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SUMMARY

Ten-Eleven Translocation (Tet) family of dioxyge-
nases dynamically regulates DNA methylation and
has been implicated in cell lineage differentiation
and oncogenesis. Yet their functions and mecha-
nisms of action in gene regulation and embryonic
development are largely unknown. Here, we report
that Xenopus Tet3 plays an essential role in early
eye and neural development by directly regulating
a set of key developmental genes. Tet3 is an active
5mC hydroxylase regulating the 5mC/5hmC status
at target gene promoters. Biochemical and structural
studies further demonstrate that the Tet3 CXXC
domain is critical for specific Tet3 targeting. Finally,
we show that the enzymatic activity and CXXC
domain are both crucial for Tet3’s biological function.
Together, these findings define Tet3 as a transcrip-
tion regulator and reveal a molecular mechanism by
which the 5mC hydroxylase and DNA binding activi-
ties of Tet3 cooperate to control target gene expres-
sion and embryonic development.

INTRODUCTION

The process of vertebrate development is established through

the integration of several molecular pathways controlled by key
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regulatory genes and complex epigenetic markings. DNA meth-

ylation at the 5-position of cytosine (5mC) is a key epigenetic

mark playing crucial roles in vertebrate development (Bestor

and Coxon, 1993; Bird, 1986; Reik et al., 2001). Recent studies

have demonstrated that the Tet family of 5mC hydroxylases

can catalyze the conversion of 5mC to 5-hydroxymethylcytosine

(5hmC) (Tahiliani et al., 2009) and further to 5-formylcytosine

(5fC) and 5-carboxylcytosine (5CaC) (He et al., 2011; Ito et al.,

2011). These studies also suggest that additional modification

of 5mC modulated by Tet enzymes may regulate the dynamics

of 5mC and its mediated gene regulation (Branco et al., 2012).

Themammalian Tet family has threemembers, Tet1, Tet2, and

Tet3. It has been suggested that both Tet1 and Tet2 play impor-

tant roles in ES cell lineage specification (Ito et al., 2010; Koh

et al., 2011) and that Tet1 regulates DNA methylation and gene

expression in mouse ES cells (Ficz et al., 2011; Williams et al.,

2011; Wu et al., 2011; Xu et al., 2011b). Mutational inactivation

of TET2 has been reported to associate with decreased 5hmC

levels in various myeloid leukemias (Delhommeau et al., 2009;

Langemeijer et al., 2009), and Tet2 deficiency leads to increased

hematopoietic stem cell self-renewal and myeloid transfor-

mation in mouse (Moran-Crusio et al., 2011; Quivoron et al.,

2011). Recently, we and others also show that TET1 and TET2

play critical roles in other human cancers, such as melanoma

and breast cancer (Hsu et al., 2012; Lian et al., 2012). In addition,

Tet3 is the only Tet family member highly expressed in mouse

oocytes and zygotes and is responsible for the hydroxylation

of 5mC that occurs in the paternal pronucleus of advanced

pronuclear-stage zygotes (Gu et al., 2011; Iqbal et al., 2011;
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Wossidlo et al., 2011). Conditional knockout of Tet3 in mouse

oocytes prevents resetting of DNA methylation patterns in

zygotes and impairs reprogramming of transferred somatic

nuclei (Gu et al., 2011). Nevertheless, Tet3�/� knockout mice

are viable through development, but die on postnatal day one

(Gu et al., 2011). Taken together, although the discovery of the

Tet family of 5mC hydroxylases provides a potential mechanism

for the dynamic regulation of DNAmethylation, it remains unclear

how Tet proteins are recruited to and regulate the expression of

target genes, thereby providing linkage to their specific functions

in early vertebrate embryonic development.

Although all Tet family members contain a conserved

C-terminal catalytic domain, only Tet1 and Tet3 contain the

CXXC domain, a potential DNA binding module characterized

by two CXXCXXC repeats. The CXXC domains, found in other

proteins such as DNMT1, MLL, and CFP1, have been shown to

specifically bind to unmethylated CpG dinucleotides and partic-

ipate in gene transcription regulation (Allen et al., 2006; Pradhan

et al., 2008; Xu et al., 2011a). Although our previous study has

suggested an important role of the CXXC domain in targeting

Tet1 enzyme to specific genomic regions in ES cells (Xu et al.,

2011b), the molecular mechanism and biological importance of

this domain in Tet1- and Tet3-mediated transcriptional regula-

tion of target genes remain largely unknown.

In this report, we characterize the molecular and biochemical

properties and the biological function of Tet3 by using Xenopus

as a model. Our study shows that Tet3 is essential for early

eye and neural development in Xenopus. We also demon-

strate that several master control genes essential for eye and

neural development are Tet3’s direct targets, mechanistically

linking Tet3 function in transcriptional regulation of these key

genes to the developmental phenotypes caused by Tet3 deple-

tion. Using structural and mutational analyses and functional

rescue approaches, we show that Tet3’s 5mC hydroxylase

and the CXXC domain-mediated DNA binding activities coop-

erate to regulate target gene expression during eye and neural

development.

RESULTS

Identification and Characterization of Xenopus Tet3

Gene Reveal that Tet3 Is Essential for Early Eye and
Neural Development
To understand the biological function of Tet proteins in early

embryonic development, we investigated Tet family members

in Xenopus. Database searches reveal two Tet orthologs in Xen-

opus tropicalis, Tet2 and Tet3, but not Tet1 (Figure S1A available

online). We cloned Xenopus laevis Tet3 (xlTet3) gene and subse-

quently discovered two xlTet3 isoforms (HQ220207-xlTet3a and

HQ220208-xlTet3b) that exhibit greater than 90% amino acid

similarity to xtTet3 (Figure S1A). Surprisingly, despite extensive

searching, we were unable to identify a Tet1 ortholog in either

X. tropicalis or X. laevis. We, therefore, conclude that the Xeno-

pus genome contains only two Tet-related genes, Tet2 and

Tet3, and lacks a Tet1 gene. Sequence analysis reveals that

similar to mammalian Tet3 proteins (which we cloned, validated,

and deposited into GeneBank; HQ220209, human TET3; and

HQ423151, mouse Tet3), Xenopus Tet3 contains a CXXC
domain, a cysteine-rich domain and a double-stranded b helix

(DSBH)-containing dioxygenase domain (Figure S1A).

We next examined the expression profile of xlTet3 during

embryogenesis. The temporal expression pattern of xlTet3 by

RT-qPCR reveals that, unlike the high level of Tet3 mRNA

observed in mouse oocytes (Gu et al., 2011; Iqbal et al., 2011;

Wossidlo et al., 2011), the xlTet3 mRNA level in oocytes is very

low. xlTet3 mRNA is also barely detectable at stage 2 (2-cell

stage) through stage 7, but increases dramatically from stage 9

(immediately after the initiation of zygotic transcription) to stage

19 and then drops at stage 25 (Figure S1B). The spatial expres-

sion pattern of xlTet3 by in situ hybridization shows that xlTet3

mRNA is barely detectable at stage 9 (Figure 1A), but clearly de-

tected by stage 14 in the neural plate (Figure 1B). In embryo

sections, we also detect xlTet3 mRNA in the neural plate and

notochord (Figures S1C and S1D). Moreover, xlTet3mRNA level

remains high in the neural tube at stage 19 (Figure 1C) and in the

region of the developing brain, eye, branchial arches, cement

gland, and spinal cord at stage 25 (Figures 1D and 1E).

To address Tet3 function during embryogenesis, we per-

formed loss-of-function studies by depleting endogenous xlTet3

protein by using the Morpholino antisense oligo (MO) strategy.

We first confirmed that xlTet3 MOs efficiently deplete Tet3

protein (Figure 1F). Control MO or xlTet3 MOs were injected

into two dorsal blastomeres of 4-cell stage embryos. At stage

35, we observe striking developmental abnormalities in 96%

(194/201) of xlTet3 MOs-injected embryos, including malforma-

tion of the eye (eyeless), small head, and missing pigmentation

along the lateral body, whereas control embryos develop nor-

mally (Figure 1G). The Tet3-depleted embryos die between

stages 35 and 40. Importantly, these phenotypes are rescued

by coinjecting the xlTet3MOs-resistant xtTet3mRNA (Figure 1G,

right). Taken together, these data suggest that Tet3 plays an

essential role in early embryogenesis, especially in early eye

and neural development.

Tet3 Directly Regulates a Set of Genes Critical for Eye
and Neural Development
To gain insight into the underlying molecular mechanisms linking

Tet3 function to early eye and neural development, we examined

the effect of Tet3 depletion on the expression of a set of key

developmental genes, including pax6 (eye and neural marker),

rx and six3 (eye markers), sox2 (pan-neural marker), otx2 (ante-

rior neural marker), sox9 and snail (neural crest markers), neuro-

genin related 1 (ngn2) and n-tubulin (tubb2b) (primary neuron

markers), and shh and ptc-1 (sonic hedgehog signaling) in stage

14 embryos. MOs were injected into one dorsal blastomere of

4-cell stage embryos so that the uninjected side could be used

as an internal control. For shh and ptc-1 measurement, we in-

jected MOs into two dorsal blastomeres of 4-cell stage embryos

because the expression of shh and ptc-1 is in the midline. As

shown by in situ hybridization, the expression of master eye

developmental genes, pax6, rx, and six3, is greatly reduced on

the xlTet3 MOs-injected side compared to the uninjected side

at stage 14 (Figure 2A). Reduced expression of these eye genes

is also seen in the potential eye field on the Tet3-depleted side at

stage 19 (Figure S2A). Depletion of Tet3 also inhibits the expres-

sion of two primary neuron markers, ngn2 and tubb2b, and two
Cell 151, 1200–1213, December 7, 2012 ª2012 Elsevier Inc. 1201
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Figure 1. Tet3 Is Important for Early Eye and Neural Development

(A–E) Spatial expression profile of xlTet3 by in situ hybridization at stage 9 (A), 14 (B), 19 (C), and 25 (D and E). The sites of sections I and II in (E) are noted by red

dashed lines in (D). Animal view (an), vegetal view (v), dorsal view (d), lateral view (L), brain (b), eye (e), cement gland (c), branchial arches (ba), and spinal cord (sc).

(F) Western blot showing depletion of endogenous Tet3 protein by xlTet3 MOs in stage 14 embryos.

(G) Developmental defects in stage 35 embryos caused by Tet3 depletion. Small head, eyeless, and missing pigmentation phenotypes in xlTet3 MOs-injected

embryos are noted by red arrows, and the normal pigmentation in control embryos is noted by a black arrow.

See also Figure S1.
neural crest markers, sox9 and snail, supporting a critical role of

Tet3 in neural and neural crest development (Figure 2A). The

expression of two major shh signaling components, shh and

ptc-1, is also abolished in Tet3-depleted embryos at stage 14

(Figure 2A), whereas the expression of otx2 and sox2 shows no

significant changes (Figure S2B). Importantly, the diminished

expression of all affected genes is rescued by xtTet3 mRNA

coinjection (Figure 2A), demonstrating the specific regulation

of these genes by Tet3. Results by in situ hybridization are fur-

ther independently confirmed by RT-qPCR assays (Figures 2B

and S2C).

To address whether Tet3 directly regulates these key

genes, we performed chromatin immunoprecipitation (ChIP)

assays. We employed an epitope-tagged ChIP assay by using

Flag antibody and flag-xtTet3 mRNA-injected embryos to

explore Tet3 occupancy at the promoters of these genes. We

detect strong Tet3 binding at the promoters of pax6, rx, six3,

ptc-1, ptc-2, sox9, and ngn2 but not at the promoters of control

genes, myosin light chain 2 (myl2), and cardiac actin (actc)

(Figure 2C).

Finally, we tested whether ectopic expression of any one of

these downstream Tet3 target genes can rescue the phenotypes
1202 Cell 151, 1200–1213, December 7, 2012 ª2012 Elsevier Inc.
caused by Tet3 depletion. We examined the rescue effects of

pax6, rx, or shh overexpression. As shown in Figure S2D, none

of these can rescue the phenotypes, suggesting that it may be

the cumulative effect of the altered expression of a group of

target genes, rather than a single gene, that causes the observed

developmental defects. Nevertheless, our data strongly suggest

that Tet3 is an upstream transcriptional regulator specifically and

directly controlling a set of key genes important for early eye and

neural development.

Tet3 Is an Active 5mC Hydroxylase that Regulates the
5mC/5hmC Status at Target Gene Promoters
As DNAmethylation at gene promoters has regulatory effects on

the expression of the associated genes, we asked whether Xen-

opus Tet3 modulates the 5mC/5hmC status at its target gene

promoters. To address this question, we first demonstrate that

Xenopus Tet3 has conserved 5mC hydroxylase activity as

mammalian Tet proteins. The xlTet3 catalytic domain (CD) can

convert 5mC to 5hmC in cells and in vitro (Figures 3A and 3B).

Utilizing two independent methods, anti-5hmC antibody-based

dot-blot and T4 Phage b-glucosyltransferase-mediated 5hmC

glucosylation assays, we demonstrate that 5hmC exists in the
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Figure 2. Tet3 Directly Regulates Key Developmental Genes

(A) Expression level changes of developmental genes resulting from Tet3 depletion as shown by in situ hybridization at stage 14. Red arrows show the inhibited

expression by xlTet3 MOs injection, whereas black arrows show rescued expression by xtTet3 coinjection. L, left; R, right; a, anterior; p, posterior; d, dorsal;

v, ventral. The red dots are injection tracer by b-gal staining.

(B) RT-qPCR confirms the differentially expressed genes after Tet3 depletion at stage 14. Control MO, xlTet3 MOs or xlTet3 MOs/xtTet3 was injected into two

dorsal blastomeres at 4-cell stage. Relative gene expression was normalized to odc. Results are shown as mean ± SD (n = 3).

(C) Tet3 occupancy at target gene promoters by ChIP-qPCR assay. Data are presented as mean ± SEM (n = 3).

See also Figure S2.
genome of Xenopus embryos and is globally reduced after Tet3

depletion (Figure 3C). However, consistent with undetectable or

extremely low levels of 5fC and 5CaC in ES cells and various
tissues (Globisch et al., 2010; Ito et al., 2011), we failed to detect

5fC and 5CaC in Xenopus embryos (data not shown). Collec-

tively, these data suggest that Tet3 possesses intrinsic 5mC
Cell 151, 1200–1213, December 7, 2012 ª2012 Elsevier Inc. 1203
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Figure 3. Tet3 Is an Active 5mC Hydroxylase Regulating the 5mC/5hmC Status at Target Gene Promoters

(A) xlTet3 CD is sufficient to convert 5mC to 5hmC in HEK293T cells by immunofluorescence analysis. Flag-tagged xlTet3 CD protein was detected using Flag

antibody.

(B) xlTet3a CD protein converts 5mC to 5hmC in vitro by dot-blot assay. Avidin-HRP is used to detect total biotin-labeled DNA, showing equal loading.

(C) Tet3 depletion results in globally decreased 5hmC in stage 14 embryos by dot-blot (left) and 5hmC glucosylation (right) assays. Open bar, control MO; filled

bar, xlTet3 MOs. Data are presented as mean ± SD (n = 3). **p < 0.01.

(D and E) hMeDIP-qPCR to detect dynamic 5hmC level changes in stage 10, 14, and 19 embryos. The targeting region for each primer set is underlined in (D).

Results are shown as mean ± SD (n = 3) in (E). *p < 0.05.

(F) Site-specific 5hmC level changes by Tet3 depletion in stage 14 embryos using the EpiMark 5mC/5hmC analysis kit. Open bar, control MO; filled bar, xlTet3

MOs. Red dot indicatesMspI/HapII recognition site and each PCR amplified region is underlined. Arrow denotes promoter orientation. Data are shown asmean ±

SD (n = 3). *p < 0.05.

(G) TAB-seq analyses of 5hmC status at the promoter of pax6 (left) and actc (right) in stage 14 embryos. The average percent at each CpG site is derived from

sequencing of 30–32 clones for pax6 promoter and 24–26 clones for actc promoter.

(H) Schematic diagram of hMeDIP-MeDIP strategy.

(I) hMeDIP-MeDIP qPCR to detect 5mC level changes after Tet3 depletion in stage 14 and 19 embryos. Data are shown as mean ± SD (n = 3). *p < 0.05. The

targeting region for each primer set is shown in (D).

See also Figure S3.
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hydroxylase activity and is, at least in part, responsible for modu-

lating 5hmC levels in Xenopus embryos.

We next asked whether Tet3 regulates 5hmC levels at target

gene promoters. We first examined the dynamic 5hmC level

changes by hydroxymethylated DNA immunoprecipitation

(hMeDIP)-qPCR (Xu et al., 2011b). Consistent with the increasing

Tet3 expression from stage 10 to 19 (Figure S1B), we observe

increasing 5hmC levels at a Tet3 target gene promoter, rx

promoter, but not at the nontargeted actc promoter (Figures

3D and 3E). Importantly, Tet3 depletion results in a significant

reduction in 5hmC at rx promoter at stages 14 and 19, thereby

significantly abolishing the increase in 5hmC from stage 10 to

14 to 19 (p < 0.05), whereas no 5hmC level changes are observed

at actc promoter (Figure 3E). However, we failed to detect 5hmC

level changes at other Tet3 target gene promoters including

pax6, six3, sox9, and ptc-2 by hMeDIP-qPCR perhaps due to

the low 5hmC levels at those promoters and the detection limits

of hMeDIP-qPCR. Thus, we applied amore sensitive CCGG site-

dependent strategy, EpiMark method (Ficz et al., 2011). As

exemplified by pax6 and ptc-2, depletion of Tet3 results in a

significant reduction in 5hmC at CCGG sites of both promoters

(p < 0.05), whereas no 5hmC changes are observed at the

nontargetedmyl2 and actc genes (Figure 3F). To next determine

the 5hmC status at multiple CpG sites, we employed the

newly developed Tet-assisted bisulfite sequencing (TAB-Seq)

approach (Yu et al., 2012), the most sensitive method to specif-

ically detect 5hmC at base-pair resolution. We first confirm that

more than 90% of 5mCs in the internal control DNA oligo have

been converted by TET1 CD (Figures S3A–S3C). Using pax6 as

an example, we clearly observe a significant decrease in 5hmC

at specific CpG sites within the pax6 promoter after Tet3 deple-

tion (p < 0.05 by one-way ANOVA), whereas the 5hmC levels at

actc promoter are not changed (Figure 3G), consistent with that

observed via the EpiMarkmethod. Taken together, by employing

multiple approaches to analyze changes in 5hmC at promoters

after Tet3 depletion, we demonstrate that Tet3 regulates the

5hmC status at its target gene promoters.

Finally, we addressed the extent to which 5hmC level

decrease by Tet3 depletion results in a subsequent 5mC level

increase. Notably, examining the alteration of 5mC directly re-

sulting from the change of 5hmC at Tet3 target gene promoters

is extremely technically challenging. Like most Xenopus genes,

Tet3 exhibits specific spatial-temporal expression in embryos

(Figures 1B–1E). Thus, changes in 5mC caused by Tet3 deple-

tion are expected to occur only in the small fraction of the

embryo expressing Tet3, whereas 5mC remains unchanged in

the rest of embryo, effectively diluting the signal from Tet3-ex-

pressing cells. Indeed, using the whole embryos, we attempted

and failed to detect 5mC changes after Tet3 depletion by

multiple approaches, such as methylated DNA immunoprecipi-

tation (MeDIP) and methylated CpG island recovery assay. We

therefore developed a targeting strategy, employing hMeDIP-

MeDIP qPCR to separate the signal from the noise and examine

the 5mC level changes directly resulting from 5hmC level

changes by Tet3 depletion (Figure 3H). We first performed

hMeDIP to enrich 5hmC-containing genomic DNA fragments

that presumably are from Tet-expressing cells. Given that Tet3

depletion results in a 5hmC level decrease but not complete
removal, Tet3-targeted DNAs in xlTet3 MOs-treated embryos

still contain 5hmC and can be enriched, albeit with a lower

amount than the control embryos. We then carried out MeDIP

by using the hMeDIPed DNA as input to examine relative 5mC

levels in those 5hmC-containing DNAs given the dynamic

conversion of 5mC to 5hmC and the coexistence of 5mC and

5hmC in the same region (Ficz et al., 2011; Yu et al., 2012). We

first confirm that the different amount of starting DNA (hMeDIPed

DNA) will not introduce a MeDIP efficiency bias, as validated by

the equal MeDIP enrichment of the human NBR2 promoter from

control DNA spiked in the hMeDIPed DNA from control MO- or

Tet3 MOs-injected embryos (Figure S3D). For proof-of-principle,

we examined the rx gene promoter because it has the most

dramatic changes in 5hmC after Tet3 depletion and can be easily

detected (Figure 3E). Indeed, we clearly observe a significant

5mC level increase at rx gene promoter after Tet3 depletion by

this hMeDIP-MeDIP qPCR method in stage 14 and 19 embryos

(Figure 3I), whereas the 5mC level at actc promoter is not

changed (Figure 3I), validating the reliability of hMeDIP-MeDIP

qPCR procedure. Thus, we conclude that Tet3 regulates target

gene expression, at least partially, through control of 5mC/

5hmC status at the promoter of target genes.

The Tet3 CXXC Domain Possesses Unique DNA Binding
Properties
In addition to the dioxygenase domain that confers 5mC

hydroxylase activity, Tet3 also contains a potential DNA binding

domain, the CXXC domain. In general, the selective DNA binding

activity of a transcription factor serves as a key mechanism for

action of the transcription factor in gene transcriptional regula-

tion. Sequence alignment indicates that Tet CXXC domains

exhibit a conserved overall structure with other CXXC domains

(Figure S4A). However, Tet CXXC domains lack a short se-

quence motif (KFGG) (Figure S4A), which has been shown to

be important for the DNA binding activity of the MLL and CFP1

CXXC domains (Allen et al., 2006; Xu et al., 2011a). To address

whether the Tet3 CXXC domain may possess unique DNA

binding features, we examined the DNA binding ability and

specificity of the Xenopus Tet3 CXXC domain (aa 58–111) by

isothermal titration calorimetry (ITC) assays. The Tet3 CXXC

domain strongly binds to various C/G-rich DNA oligos but

exhibits virtually no binding activity to the A/T-only DNA oligo

(Figures 4A–4E and Table S1, 1–8). Significantly, these ITC

results also reveal previously uncharacterized DNA binding

properties of the CXXC domain. First and most importantly, the

Tet3 CXXC domain strongly binds to both non-CpG (Table S1,

5–7) and CpGDNA oligos (Table S1, 1–4 and 9) with a slight pref-

erence for CpG DNA oligos. Second, the Tet3 CXXC domain

strongly binds to CmCGG DNA (Figure 4F and Table S1, 10).

These binding properties are in stark contrast to the well-charac-

terized DNA binding property of the CFP1 and MLL CXXC

domains, which absolutely require unmethylated CpG dinucleo-

tides (Allen et al., 2006; Xu et al., 2011a). In contrast to the strong

binding to CmCGG,CTAGandACGTDNAoligos, the Tet3CXXC

domain does not bind to mCmCGG, mCTAG, or AmCGT DNA

oligos (Figure 4G and Table S1, 11–13). These data suggest

that although strict CpG content is not required for the Tet3

CXXC domain to interact with DNA, an unmodified cytosine is
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Figure 4. The Unique DNA Binding Properties of the Tet3 CXXC Domain

(A–H) Binding affinities of the Tet3 CXXC domain to various DNA oligos by ITC assays. The sequence of the central four nucleotides of each double-stranded DNA

probe is shown under the corresponding panel. Detailed sequence information for all DNA oligos used in this study is listed in Table S1. NB: no binding.

(I) Representative TET3 CXXC GST pull-down sequencing results. Arrow denotes promoter orientation.

(J) Genomic distribution of the TET3 CXXC-bound loci. Promoter is defined as �2 kb to +2 kb relative to transcription start site (TSS).

(K) The percentage of CpA, CpT, CpC, and CpG in human genome and the TET3 CXXC-bound loci.

(L) DNA motifs that are enriched in the TET3 CXXC-bound loci.

See also Figure S4 and Table S1.
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Table 1. Data Collection and Refinement Statistics

xtTet3 CXXC-

GCCAACGTTGGC

xtTet3 CXXC-

GCCACmCGGTGGC

PDB code 4HP3 4HP1

Space group C2 C2

Cell Dimensions

a, b, c (Å) 69.9, 39.5, 54.1 71.0, 39.5, 57.6

a, b, g (�) 90, 99.9, 90 90, 91.0, 90

Resolution range (Å) 34.42-2.05

(2.16-2.05)

35.51-2.25

(2.37-2.25)

Number of unique HKLs 9281 (1345) 7738 (1110)

Completeness (%) 99.8 (99.8) 99.9 (100.0)

Friedel redundancy 3.7 (3.7) 4.1 (4.2)

Rsym (%) 5.3 (66.9) 4.6 (48.7)

<I/s(I) > 12.6 (2.1) 14.7 (2.8)

Resolution limits (Å) 30.00-2.05 35.00-2.25

Number of unique HKLs

work/free

8829/452 7385/351

Rwork/Rfree (%) 21.6/24.3 22.0/25.0

Number of

atoms/< B > (Å2)

898/54.8 886/73.9

DNA 486/58.2 487/78.8

Protein 384/51.7 387/68.5

Zn2+ 2/33.2 2/46.8

RMSD bonds

(Å)/angles (�)
0.013/1.4 0.012/1.4

Ramachandran plot

favored residues, no

outliers (Lovell et al.,

2003)

47 of 49 48 of 49

RMSD is an abbreviation for root mean squared deviation. Average

B-factors calculated with MOLEMAN (G.J. Kleywegt, Uppsala Univer-

sity). The highest resolution shell is shown in parentheses.
essential for the Tet3 CXXC binding to DNA. Using the same ITC

approach, we also demonstrate that the human TET3 CXXC

domain has similar DNA binding properties to the Xenopus

Tet3 CXXC domain (Table S1, 17–22). Thus, the CXXC domain

of the Tet3 family has unique newly identified DNA binding char-

acteristics conserved among vertebrates.

Given the similar binding properties between human and Xen-

opus Tet3 CXXC domains, we next determined the DNA binding

specificity of the TET3 CXXC domain across the whole genome

of HEK293T cells. The specific TET3 CXXC-bound genomic

DNA fragments were enriched by GST pull-downs and analyzed

by deep DNA sequencing, as we previously described (Xu et al.,

2011b). The TET3 CXXC domain selectively binds to restricted

genomic regions (Figure S4B). Importantly, consistent with

Tet3 occupancy in Xenopus embryos (Figure 2C), the TET3

CXXC domain strongly and selectively binds to the promoters

of PAX6, PTCH1, NGN2, TUBB2B, and SHH, but not the pro-

moter ofMYL2 (Figures 4I and S4C). Furthermore, bioinformatics

analyses identify 17,953 TET3 CXXC-bound peaks, more than

half of which are located at gene promoters (Figure 4J). Interest-

ingly, we also observe a significant enrichment of CpG (and a

less degree of CpC) dinucleotides in TET3 CXXC-bound regions

(Figure 4K). Further de novo motif discovery analyses identify

three C-rich sequences among the top 15 ranking motifs within

TET3 CXXC-bound regions (Figure 4L), whose consensus

sequences are SSGCSGCGCG (p = 13 10�30), CSSCGCSCRC

(p = 3.47113 10�26) and SCWGCWGCBS (p = 4.65633 10�25),

respectively. Indeed, we validate that these motifs are present

at the promoters of several TET3 target genes (Figure S4D).

Together with the ITC binding data, these genome-wide anal-

yses suggest that the TET3 CXXC domain is able to bind to the

unmodified C followed by A, T, C, or G with a slight preference

for CpG dinucleotides. These data also indicate that the specific

DNA binding activity of the Tet3 CXXC domain may contribute to

Tet3 targeting, thereby serving as another important mechanism

for Tet3-mediated gene transcriptional regulation.

Crystal Structures of the Tet3 CXXCDomain in Complex
with DNA Oligos
To gain further mechanistic insight into the unique DNA binding

properties of the Tet3 CXXC domain, we next determined the

crystal structures of the Xenopus Tet3 CXXC domain (aa 58–

111) in complex with 5mC-containing DNA (CmCGG) and

CpG-containing DNA (ACGT), respectively (Table 1). Like other

CXXC domains, the Tet3 CXXC domain contains eight con-

served cysteine residues coordinating two zinc ions. These

two zinc ions play a structural role by holding the mainly unstruc-

tured CXXC domain together and forming a crescent-shaped

architecture to bind DNA (Figures 5A and 5C). The DNA-binding

surface is predominantly positively charged, and wedged into

the major groove of DNA to extensively interact with DNA bases

by means of hydrogen bonds and electrostatic interactions

(Figures 5A–5D).

Surprisingly, structural comparison of the Tet3 CXXC domain

in complex with CmCGG or ACGT DNA reveals that the Tet3

CXXC domain binds to the 12-mer target DNAs with one nucle-

otide shift. In the crystal structure of the Tet3 CXXC domain in

complex with the unmethylated CpG DNA (ACGT), the Tet3
CXXC domain binds to the DNA centering on the cytosine in

the CpG dinucleotide (underlined). Methylation of the cytosine

in the CpG dinucleotides (CmCGG) shifts the binding to the cyto-

sine (underlined) preceding the mCpG dinucleotides. Therefore,

consistent with the ITC binding results, the Tet3 CXXC domain

binds to an unmodified cytosine, which is not restricted by

CpG content, distinct from the CpG-dependent binding of the

MLL, CFP1, and DNMT1CXXC domains (Allen et al., 2006; Prad-

han et al., 2008; Xu et al., 2011a).

In both Tet3 CXXC-ACGT and Tet3 CXXC-CmCGG complex

structures, the main chain carbonyl oxygen of residue His90

forms a hydrogen bond with the target cytosine, whereas the

side chain of His90 forms another hydrogen bond with the

complementary guanine (Figures 5E, 5G, S5A and S5C). In

the Tet3 CXXC-ACGT complex structure, residues Gln91 and

Ser89 form hydrogen bonds with the guanine-cytosine base

pair following the target cytosine-guanine base pair (Figures 5F

and S5B). In contrast, in the Tet3 CXXC-CmCGG complex struc-

ture, methylation of C6 introduces steric clashes with the side

chain of Gln91 and causes the side chain of Gln91 to become

partially disordered. As a result, Ser89 flips peptide plane and
Cell 151, 1200–1213, December 7, 2012 ª2012 Elsevier Inc. 1207
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Figure 5. The Tet3 CXXC Domain Specifically Recognizes Cytosine through a Conserved Residue His90

(A and C) Crystal structures of the Tet3 CXXC domain in complex with ACGT DNA (50-GCCAACGTTGGC-30) (A) or CmCGGDNA (50-GCCACmCGGTGGC-30) (C)
in cartoon (left) and electrostatic representations (right), respectively. The double-stranded DNA sequence is shown in the middle of each corresponding panel.
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loses its hydrogen bond interaction with DNA (Figures 5H

and S5D). These data provide structural explanations for the

binding to CmCGG DNA and the slight binding preference

for CpG compared to CpH DNAs (H = A, T, C, or 5mC).

Substituting the target cytosine with any other nucleotide or

5mC would introduce steric clashes with His90 (Figure S5E),

consistent with the undetectable binding of the Tet3 CXXC

domain to ATATDNA (Figure 4E). To determine the role of residue

His90 of Tet3, which is conserved among all Tet CXXC domains

(Figure S4A), we generated the Tet3 CXXC H90A mutant and

tested its DNA binding activities by ITC assay. As expected, the

Tet3 CXXC H90A mutant loses its DNA binding abilities (Table

S1, 14–15), supporting an essential role of His90 in DNA binding.

To further understand the novel DNA binding property of the

Tet3 CXXC domain, we superimposed the complex structures

of the Tet3 and CFP1 CXXC domains (Xu et al., 2011a) (Fig-

ure S6A). Although the Tet3 CXXC domain adopts a similar fold

to that of the CFP1 CXXC domain, the loop region preceding

His90 of Tet3 is dramatically different from that of CFP1 (Fig-

ure S6A). In the CFP1 CXXC domain, Asp189 forms three

hydrogen bonds with the backbone of Lys198, Ile199, and

Arg200, making the loop very rigid and only allowing CpG

binding (Xu et al., 2011a). Notably, this Asp residue is highly

conserved in the CXXC domains of CFP1, MLL, DNMT1, and

KDM2A (Figure S4A). However, the corresponding loop between

the a3 and a4 helices of the Tet3 CXXC domain is much shorter

andmore flexible due to lack of hydrogen bonds seen in the rigid

loop of the CFP1 CXXC domain (Figure S6A). Therefore, the

shorter and less rigid loop of the Tet3 CXXC domain can accom-

modate other nucleotides besides G, such as T, C, A, or 5mC,

following the target C, which confers cytosine-specific instead

of CpG-specific binding property. In addition, we also observe

that the Tet3 CXXC domain binds to TCGA andmCCGGDNA oli-

gos (Table S1, 2 and 9) with slightly weaker binding affinities

compared to other CpG DNA oligos (Table S1, 1, 3 and 4).

Although the methyl group of thymine or 5mC does not cause

any steric clash with the Tet3 CXXC domain, the hydrophobic

methyl group points to the solvent and no residues in the Tet3

CXXC domain can recognize and stabilize it, which is not ener-

getically favorable (Figures S6B–S6E). Taken together, the Tet3

CXXC domain binds to cytosine-containing DNA with a slight

preference for a G following the target cytosine and modestly

disfavoring a T or mC preceding the target cytosine.

Both 5mC Hydroxylase Activity and CXXC Domain-
Mediated Specific DNA Binding Are Required for Tet3
Function in Target Gene Regulation and Embryonic
Development
Having defined the regulation of 5mC/5hmC status at Tet3 target

gene promoters by the 5mC hydroxylase activity and the unique

DNAbinding properties of the Tet3 CXXCdomain, we next deter-
(B and D) Detailed interactions between the Tet3 CXXC domain and ACGT DNA

bridge interaction; olive arrow, hydrogen bond interaction; yellow arrow, electros

(E and F) Detailed interactions between the Tet3 CXXC domain (blue cartoon) and

(G and H) Detailed interactions between the Tet3 CXXC domain (blue cartoon) and

cartoon).

See also Figures S5 and S6.
mined the role of these two functional domains in Tet3 function.

We generated wild-type (xtTet3), CXXC-deleted (xtTet3DCXXC),

His90-to-Ala (xtTet3H90A), and iron binding site-disrupted cata-

lytically inactive (xtTet3DHD) xtTet3 expression constructs (Fig-

ure 6A). We confirm that both the wild-type and mutant xtTet3

proteins are properly expressed and localized to the nucleus

(Figures S7A and S7B) and that the 5mC hydroxylase activity is

retained in xtTet3DCXXC and xtTet3H90A but not in xtTet3DHD

(Figure S7B). We also performed ChIP-qPCR assays to compare

the occupancy of wild-type and mutant Tet3 proteins at target

gene promoters. Both the CXXCdomain deletion andH90A point

mutation abolish the occupancy of mutant proteins at target

gene promoters (Figures 6B and S7C), suggesting an essential

role of the CXXC domain-mediated DNA binding in Tet3 target-

ing to specific genes. Importantly, although both xtTet3 and

xtTet3DHD exhibit similar occupancy, coinjection of xtTet3, but

not xtTet3DHD, significantly rescues the decreased 5hmC levels

caused by Tet3 depletion at target gene promoters including the

rx gene promoter (Figure S7D), suggesting that the enzymatic

activity of Tet3 is primarily responsible for the dynamic regulation

of 5hmC at its target genes.

We next used these constructs to determine which domain(s)

are critical for Tet3 functions in vivo. We first employed a func-

tional domain rescue approach to interrogate the role of Tet3

catalytic domain using pax6 gene expression as a readout. The

expression of pax6 is completely rescued in 79% of xtTet3 coin-

jected embryos, whereas the complete rescue effect of xtTet3

DHD coinjection only reaches 37%, significantly lower than that

of xtTet3 coinjection (p < 0.01) (Figure 6C). These results are

corroborated by phenotypic rescues. Only 25% of embryos are

completely rescuedby xtTet3DHDcoinjection, againsignificantly

lower than that of xtTet3coinjection, inwhich62%arecompletely

rescued (p < 0.01) (Figure 6D). Thus, these data suggest that the

5mC hydroxylase activity of Tet3 not only controls the dynamics

of 5mC/5hmC at target gene promoters but is also required for

target gene regulation and biological function in early embryonic

development. Next, we employed the same strategy to examine

the importance of the CXXC domain/His90-mediated specific

DNA binding in Tet3 function. Strikingly, xtTet3 H90A or xtTet3

DCXXC coinjection shows no rescue effects on the inhibited

pax6 expression or developmental phenotypes caused by Tet3

depletion (Figure 6C and 6D), highlighting an essential role of

the CXXC domain-mediated DNA binding in Tet3 function in

target gene regulation and embryonic development.

DISCUSSION

In this study, we report that Xenopus Tet3 is a new class of tran-

scription regulator playing an essential role in early eye and

neural development by directly regulating a set of key genes crit-

ical for these developmental processes. We also uncover that
(B) or between the Tet3 CXXC domain and CmCGG DNA (D). Red arrow, salt

tatic interaction.

the target CG pair (E) or the following GC pair (F) in the ACGT DNA (red cartoon).

the target CG pair (G) or the followingmCG pairs (H) in the CmCGGDNA (green
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C

Group Complete 
defect 

Partial  
defect Normal Total Note

1. uninjected 0% (n=0) 0% (n=0) 100% (n=183) 183
2. Control MO 0% (n=0) 0% (n=0) 100% (n=192) 192
3. xlTet3 MOs 85% (n=171) 11% (n=23) 4% (n=7) 201
4. xlTet3 MOs/xtTet3 20% (n=38) 18% (n=36) 62% (n=121) 195 **
5. xlTet3 MOs/xtTet3∆CXXC 80% (n=148) 12% (n=22) 8% (n=15) 185 #
6. xlTet3 MOs/xtTet3∆HD 39% (n=73) 36% (n=68) 25% (n=48) 189 **, #
7. xlTet3 MOs/xtTet3H90A 80% (n=151) 14% (n=27) 6% (n=12) 190 #

Phenotype rescue

pax6 gene expression rescue

desserppuSpuorG Partially 
suppressed Normal Total Note

1. Control MO 0% (n=0) 0% (n=0) 100% (n=31) 53
2. xlTet3 MOs 96% (n=53) 0% (n=0) 4% (n=2) 55
3. xlTet3 MOs/xtTet3 7% (n=4) 14% (n=8) 79% (n=44) 56 **
4. xlTet3 MOs/xtTet3∆CXXC 92% (n=50) 4% (n=2) 4% (n=2) 54 #
5. xlTet3 MOs/xtTet3∆HD 40% (n=21) 23% (n=12) 37% (n=19) 52 **, #
6. xlTet3 MOs/xtTet3H90A 93% (n=52) 2% (n=1) 5% (n=3) 52 #
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Figure 6. Both 5mC Hydroxylase Activity and the CXXC Domain Are Important for Tet3 Function

(A) Schematic representation of xtTet3 mutants.

(B) The CXXC domain deletion disrupts Tet3 occupancy at specific gene promoters by ChIP-qPCR assay. Data are presented as mean ± SEM (n = 3). *p < 0.05.

(C) Summarized results of five independent pax6 expression rescue experiments. ‘‘Suppressed’’ means significantly suppressed pax6 expression in posterior

and anterior neural plates; ‘‘Partially suppressed’’ means pax6 expression is detected but not intact in posterior and anterior neural plates; ‘‘Normal’’ means intact

pax6 expression in posterior and anterior neural plates. **p < 0.01 compared to xlTet3 MOs, # p < 0.01 compared to xlTet3 MOs/xtTet3.
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the dynamic regulation of 5mC/5hmC status at target gene

promoters is an important mechanism underlying Tet3-mediated

target gene regulation during embryonic development. The Tet3

CXXC domain-mediated specific DNA binding is essential for

targeting Tet3 to its target genes, thus, providing another layer

of regulation on the transcription of Tet3 target genes. Our find-

ings support a molecular model of Tet3 action in target gene

regulation that involves Tet3 binding to unmethylated cytosines

(with a slight preference for CpG content) at target gene pro-

moters through its CXXC domain and its intrinsic 5mC hydroxy-

lase activity converting adjacent 5mC to 5hmC, which is an inter-

mediate for further DNA demethylation (Figure 6E). Recruitment

to a specific gene promoter and subsequent conversion of 5mC

to 5hmC cooperatively activate the expression of Tet3 target

genes, including those identified key developmental genes, to

ensure normal and precisely regulated embryogenesis. Inactiva-

tion of either one of these functional domains therefore will have

adverse impact on Tet3 function. Notably, our data also show

that the catalytically inactive Tet3 mutant retains partial rescue

effects in vivo, suggesting potential enzymatic activity-indepen-

dent mechanisms, such as recruiting or interacting with other

transcription factors, may also contribute to the full function of

Tet3 in gene regulation (Figure 6E). Indeed, TET3 forms a stable

complex with several critical transcription factors and histone

modifiers (data not shown). It has also been shown that an

enzymatic activity-independent mechanism is involved in gene

regulation by Tet1 inmouse ES cells (Williams et al., 2011). More-

over, it has been suggested that 5hmC is a stable epigenetic

mark that participates in regulating gene expression through

unidentified mechanisms such as recruiting unidentified 5hmC

specific ‘‘readers’’ (Branco et al., 2012; Matarese et al., 2011).

Thus, this model does not exclude the possibility that Tet3 and

5hmC may participate in target gene regulation through this

yet to be identified regulatory circuit.

Unlikewell-characterizedDNAmethylation (5mC) andDNMTs,

themechanism bywhich 5hmC and the enzymatic activity of TET

proteins contribute to gene regulation has been elusive. Our find-

ings here offer a biologicalmodel demonstrating that thedynamic

regulation of 5mC/5hmC by the Tet family of 5mC hydroxylases

has an important role in gene regulation during early eye and

neural development.We show that Tet3 is an active 5mChydrox-

ylase highly expressed in the region of the developing brain, eye,

and spinal cord in Xenopus embryos. As exemplified by rx and

pax6, ourdataclearly show thatTet3 targetgeneshavesignificant

alterations in 5hmCstatus at their promoters after Tet3 depletion.

Importantly, 5hmC level alterations and dysregulated gene ex-

pression can be completely rescued by wild-type Tet3. Yet the

rescue effect by the catalytically inactive Tet3 mutant is signifi-

cantly impaired, highlighting the importance of 5mC hydroxylase

activity in Tet3 function. Furthermore, consistent with the eye
(D) Summarized results of five independent phenotypic rescue experiments. ‘‘P

‘‘Complete defect’’ means abnormal head structure and no eye. **p < 0.01 comp

(E) A model of Tet3 action in gene transcription regulation. The Tet3 CXXC doma

motifs with a slight preference for G at ‘‘Y’’ position and amild disfavor for T or 5mC

Then, the 5mC hydroxylase activity of Tet3 converts adjacent 5mC to 5hmC, an in

CD: catalytic domain. Please refer to the related text for more details.

See also Figure S7.
developmental phenotypes inXenopus, we find that homozygous

deletion of the Tet3 catalytic domain in pure B6 genetic back-

ground mice (Gu et al., 2011) results in eye-related phenotypes

including the eyelid open at birth (EOB) phenotype (data not

shown), suggesting an evolutionally conserved function in eye

development from vertebrate to mammals and the critical role

of the 5mC hydroxylase activity in Tet3 function. Taken together,

our study clearly indicates that precise regulation of thedynamics

ofDNAmodification status at specificgene loci byTet3-mediated

conversionof 5mC to5hmC is an important andconservedepige-

netic mechanism for target gene regulation.

How epigenetic enzymes are targeted and/or confined to their

functional sites is a fundamental question in understanding the

mechanism underlying epigenetic transcription regulation. In

this study, our biochemical characterizations reveal that the

Tet3 CXXC domain binds to DNA in a cytosine-dependent

manner with a slight preference for CpG dinucleotides, distinct

from the CpG-dependent binding of other well-characterized

CXXC domains. We also notice that the DNA binding property

of the Tet3 CXXC domain is different from that of the TET1

CXXC domain that binds to unmodified C or 5mC- or 5hmC-

modified CpG-rich DNA (Xu et al., 2011b), suggesting that Tet1

and Tet3 may have different functions in gene regulation besides

their distinct expression patterns during early embryonic devel-

opment (Tan and Shi, 2012). Moreover, our genome-wide

mapping and de novo motif analyses of the TET3 CXXC domain

binding sites strongly suggest that the TET3 CXXC domain

selectively binds to several consensus sequences, therefore

offering a mechanism for targeting Tet3 to its target genes.

Finally, the crystal structure analysis of the Tet3 CXXC domain

in complex with DNA provides the following structural mecha-

nisms underlying its novel DNA binding ability and specificity.

(1) It reveals that the major binding force of the Tet3 CXXC

domain to CmCGG DNA is through the specific interaction

between residue His90 and the unmethylated cytosine, which

explains why the Tet3 CXXC domain can still bind to partially

methylated DNA, as long as there is an unmethylated cytosine

available in the target sequence; (2) it explains the slight binding

preference of the Tet3 CXXC domain for CpG compared to CpH

(H = A, T, C, or 5mC) and the modest disfavor for a T or 5mC

preceding the target C, suggesting that sequences flanking the

target C contribute to the overall binding affinity and specificity

of the Tet3 CXXC domain.

The importance of this CXXC domain-mediated specific DNA

binding activity of Tet3 is further demonstrated in our functional

studies using the Tet3 mutants with the CXXC domain deletion

(DCXXC) or H90A point mutation. These mutants lose the

specific association with Tet3 target gene promoters and func-

tional rescue abilities in vivo. Taken together, our study reports

a novel DNA binding property and functionality of the CXXC
artial defect’’ means mild abnormal head structure, small eyes or one eye;

ared to xlTet3 MOs, # p < 0.01 compared to xlTet3 MOs/xtTet3.

in specifically binds to unmodified cytosine (underlined)-containing sequence

at ‘‘X’’ position, targeting Tet3 to the promoter of target developmental genes.

termediate for further DNA demethylation, thus activates the gene expression.
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domain that is essential for Tet3 function both in gene regulation

and embryonic development. It not only provides a key mecha-

nistic layer of Tet3-mediated target gene regulation but also

significantly advances our current understanding of the molec-

ular and biological function of the Tet family CXXC domains.

Noteworthy, even though the CXXC domain is essential for tar-

geting Tet3 to specific genomic regions, we do not exclude the

involvement of other potential cellular mechanisms for targeting

or recruiting Tet3 to its functional sites. We favor the hypothesis

that Tet3 is likely in complex with many other cellular factors

including sequence-specific DNA binding transcription factors

and cofactors, to execute its molecular, cellular, and biological

functions. Therefore, the associated transcription factors may

in part coordinate with the Tet3 CXXC domain and enzymatic

activity and contribute to the overall mechanism of action of

Tet3 in gene regulation and embryonic development.

EXPERIMENTAL PROCEDURES

Embryo Manipulation and Microinjection

X. laevis eggs were artificially fertilized with testis homogenate and cultivated in

0.13 MMR as previously described (Sakano et al., 2010). Capped synthetic

mRNAswere generated by in vitro transcription with sp6 polymerase. Embryos

were transferred to 3% Ficoll 400 in 0.13 MMR and injected embryos were

cultured in 0.13 MMR until the desired stage. For phenotype experiments,

80 ng of xlTet3 MOs (40ng of each xlTet3 MO) or control MO were injected

into two dorsal blastomeres of 4-cell stage embryos. For phenotype rescue

experiments, 1 ng of mRNA was coinjected with 80 ng of xlTet3 MOs into two

dorsal blastomeres of 4-cell stage embryos. For pax6, rx, six3, sox2, otx2,

sox9, snail, tubb2b, and ngn2 in situ hybridization experiments, 160 ng of xlTet3

MOsorcontrolMOwere injected intoonedorsalblastomereof each4-cell stage

embryo. Because the expression of shh and ptc-1 is on themidline, for shh and

ptc-1 in situ hybridization experiments, two dorsal blastomeres of each 4-cell

stageembryowere injectedwith160ngof xlTet3MOsor controlMO. In all injec-

tion studies, 200 pg of nucb-gal RNA were coinjected as the injection tracer.

Crystallization

Each pair of single-stranded DNAs was mixed with a molar ratio of 1:1 and

annealed to form double-stranded DNAs. Before cocrystallization, purified

xtTet3 CXXC protein was mixed with different DNAs in a molar ratio of 1:1.2.

Crystals of xtTet3 CXXC in complex with ACGT DNA (GCCAACGTTGGC)

were obtained via sitting drop vapor diffusion; 1.0 ml of complex was mixed

with 1.0 ml of well solution containing 0.1 M HEPES (pH 7.5), 0.2 M NaCl,

30% PEG 1500, against 800 ml of reservoir buffer at 18�C. Crystals grow to

a mountable size in 3 days. Crystals of xtTet3 CXXC in complex with CmCGG

DNA (GCCACmCGGTGGC) were obtained in a similar way in the buffer con-

taining 0.1 M HEPES (pH 7.5), 0.2 M NaCl, 30% PEG 1500, 5% MPD. Both

crystals were flash-frozen in liquid nitrogen directly without cryoprotectant.

ACCESSION NUMBERS

The sequences of Tet3 genes have been deposited into GeneBank under the

accession numbers of HQ220209 (human TET3), HQ423151 (mouse Tet3),

HQ220207, and HQ220208 (X. laevis Tet3), respectively. The structures of

Tet3 CXXC-DNA complexes have been deposited in the Protein Data Bank

under accession number 4HP1 and 4HP3. The TET3 CXXC GST pull-down

sequencing data have been deposited in GEO database under the accession

number GSE41551.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and four tables and can be foundwith this article online at http://dx.doi.

org/10.1016/j.cell.2012.11.014.
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the paternal genome upon fertilization involves genome-wide oxidation of

5-methylcytosine. Proc. Natl. Acad. Sci. USA 108, 3642–3647.

http://dx.doi.org/10.1016/j.cell.2012.11.014
http://dx.doi.org/10.1016/j.cell.2012.11.014


Ito, S., D’Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C., and Zhang, Y.

(2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal

and inner cell mass specification. Nature 466, 1129–1133.

Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and

Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcyto-

sine and 5-carboxylcytosine. Science 333, 1300–1303.

Koh, K.P., Yabuuchi, A., Rao, S., Huang, Y., Cunniff, K., Nardone, J., Laiho, A.,

Tahiliani, M., Sommer, C.A., Mostoslavsky, G., et al. (2011). Tet1 and Tet2

regulate 5-hydroxymethylcytosine production and cell lineage specification

in mouse embryonic stem cells. Cell Stem Cell 8, 200–213.

Langemeijer, S.M., Kuiper, R.P., Berends, M., Knops, R., Aslanyan, M.G.,

Massop, M., Stevens-Linders, E., van Hoogen, P., van Kessel, A.G., Ray-

makers, R.A., et al. (2009). Acquired mutations in TET2 are common in myelo-

dysplastic syndromes. Nat. Genet. 41, 838–842.

Lian, C.G., Xu, Y., Ceol, C., Wu, F., Larson, A., Dresser, K., Xu, W., Tan, L., Hu,

Y., Zhan, Q., et al. (2012). Loss of 5-hydroxymethylcytosine is an epigenetic

hallmark of melanoma. Cell 150, 1135–1146.

Matarese, F., Carrillo-de Santa Pau, E., and Stunnenberg, H.G. (2011).

5-Hydroxymethylcytosine: a new kid on the epigenetic block? Mol. Syst.

Biol. 7, 562.

Moran-Crusio, K., Reavie, L., Shih, A., Abdel-Wahab, O., Ndiaye-Lobry, D.,

Lobry, C., Figueroa, M.E., Vasanthakumar, A., Patel, J., Zhao, X., et al.

(2011). Tet2 loss leads to increased hematopoietic stem cell self-renewal

and myeloid transformation. Cancer Cell 20, 11–24.

Pradhan, M., Estève, P.-O., Chin, H.G., Samaranayke, M., Kim, G.-D., and

Pradhan, S. (2008). CXXC domain of human DNMT1 is essential for enzymatic

activity. Biochemistry 47, 10000–10009.
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