

that contributes to increased AR gene expression in CRPC.

Moreover, we show that the agonist liganded AR decreases

AR gene expression by functioning as a transcriptional repressor

at this site through recruitment of LSD1 and demethylation of

H3K4me1,2. The rapid androgen-mediated down-regulation of

AKR1C3 and HSD17B6 is similarly LSD1 dependent, indicating

that the agonist liganded AR directly mediates a physiological

intracellular negative feedback loop to regulate AR activity.

Taken together, these findings elucidate a mechanism that

contributes to increased AR gene expression and restored AR

activity in CRPC, and identify a suppressor element and tran-

scriptional repressor function for the agonist liganded AR.

Further analysis of gene expression in androgen-starved

versus androgen-stimulated VCaP and VCS2 cells showed that

the agonist liganded AR also suppressed the expression of

multiple genes mediating DNA synthesis and cell cycle progres-

sion, while it increased the expression of genes mediating

synthesis of lipids, amino acids, and other metabolic processes.

This profile is consistent with AR function in normal prostate

epithelium to drive terminal differentiation and synthesis of

seminal fluid and provides a molecular basis for the biphasic

response to androgen stimulation whereby PCa cells proliferate
ancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc. 467



Figure 8. Expression of Androgen-Repressed Genes Is Increased in Human CRPC Samples

(A) Affymetrix microarray expression data showing overlaps between androgen repressed/induced genes and the expression of 1490 genes that were increased

and 626 genes that were decreased (p < 0.001 and fold-change > 1.5) in 34 CRPC bone marrow metastases compared with 27 primary tumors prior to any

hormonal therapy.

(B and C) GO term analysis of the group of 1490 CRPC-overexpressed genes (B) and 53 AR-repressed genes that were overexpressed in CRPC (C).

(D) VCaP cells were pretreated with pargyline (2 mM) for 8 hr and then were treated with or without DHT for 16 hr. OPKR1, THBS1, BCL11A, STXBP6, MCM2,

MCM4, MCM6, or MCM7 mRNA were measured using qRT-PCR (normalized to GAPDH as internal control). Error bars in each experiment indicate SD.

(E) Graphical summary showing divergent effects of androgen deprivation on expression of AR-stimulated genes, which are decreased, versus AR-repressed

genes (including the AR gene), which are increased. In castration-resistant PCa, mechanisms including further increases in intratumoral androgen synthesis

result in partial restoration of AR transcriptional activation function on genes mediating lipid and protein biosynthesis, but do not restore AR repressor function on

the AR gene, or on genes mediating androgen synthesis, DNA synthesis, and cell cycle progression. See also Figure S6 and Table S6.
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in response to low levels of androgen but are growth arrested at

high concentrations (Xu et al., 2006). Significantly, a set of these

androgen-repressed genes associated with increased DNA

synthesis and proliferation were overexpressed in vivo in castra-

tion-resistant VCaP xenografts and in CRPC patient samples.

We suggest that androgen levels in CRPC cells are adequate

to stimulate AR activity on enhancer elements of genes medi-

ating certain critical metabolic functions such as lipid synthesis,

which are sensitive to lower levels of androgens, but are not

adequate to effectively recruit AR and LSD1 to suppressor

elements in multiple genes that negatively regulate AR signaling

and cellular proliferation. A graphical summary showing diver-

gent effects of AR on expression of AR-stimulated versus AR-

repressed genes after androgen deprivation and in CRPC is

shown in Figure 8E.

LSD1 was initially identified in corepressor complexes and

shown to function by demethylating mono- and dimethylated

H3K4 (Shi et al., 2004). However, it was subsequently shown

to function as a coactivator through demethylation of repressive

mono- and dimethylated H3K9 when associated with AR and

possibly other nuclear receptors including estrogen receptor

a (Metzger et al., 2005, Garcia-Bassets et al., 2007, Perillo

et al., 2008). The results of this study indicate that the association

with AR does not determine the coactivator versus corepressor

function of LSD1, and that it is instead determined by properties

of the element to which it is being recruited. For example, hypo-

acetylated nucleosomes are more susceptible substrates for

LSD1 mediated demethylation (Shi et al., 2005). Moreover,

recent data indicate that phosphorylation of H3T11 by an AR-

associated kinase (PRK1/PKN1) enhances the demethylation

of H3K9me3 by JMJD2C and subsequent demethylation of

H3K9me1,2 by LSD1 (Metzger et al., 2008), whereas phosphor-

ylation of H3T6 by a distinct kinase (PKCb1) can suppress the

LSD1-mediated demethylation of H3K4me1,2 (Metzger et al.,

2010). Our data indicate that lower H3T6 and H3T11 phosphor-

ylation may contribute to the substrate specificity and core-

pressor function of LSD1 at AR repressed genes, although

LSD1 may be regulated by a distinct mechanism on the

TMPRSS2 gene. It will clearly be important to further charac-

terize these and additional AR suppressor elements and deter-

mine the extent to which histone modifications or other factors

regulate the function of AR and LSD1 on these suppressor

versus AR enhancer elements.

It has been well appreciated for many years that AR has both

growth-promoting and growth-suppressing activities and that

androgen deprivation therapies may directly or indirectly stimu-

late some pathways that contribute to growth and eventual

relapse. Indeed, androgens can suppress the growth of some

CRPC-derived cell lines, and high-dose androgens have been

explored as a therapy for CRPC (Umekita et al., 1996, Morris

et al., 2009). However, the molecular basis for androgen-stimu-

lated growth suppression has not been clear, and there have

been no previous studies suggesting that distinct AR transcrip-

tional mechanisms may underlie these functions. Therefore,

the results of this study provide a paradigm with implications

for both basic molecular mechanisms of steroid action and for

AR targeted therapy of prostate cancer. In particular, the distinct

mechanisms of AR action on enhancer versus suppressor

elements may make it possible to selectively augment AR tran-
C

scriptional repressor function and thereby prevent or delay the

emergence of CRPC.

EXPERIMENTAL PROCEDURES

Cell Culture and Xenografts

LNCaP or C4-2 cells were cultured in RPMI1640mediumwith 10% FBS. VCaP

cells were cultured in DMEM medium with 10% FBS, and VCS2 cells were

cultured in DMEM medium with 8% charcoal/dextran-stripped FBS (CSS)

plus 2% FBS. For most immunoblotting, RT-PCR, or ChIP assays, cells

were grown to 50%–60% confluence in 5% (CSS) medium for 3 days and

then treated with androgens or drugs. VCaP xenografts were established in

the flanks of male scid mice by injecting �2 million cells in 50% Matrigel.

When the tumors reached �1 cm, biopsies were obtained and then the mice

were castrated. Additional biopsies were obtained 4 days after castration,

and the tumors were harvested at relapse. Frozen sections were examined

to confirm that the samples used for RNA and protein extraction contained

predominantly nonnecrotic tumor. All animal experiments were approved by

the Beth Israel Deaconess Institutional Animal Care and Use Committee and

were performed in accordance with institutional and national guidelines.

RT-PCR and Immunoblotting

Quantitative real-time RT-PCR amplification was performed on RNA extracted

from tissue samples or cell lines using TRIZOL reagent. RNA (50 ng) was used

for each reaction and the result was normalized by coamplification of 18S

RNA. Reactions were performed on an ABI Prism 7700 Sequence Detection

System using Taqman one-step RT-PCR reagents. Primers and probes are

listed in Supplemental Information. PCR data are represented as mean ±

STD for repeats. Protein extracts were prepared by boiling for 15 min in 2%

SDS. Blots were incubated with anti-PSA (1:3000, polyclonal, BioDesign),

anti-AR (1:2000, polyclonal, Upstate), anti-LSD1 (1:1000, Abcam), anti-b-actin

(1:5000, monoclonal, Abcom), or anti-b-tubulin (1:2000, Upstate), and then

with 1:5000 anti-rabbit or anti-mouse secondary antibodies (Promega).

Coimmunoprecipitation

VCaP cells were harvested in Triton lysis buffer (0.5% Triton X-100, 20 mM

Tris-HCl, 150 mM NaCl, 5 mM EDTA, and 2 mM dithiothreitol) with protease

inhibitors. The protein was immunoprecipitated using monoclonal anti-AR

(AR441 from NeoMarkers) or mouse IgG control and then subjected to

immunoblotting.

Chromatin-Immunoprecipitation (ChIP) Assay

Cellswere formalin fixed, lysed, and sonicated to break the chromatin into 500–

800 bp fragments. Anti-AR (Santa Cruz), anti-FOXA1 (Abcam), anti-OCT1

(Santa Cruz), anti-GATA2 (Santa Cruz), anti-RNA Polymerase II (Santa Cruz),

anti-RNA Polymerase II CTD repeat (phospho Ser5), anti-TBP (Santa Cruz),

anti-LSD1 (Abcam), anti-HDAC1 (Santa Cruz), anti-HDAC2 (Santa Cruz), anti-

HDAC3 (Santa Cruz), anti-H3K4me1 (Abcam), anti-H3K4me2 (Upstate), anti-

H3K4me3 (Abcam), anti-H3K9me1 (Abcam), anti-H3K9/14ace (Upstate),

anti-H3T6pho (Abcam), anti-H3T11pho (Abcam), or rabbit IgG (Santa Cruz)

were used to precipitate chromatin fragments from cell extracts. Quantitative

real-time PCR was used to analyze binding to the ARBS-1, �2, and �3; PSA

enhancer (ARE3); TMPRSS2 enhancer (�14 k upstream); OPRK1 enhancer

(30 UTR); or negative-1 (30 irrelevant region of PSA) or -2 (irrelevant region of

chromosome 18). The primers are listed in the Supplemental Information. We

used real-time quantitative PCR (SYBR green) to amplify the DNA fragment

in the antibody precipitated DNA and the unprecipitated input DNA to calculate

DCT values. The RQ values (RQ = 2-DCT) are presented and reflect the precipi-

tatedDNAasapercentageof the inputDNA.Results are representedasmean±

STD for replicate samples. Data are representative of at least three ex-

periments. Significant differences are indicated (*) in the experiments. Raw

data for the real-time quantitative PCR are provided in Tables S1–S4.

Gene Expression Microarray Assay

VCaP or VCS2 cells treated with ethanol or 10 nM DHT were subjected to mi-

croarray assay (Affymetrix) to identify genes whose expression was repressed

by DHT in both VCaP and VCS2 cells. TissuemRNAwas extracted and purified
ancer Cell 20, 457–471, October 18, 2011 ª2011 Elsevier Inc. 469
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from three sets (precastrated, 4 days after castration, and relapsed) of xeno-

graft tumors (3 mice) and then subjected to microarray assay (Agilent). SAM

software was used to perform t test on these three biological repeats (three

mice) to determine the score and q-value. The genes whose expression was

significantly elevated in relapsed tumors (q < 0.05) were picked for the next

screening to determine whether they were DHT-repressed in VCaP and VCS2.

ACCESSION NUMBERS

The expression microarray data has been deposited in the Gene Expression

Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo) under accession

number GSE31410.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and six tables andmay be found

with this article online at doi:10.1016/j.ccr.2011.09.001.
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