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SUMMARY

Activation-induced cytidine deaminase (AID) initiates
both somatic hypermutation (SHM) for antibody af-
finity maturation and DNA breakage for antibody
class switch recombination (CSR) via transcription-
dependent cytidine deamination of single-stranded
DNA targets. Though largely specific for immuno-
globulin genes, AID also acts on a limited set of off-
targets, generating oncogenic translocations and
mutations that contribute to B cell lymphoma. How
AID is recruited to off-targets has been a long-stand-
ing mystery. Based on deep GRO-seq studies of
mouse and human B lineage cells activated for CSR
or SHM, we report that most robust AID off-target
translocations occur within highly focal regions of
target genes in which sense and antisense transcrip-
tion converge. Moreover, we found that such AID-
targeting ‘‘convergent’’ transcription arises from
antisense transcription that emanates from super-
enhancers within sense transcribed gene bodies.
Our findings provide an explanation for AID off-tar-
geting to a small subset of mostly lineage-specific
genes in activated B cells.

INTRODUCTION

The B cell antigen receptor (BCR) is comprised of immunoglob-

ulin (Ig) heavy (IgH) and light (IgL) chains. In response to antigen

activation, B lymphocytes in peripheral lymphoid organs un-

dergo somatic hypermutation (SHM) and IgH class switch

recombination (CSR) and ultimately secrete their BCR as an anti-
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body. SHM diversifies antibody repertoires by introducing high-

frequency mutations into IgH and IgL variable region exons (Di

Noia and Neuberger, 2007). SHM occurs in germinal centers

(GCs) of peripheral lymphoid tissues, where B cells are selected

for mutations that generate BCRs with increased antigen affinity

(Victora and Nussenzweig, 2012). IgH CSR involves generation

and joining of IgH locus DSBs in switch (S) regions that precede

various sets of IgH CH exons (CHs) to replace the initially ex-

pressed CH with a downstream CH, thereby producing anti-

bodies with different effector functions (Matthews et al., 2014).

Both SHM and CSR are initiated by activation-induced cytidine

deaminase (AID) (Muramatsu et al., 2000), which deaminates

cytosine to uridine on single-stranded DNA (ssDNA) (Di Noia

and Neuberger, 2007). Mismatches created by these deami-

nated cytidines are processed into mutations or DSBs during

SHM and CSR, respectively, through a process that employs ac-

tivities of normal base excision or mismatch repair pathways (Di

Noia and Neuberger, 2007).

Within target sequences, AID cytidine deamination focuses on

3–4 bp ‘‘SHM’’ motifs that are greatly enriched in S regions and in

portions of variable region exons that encode antigen-binding

sites (Di Noia and Neuberger, 2007). Transcription is required

for AID targeting during SHM and CSR (Alt et al., 2013; Storb,

2014). In this regard, SHM of V(D)J exons in GC B cells begins

�150 bp downstream of the transcription start site (TSS) and ta-

pers off 1–2 kb downstream (Liu and Schatz, 2009). Likewise,

each CH has a promoter upstream of the S region that upon in-

duction by external signals generates transcription through the

S region and, thereby, targets AID (Matthews et al., 2014).Mouse

and human S regions also have a highly G-rich nontemplate

strand that upon transcription forms stable R-loops that provide

ssDNA to augment AID targeting (Matthews et al., 2014; Alt et al.,

2013). RNA polymerase II (Pol II) has been implicated in directing

AID to Ig gene SHM and CSR targets through a transcription
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coupled mechanism (Storb, 2014) that involves AID association

with the Spt5 transcription cofactor in the context of Pol II stalling

(Pavri et al., 2010). R loops or other aspects of repetitive S region

structure may augment AID access by promoting Pol II stalling

(Rajagopal et al., 2009; Wang et al., 2009). Once AID is recruited

to Ig targets, replication protein A (RPA) and the RNA exosome

RNA degradation complex contribute to generating requisite

ssDNA substrates (Basu et al., 2011; Matthews et al., 2014; Pe-

fanis et al., 2014).

Beyond Ig gene targets, AID initiates recurrent mutations or

DSBs in a small subset of non-Ig genes collectively termed AID

‘‘off-target’’ genes (Pasqualucci et al., 2001; Chiarle et al.,

2011; Klein et al., 2011; Liu et al., 2008). Off-target AID activity

promotes translocations between Ig loci and cellular oncogenes,

as well as SHMs of oncogenes associated with B cell lym-

phomas (Alt et al., 2013; Küppers and Dalla-Favera, 2001). Iden-

tification of AID off-targets has been facilitated by genome-wide

translocation cloning methods (Chiarle et al., 2011; Klein et al.,

2011) and other large-scale approaches (Liu et al., 2008; Ya-

mane et al., 2011). In general, AID activity occurs at much lower

levels on off-targets than on Ig genes (Liu and Schatz, 2009; Ya-

mane et al., 2011; Chiarle et al., 2011; Klein et al., 2011), likely

due to specialized AID-targeting features of the latter. AID off-

target sequences are not enriched in AID hotspot motifs relative

to the genome in general (Duke et al., 2013). Consistent with a

role for transcription, AID off-target activity is most abundant

on transcribed genes downstream of their TSSs (Pasqualucci

et al., 2001; Liu et al., 2008; Chiarle et al., 2011; Klein et al.,

2011). However, transcription per se is not sufficient to target

AID, as most transcribed genes are not AID off-targets (Alt

et al., 2013; Liu and Schatz, 2009). Next-generation sequencing

studies revealed unexpected transcriptional features, including

divergent sense and antisense transcription at TSSs (Wu and

Sharp, 2013; Adelman and Lis, 2012) and frequent promoter

proximal Pol II pausing (Adelman and Lis, 2012). But, divergent

transcription (DivT) from TSSs occurs in over half of all genes

and generally does not map directly to sites of AID off-target ac-

tivity (Chiarle et al., 2011; see below). Likewise, transcriptional

pausing alone cannot explain AID off-targeting, because more

than 30% of transcribed genes have paused Pol II (Adelman

and Lis, 2012). Thus, mechanisms that lead to recurrent AID tar-

geting may arise from previously unrecognized transcriptional or

epigenetic determinants (Alt et al., 2013).

Global run-on sequencing (GRO-seq) detects nascent tran-

scripts generated by transcriptionally engagedRNApolymerases

(Core et al., 2008). GRO-seq revealed that a large fraction of in-

tergenic regions are transcribed, with a subset emanating from

transcriptional enhancers (Wang et al., 2011). Enhancers are

sequence-defined, cis-regulatory elements that influence target

gene expression irrespective of orientation (Levine et al., 2014).

Both enhancers within genes (intragenic) and intergenic en-

hancers may regulate target promoters locally and over long

distances (Levine et al., 2014). Active enhancer sequences are

commonly transcribed by RNA Pol II generating so-called

‘‘enhancer RNAs’’ (eRNAs), and transcription arising from en-

hancers is often divergent, with both sense and antisense tran-

scription emanating from enhancer elements (Natoli and Andrau,

2012; Wang et al., 2011). Various regulatory functions have been
C

ascribed to eRNAs and other noncoding RNAs (Lam et al., 2014),

however,muchof noncodingRNAbiology is not fully understood.

Enhancers are comprised of discrete or clustered transcription

factor binding sequences. A common feature of active en-

hancers is chromatin that is characteristically modified by acet-

ylation (e.g., histone 3 lysine 27; H3K27Ac) andmethylation (e.g.,

histone 3 lysine 4 mono-methylation; H3K4me1) (Creyghton

et al., 2010). An unexpected asymmetry in the regional allocation

of enhancer factors and enrichment for enhancer marks within

and unique to each mammalian cell type studied revealed a sub-

set of so-called super-enhancers (SEs) that feature clusters of

hyperacetylated and actively transcribed enhancers that, on

average, are 10-fold longer than other ‘‘typical’’ enhancers

(Whyte et al., 2013; Lovén et al., 2013). Like locus control

regions, SEs regulate genes involved in specialized cellular func-

tion (Parker et al., 2013) and are found within or adjacent to line-

age-specifying transcription factor genes (Whyte et al., 2013;

Hnisz et al., 2013). In cancer, SEs frequently enforce oncogene

expression (Lovén et al., 2013) and, thereby, contribute to tumor

pathogenesis. For example, translocations that juxtapose c-myc

to the IgH 30 regulatory region, a known SE (Delmore et al., 2011;

Chapuy et al., 2013), promote B cell lymphoma by activating

c-myc over long distances (Gostissa et al., 2009). In this context,

selectively blocking SE activity with bromodomain and extra-ter-

minal domain (BET) inhibitors is a promising cancer therapeutic

strategy (Delmore et al., 2011; Lovén et al., 2013; Chapuy

et al., 2013).

Here, we report that the majority of detectable AID off-target

activity in a variety of mouse and human lymphoid or nonlym-

phoid cell types occurs within focal regions of overlapping

sense/antisense transcription within intragenic SEs.

RESULTS

Deep GRO-Seq Transcription Profiles of Naive, GC,
and CSR-Activated B Cells
To elucidate transcriptional features that influence AID targeting

genome-wide, we applied GRO-seq to splenic naive, GC, and

CSR-activated B cells at much greater depth than done previ-

ously. Naive splenic B cells were purified (Figure S1A available

online) and then cultured in the presence of aCD40 plus inter-

leukin-4 (IL4) for 60 hr to stimulate AID induction and CSR to

IgG1 and IgE (Figure S1A). Splenic GC B cells were purified

from sheep red blood cell immunized mice (Figure S1A) and

confirmed to be >90% pure (Figures S1B–S1D). Three indepen-

dent GRO-seq biological replicates were performed for each cell

type and gave highly reproducible results (Figure S1E). Tran-

scription profiles of over 20,000 genes revealed distinct (but

overlapping) gene expression patterns for each cell type that

were further classified by gene ontology terms (Figure S1G; Ta-

ble S1). As expected (Core et al., 2008; Chiarle et al., 2011),

GRO-seq revealed divergent sense and antisense transcription

at TSSs of over 50% of the genes in each of the three cell types

(Figures 1 and S1F). In-depth examination of sense transcription

profiles of several ‘‘signature’’ genes illustrates the specificity of

purified cell populations. For example, Aicda sense transcription

reflects AID protein expression in the three cell types, with high

levels in GC B cells and activated B cells; but none detectable
ell 159, 1538–1548, December 18, 2014 ª2014 Elsevier Inc. 1539



Figure 1. GRO-Seq Profiles of Naive,

Germinal Center, and CSR-Activated B Cells

GRO-seq profiles of four representative genes are

shown for different B cell types. The y axis in-

dicates GRO-seq counts normalized to number of

reads per million. Gene sense and antisense

transcription are displayed in blue and red,

respectively. Gene exons are illustrated by

squares along gene bodies at the top of each

panel. Arrows indicate TSSs and direction of

sense transcription. Genome coordinates (mm9/

NCBI37) are labeled at the bottom. All the profiles

were generated from merged data of three inde-

pendent experiments, which individually showed

similar patterns.

See also Figure S1 and Table S1.
in naive B cells (Figure 1). In contrast, several GC B cell-specific

genes, including SLIP-GC (Richter et al., 2009) and Bcl6 (Basso

and Dalla-Favera, 2010), had high sense transcription through

their gene bodies in GCB cells, but not in naive or CSR-activated

B cells (Figure 1). Finally, Bcl2, which is expressed in CSR-acti-

vated but not in GCB cells (Liu et al., 1991), showed correspond-

ing sense transcription patterns (Figure 1).

While IgHCH exonswere appropriately transcribed in the three

cell populations (Figure S1H), transcription within core S regions

could not be mapped due to their abundant repetitive sequence

(Pavri et al., 2010). All analyzed mice had a clonal knock-in VH(D)

JH exon (VHB1-8) (Sonoda et al., 1997), which showed active

transcription at its upstream regions in all three cell types (Fig-

ure S1H). However, detailed analyses of transcription through

the body of the VHB1-8 allele was not possible (Figure S1H);

because it uses a member of the VHJ558 family, which contains

many highly related, unexpressed upstream copies (Brodeur and

Riblet, 1984).

Enhanced Identification of AID Off-Target Sites in
aCD40 plus IL4-Stimulated B Cells
We developed high-throughput genome-wide translocation

sequencing (HTGTS) tomap, at the nucleotide level, translocation

junctions between bait I-SceI nuclease generated DSBs in c-myc

and other endogenous DSBs (Chiarle et al., 2011). Identification

of DSB hotspots from a fixed chromosomal site is facilitated by

ability of recurrent DSBs to dominate genome-wide translocation

landscapes due to cellular heterogeneity in 3D genome organiza-

tion (Zhang et al., 2012). Beyond expected Ig locus targets, our

prior HTGTS studies revealed 15 non-Ig genes that are recurrent

targets of AID-initiated DSBs and translocations (Chiarle et al.,

2011) (Table S2). To increase the depth of HTGTS AID off-target

data and allow better comparison with deeper GRO-seq tran-

scription profiles, we further employed amodified, more sensitive

HTGTS approach (Frock et al., 2015), coupled with ataxia telan-

giectasia mutated (ATM)-deficient CSR-activated B cells (Hu

et al., 2014). This combined approach identified highly clustered

AID-dependent off-target DSB sites within 36 additional genes

(Figure S2A; Extended Experimental Procedures; Table S2).

Overall, we now have identified 51 highly focal AID off-target
1540 Cell 159, 1538–1548, December 18, 2014 ª2014 Elsevier Inc.
DSB/translocation sites in aCD40 plus IL4-stimulated B cells (Ta-

ble S2). Nearly 90% of the new off-target set was validated in WT

B cells by HTGTS and/or by an independent method (Qian et al.,

2014 in this issue ofCell) (ExtendedExperimental Procedures). As

previously found for our more limited set of AID off-target sites

(Chiarle et al., 2011), many of our new AID off-targets occurred

within genes that have divergently transcribed TSSs; but the focal

sites of HTGTS junctions within them were downstream of and

distinct from divergently transcribed TSSs (Chiarle et al., 2011)

(Figure 2). Thus, we were compelled to search for other factors

that promote such focal AID off-targeting. As we found no enrich-

ment for known AID targeting motifs in these regions (Extended

Experimental Procedures), we focused our search on potentially

novel transcriptional and/or epigenetic features and, as

described below, identified both.

AID Off-Targets Cluster at Sense/Antisense
Transcription Sites Downstream of the TSS
With our present, substantially deeper, GRO-seq data sets, we

further analyzed potential relationships between sense/anti-

sense transcription and AID off-target sites in aCD40 plus IL4-

activated B cells. Initially, we visually inspected three linked

AID off-target sites, including sites in the previously character-

ized IL4r and IL21r genes (Chiarle et al., 2011) and a newly iden-

tified site in Nsmce1. In each of these linked genes, HTGTS

translocation junctions were tightly clustered in a region down-

stream of the TSS (Figure 2A). Moreover, in each, translocation

clusters fell within sites that exhibited enriched, overlapping

sense and antisense transcription to which we heretofore apply

the term ‘‘convergent transcription’’ (ConvT) (Figures 2A and 3A).

We also found a robust AID off-target site within the AID gene

(Aicda) itself (Figure 2B; Table S2). Aicda is associated with

five enhancers that lie upstream, within, or downstream of the

gene body (Kieffer-Kwon et al., 2013; Matthews et al., 2014)

(Figure 2B). Four of these enhancers showed both sense and

antisense transcription, likely at least in part in the context of

generating eRNAs (Natoli and Andrau, 2012) (Figure 2B).

Notably, the major focal cluster of AID off-target sites in and

around Aicda fell within a ConvT region associated with

enhancer 4 downstream of the TSS (Figure 2B).
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Figure 2. AID Off-Target Translocations

Cluster within Regions of ConvT and SEs

(A) HTGTS, GRO-seq, ConvT, and H3K27Ac pro-

files in the vicinity of Nsmce1, IL4ra, and IL21r

genes. Top: HTGTS junctions are indicated by

black bars. Middle (GRO-seq): GRO-seq-deter-

mined sense and antisense transcription is dis-

played in blue and red, respectively. ConvT regions

are shown as green bars at the bottom with the

darkest shades corresponding to highest levels of

ConvT as calculated by the geometric means of

sense and antisense transcription reads (see

Extended Experimental Procedures). A scale bar is

shown below the ConvT label. Bottom (H3K27Ac

and SE): the H3K27Ac ChIP-seq profile is shown in

orange and identified SEs depicted below with

orange bars. Nsmce1 TSS is manually curated

based on GRO-seq profile.

(B) Profile of AICDA gene. Known AICDA en-

hancers are represented as E1–E5 with solid

circles. To represent lower level transcription of

certain enhancers, a smaller scale is used for E1–

E3. Genome coordinates (mm9/NCBI37) are at the

bottom of each panel. Other details are the same

as for (A).

See also Figure S2 and Table S2.
Genome-wide Association of ConvT andAIDOff-Targets
in CSR-Activated B Cells
Visual inspection of AID off-target sites in additional genes re-

vealed similar coincidence of regions of robust sense/antisense

(S/AS) ConvT downstream of the TSS with focal clusters of

AID-dependent off-target translocations (see below, Figure S2),

leading us to examine this potentially striking association

genome-wide. While metagene profiles of GRO-seq data from

aCD40 plus IL4-activated B cells confirmed expected DivT at

many TSSs (Wu and Sharp, 2013), they did not reveal similarly

abundant convergent transcription (Figure S1F). Thus, at least

at robust levels, convergent transcription likely occurs in a

much smaller fraction of genes (Figure S1F). For further analyses,

we developed a computational pipeline to specifically identify

S/AS ConvT regions genome-wide using deep GRO-seq data

sets (Figure 3A; Extended Experimental Procedures). Strikingly,

among the 51 AID off-target genes, 48 (94%) had their highly

clustered AID off-target translocations within regions associated

with S/AS convergent transcription (Figure 3B). We randomly

sampled convergent transcription of regions, in the top three

transcription-level deciles, that were similar in size to those of

AID off-target regions and found a much lower association with

convergent transcription than for AID off-target regions (Fig-

ure S3A). This finding shows that AID off-targets are highly en-

riched at ConvT sites. Finally, concurrency between S/AS

convergent transcription and AID off-target translocations was

much higher in aCD40 plus IL4-activated B cells (94%) than in

naive (49%) or GC (63%) B cells, consistent the notion that not

all AID off-targets would be shared among three cell types with

overlapping, but clearly distinct, transcription profiles (Figures

3B and S3B; also see below).

To further examine the relationship between ConvT and AID

targeting, we calculated the geometric mean of GRO-seq sense
C

and antisense transcription reads in regions of interest to quantify

degree of convergent transcription (Extended Experimental

Procedures) and divided the values into deciles displayed by

different shades of green bars below the GRO-seq profiles (Fig-

ures 2 andS2; dark green is highest and light green lowest levels).

For most AID off-targets, HTGTS junctions clustered in regions

with the most abundant ConvT (Figures 2 and S2). Furthermore,

ConvT associated with AID off-targets was substantially greater

than that at other genomic loci (Figure S3C). In addition, within

AID off-target ConvT regions, the highest density of transloca-

tions occurred at sites with the most robust ConvT (Figure 3C).

We further evaluated this relationship by determining how varia-

tions in sequencing depth influenced identification of ConvT.

Even with our current very deep sequencing depth (>306 million

mappable reads),we did not reach saturation of the total length of

ConvT regions (Figure S3D), consistent with (at least low-level)

pervasive transcription of the genome (Jacquier, 2009). In

contrast, we reached saturation of the concurrency of AID off-tar-

gets with ConvT regions at �40% of our current GRO-seq depth

(120 million mappable reads; Figure S3D), confirming that most

AID off-target DSB/translocation regions detectable by HTGTS

in aCD40 plus IL4-stimulated B cells are associated with rela-

tively strong convergent transcription (Figures 3C and S3D).

Convergent Transcription at AID Off-Targets Arises
from Intragenic SEs
ConvT of overlapping genes was first described in bacterio-

phage lambda (Ward and Murray, 1979) and has been associ-

ated with transcriptional gene silencing (Gullerova and Proud-

foot, 2012) and RNA Pol II collision (Hobson et al., 2012).

Considering that intragenic antisense transcription associated

with AID-off target sequences may arise from enhancer ele-

ments, we explored whether intragenic SEs were enriched for
ell 159, 1538–1548, December 18, 2014 ª2014 Elsevier Inc. 1541



A B C Figure 3. AID Off-Targets Correlate with

ConvT in CSR-Activated B Cells

(A) Pipeline for identification of ConvT regions. Raw

GRO-seq reads were aligned to the genome and

transcripts were identified de novo. A ‘‘ConvT’’ re-

gion was defined as sense and antisense tran-

scription overlaps that were longer than 100 bp.

See Extended Experimental Procedures for details.

(B) The percentage of the 51 AID off-target regions

identified in CSR-activated B cells that were

associated with ConvT regions in the three listed

cell populations is the indicated by the green bars.

(C) Numbers of translocation junctions per kb (y

axis) plotted against ConvT levels (x axis) of all

individual AID off-target regions except Pvt1 (see

Extended Experimental Procedures). Pearson’s

correlation coefficient and two-tailed p value are

indicated.

See also Figure S3.
AID off-targets compared to typical enhancers. Enhancer re-

gions were identified by triplicate chromatin immunoprecipita-

tion sequencing (ChIP-seq) using an antibody to the active

enhancer histone mark H3K27Ac in chromatin purified from

aCD40 plus IL4-stimulated B cells (Figure S4A). SEs were called

for regions of asymmetric, high enrichment for H3K27Ac, as pre-

viously described (Whyte et al., 2013). We found the Aicda locus

to be largely encompassed within a SE in CSR-activated B cells

with robust H3K27Ac signals over E1, E2, E3, and E4 (Figure 2B),

the active enhancers in CSR-activated B cells (Kieffer-Kwon

et al., 2013;Matthews et al., 2014). Notably, E4 also corresponds

in position to a cluster of HTGTS junctions and robust ConvT

(Figure 2B). Likewise, the Nsmce1, IL4ra, Il21r, and many other

AID off-target genes were each associated with SEs and again

the peak of HTGTS junctions and regions of robust ConvT

occurred within regions of robust H3K27Ac SE signals (Figures

2A and S2).

We performed an unbiased association analysis between the

51 AID off-targets identified by HTGTS and the non-Ig 448 SEs

that we identified in aCD40 plus IL4-activated B cells. These

studies revealed that 50 of the 51 AID off-target genes in these

cells are associated with SEs and that the discrete translocation

clusters were within SEs (Figure 4A). Notably, the single AID off-

target region not within a SE (under the current cutoff for SE iden-

tification; Extended Experimental Procedures) was in a typical

enhancer (Table S2). In addition, 47 (92%) of the AID off-target

translocation clusters were within regions of SEs that overlap

with annotated gene bodies (Figure 4A). The other three HTGTS

off-target translocation clusters occurred within transcribed re-

gions of SEs that have not yet been assigned to a target gene

(Table S3). As a comparison, random samplings of transcribed

genomic regions corresponding in size to those of AID off-tar-

gets yielded at most three (6%) that overlapped with SEs. Inde-

pendent analysis of the relationship between HTGTS hotspots

and H3K27Ac ChIP-seq using an orthogonal computational

method identified 41 AID off-targets within SE domains (Figures

S4C and S4D), including additional off-targets that correlated

with robust ConvT (Figure S2; Table S2; Extended Experimental

Procedures). Finally, within a given AID off-target region, translo-

cation junction frequency highly correlated with H3K27Ac abun-
1542 Cell 159, 1538–1548, December 18, 2014 ª2014 Elsevier Inc.
dance (Figure S4B). In this regard, SEs associated with AID

off-target sequences were more enriched for H3K27Ac, com-

pared to other SEs (Figure 4B). Thus, the relative activity of

SEs, estimated by regional histone acetylation, correlates with

the frequency of AID off-targets within them.

Themajority (30 of 51) of the AID off-target genes had a SE that

overlapped with the region just downstream of the TSS that was

enriched in AID off-targets, as represented by the CD83 gene

(Figures 4C and S2). In addition, a number (12 of 51) of the AID

targets were relatively small genes, such as Pim1, that were

locatedwithin large SEs and, correspondingly, off-target translo-

cations tended to span the gene body (Figures 4D and S2).

Several AID off-target genes (3 of 51) were large genes, such

as Pvt1, the well-known translocation target downstream of c-

myc, in which translocations clustered within SEs that occurred

inside the gene body (Figure 4E). Finally, the remainder (6 of 51)

fell into a heterogeneous set in which AID off-target transloca-

tions clustered into convergently transcribed SE domains that,

for various reasons were not yet assignable to a specific gene

(e.g., Gpr183; Figure S2C).

Intragenic SEs with Robust ConvT Represent the Most
Common AID Off-Targets
Nearly all AID off-target clusters identified by HTGTS in aCD40

plus IL4-activated B cells are associated with SEs; yet, only a

subset of SEs are AID off-targets. Motivated by the putative

contribution of S/AS eRNA transcription to translocation fre-

quency, we compared regions of AID off-target genes where

SEs overlapwith the gene body (intragenic SEs) to regions where

SEs lie outside the gene body (intergenic SEs) and to regions of

gene bodies that do not overlap with SEs (nonoverlapping gene

region), for translocation density (translocations per 1 kb; Fig-

ure 5A) and for ConvT levels (geometric means; Figure 5A). We

observed that translocation junction density and ConvT levels

in AID off-target regions are highly enriched among intragenic

SEs compared to both intergenic SEs and nonoverlapping

gene regions (Figure 5A; upper). Despite this enrichment, only

�10% of all intragenic SEs in the CSR-activated B cells are

AID off-targets (Figure 4A; Table S3) and other SE-gene overlap

regions exist that are not enriched in AID off-target activity
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B Figure 4. AIDOff-Target ConvT Arising from

Intragenic SEs

(A) Venn diagram showing the number of AID off-

target regions that overlapped with total non-Ig

SEs (448) and with non-Ig SEs overlapping with

Gene Bodies (376).

(B) H3K27Ac signals of AID off-target-associated

SEs (orange)andtheotherSEs (cyan)areplotted.AID

off-target-associated SEs had a stronger H3K27Ac

signal (Mann-Whitney U test, p value = 0.004).

For C, D, and E, representative AID off-targets are

shown based on the SE location indicated in the di-

agram at the top of each panel.

(C) Many AID targets locate downstream of TSSs

where SEs and genes overlap. CD83 is shown as an

example.

(D) For some relatively small genes located within a

larger SE, nearly the whole gene body is an AID off-

target, as shown for Pim1.

(E) SEs inside of very long genes, like Pvt1 also pro-

vide focal AID off-targets. HTGTS, GRO-seq, and

H3K27Ac/SE data is illustrated for each panel as

described in Figure 2A. The relatively high HTGTS

background in Pvt1 results from long resections

downstreamof theHTGTSbaitDSB inc-myc (Chiarle

et al., 2011).

See also Figure S4 and Table S3.
(Figure 5B; upper). Comparison of ConvT levels in each of the

three regions outlined above (Figures 5A and 5B, lower panels)

revealed that intragenic SEs featuring high levels of ConvT

were more frequently AID off-target regions than intragenic

SEs lacking high-level S/AS transcription (Figures 5A and 5B,

lower panels).

Finally, to further address why some SEs are AID targets and

others are not, we grouped all intragenic SEs into deciles based

on low to high convergent transcription (Figure 5C). We then

calculated the percentage of the combined 228 unique AID off-

targets revealed by HTGTS (this study) and by an independent

RPA-ChIP study (Qian et al., 2014) in CSR-activated B cells in

each decile. Strikingly, 60% of all SEs within the top two deciles

(highest convergent transcription) were sites of clustered AID off-

target DSBs and/or translocations. Comparative analysis of SEs

in these top two deciles that were AID off-targets versus those

that were not did not reveal any obvious sequence differences

(e.g., GC content or WRCH and AGCT motifs density). However,

ConvT regions associated with SEs in the top two deciles that

were AID off-targets were significantly longer than those that

were not (Figure 5D). These studies provide strong evidence

that ConvT from intergeneic SEs generates amajor class of focal

AID off-target regions.
Cell 159, 1538–1548, De
AID Off-Targets in GC B Cells
Associate with Convergent
Transcription
Prior studies of a selected set of AID off-

targets divided them into three groups in

GC B cells based on mutation frequency

in Ung/Msh2 double-deficient B cells

versus AID-deficient B cells, including 15

group A genes that had high levels of mu-
tation, 21 group B genes that had substantially lower levels, and

47 group C genes that were infrequently mutated (Liu et al.,

2008). Our GRO-seq analyses of GC B cells revealed that

�70% of the highly mutated group A gene off-target regions,

including Pim1, Ebf1, CD83, and Ocab, overlapped with ConvT

regions (Figures 6A and 6C) that were well above simulated

background levels expected for the most highly transcribed

genes (Figure S5A). In contrast, regions reported to have low

level mutation frequency (groups B and C genes) showed low

correlations with convergent transcription (33% and 32%,

respectively; Figure 6A) that were not above simulated back-

ground concurrency (Figure S5A). Finally, of the five group A

genes that did not associate directly with convergent transcrip-

tion, SHMs in four occurred quite proximal to ConvT regions (Fig-

ure S5C). We identified SEs in GC B cells via H3K27Ac ChIP-seq

analyses.We found that someSEswere shared betweenGCand

CSR-activated B cells, while many others were found only in one

or the other cell type (Figure S5B; Table S3), consistent with the

overlapping but distinct GRO-seq profiles of these two cell types

(Figure S3B; Table S1). Of the highly mutated group A gene re-

gions, nearly half were associated with SEs (Figure 6B) and all

were associated with H3K27Ac peaks (Figures 6C and S5C).

For group B and C gene regions, concurrencies with SE were
cember 18, 2014 ª2014 Elsevier Inc. 1543



A

C D

B Figure 5. Convergently Transcribed Intra-

genic SEs Are Preferred AID Off-Targets

(A) Upper and lower: each SE associated with an

AID off-target region and its overlapping gene

body were divided into intergenic SEs, intragenic

SEs, and nonoverlapping gene regions as

described in the text and outlined at the top of the

panels. For all AID off-targets, the number of

translocation junctions per kb in each of the three

regions (upper panel) and convergent transcription

levels of each region (lower panel) are plotted.

(B) Upper and lower: each SE that was not asso-

ciated with an AID off-target region and its over-

lapping gene body were divided into regions as

described for (A) and translocation junction

numbers per kb (upper panel) and convergent

transcription levels (lower panel) plotted for each

region. A Mann-Whitney U test was performed to

compare two classifications of SEs for convergent

transcription ratios within each of the three re-

gions; the only significant difference found was

that the AID-off-target intragenic SEs has a

significantly higher convergent transcription ratio

than non-AID off-target intragenic SEs (p value =

1.1 3 10�7).

(C) All intragenic SEs were grouped into deciles

based on the ConvT levels. The fraction of AID off-

targets in each decile is indicated by gray bar.

(D) Intragenic SEs in the top two deciles are divided

into those associated with AID off-targets (60%)

and those that are not (40%). Length of ConvT

regions was plotted and found to be significantly

longer in the AID off-target-associated intragenic

SEs (Mann-Whitney U test, p value = 0.01).
20% and 2%, respectively. Thus, under physiological conditions

in the GC, AID often targets convergently transcribed intragenic

SEs or, occasionally, typical enhancers.

Convergently Transcribed Intragenic SEs Target AID in
Non-B Lymphoid and Human Cells
Ectopic manipulation of endogenous SEs and ConvT regions to

assess affects on AID targeting would be problematic because

these regions are the actual AID targets. As an alternative

approach, we performed GRO-seq on mouse embryonic fibro-

blasts (MEFs) in which ectopic AID expression revealed a set

of 29 AID off-target sequences, most of which were novel

(Qian et al., 2014) (Table S4). Remarkably, we found that the

great majority of these clustered MEF translocations occurred

in ConvT regions (Figures 7A and S6A) that also were mostly

also associated with SEs (Qian et al., 2014) (Table S4). We also

tested the generality of our ConvT findings with respect to AID
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off-target events observed during SHM

in the human Ramos Burkitt’s lymphoma

cell line. Strikingly, the majority of 54 AID

off-targets identified in this line again

were associated with SEs (Qian et al.,

2014), and we found that most were clus-

tered in regions of strong ConvT (Figures

7B and S6B; Table S4). As discussed
below, we have also extended our findings to human B cell lym-

phoma translocations.

DISCUSSION

Off-Target AID Activity in Convergently Transcribed
Intragenic SEs
We report that most AID off-target DSBs and translocations in

CSR-activated B cells occur in and around ConvT regions within

genes (Figure 3). Furthermore, most of these AID off-target sites

in CSR-activated B cells occurred within portions of genes that

overlapped with enhancers, the vast majority of which were

SEs (Figure 4). Together, these findings implicate a role for SEs

within genes in generating robust ConvT and, thereby, in

creating susceptibility to AID off-target activity. Notably, we

also found that the majority of the regions with highest levels of

off-target AID activity in GC B cells or in human Ramos cells



A

B

C Figure 6. ConvT and SEs Correlate with AID

Off-Targets in GC B Cells

Regions of genes containing SHMs in Ung/Msh2

double deficient GC B cells were analyzed for

convergent transcription as determined by GRO-

seq and outlined in Figure 3. GC AID off-target

group A, B, and C genes include gene regions with

high, intermediate, and low frequencies of AID-

dependent mutations, respectively (Liu et al.,

2008).

(A) Concurrency of group A, B, and C gene ConvT

regions in GC B cells.

(B) Venn diagram showing the number of group A

gene regions that overlapped with SEs and ConvT.

(C) Examples of group A gene regions are shown.

Approximately 2–3 kb regions around the TSSs of

the indicated genes are shown. The ‘‘SHM’’ dia-

gram at the top of each subpanel indicates regions

of these genes included in the prior SHM analyses

(Liu et al., 2008) with a black bar. GRO-seq profile,

ConvT, H3K27Ac ChIP-seq profile, and SEs are

shown as in Figure 2A.

See also Figure S5 and Table S3.
undergoing SHM are in focal areas of target genes that contain

SEs and undergo robust ConvT (Figures 6 and 7). Even in non-

lymphoid cells (MEFs) in which AID was ectopically expressed,

we found that the great majority of 29 AID-dependent transloca-

tion clusters occurred in regions that underwent robust ConvT

(Figure 7), confirming our findings for a totally different set of

genes in a different cell type. Together, these finding strongly

support a mechanistic link between AID off-target sequences

and S/AS convergent transcription. A role for SEs in AID off-tar-

geting also has been revealed by a separate study (Qian et al.,

2014).

Potential Mechanisms by which SEs and ConvT
Contribute to AID Off-Target Activity
RNA polymerase II (Pol II) transcriptional pausing or stalling con-

tributes to directing AID to Ig gene SHM and CSR targets via a

process thought to involve AID association with the Spt5 tran-

scription cofactor (Pavri et al., 2010; Storb, 2014). Ig gene V(D)

J exons and S regions likely evolved specific features to promote

AID targeting (Alt et al., 2013). As AID off-target genes lack

consistent sequence features of Ig gene AID targets (Duke

et al., 2013), the question of how they attract AID has been

long-standing. Our current findings implicate a mechanism that

answers this question for the majority of AID off-targets (Fig-

ure 7C). Thus, most robust AID off-target DSBs, SHMs, and

translocations occur within intragenic SEs, where we find ConvT

that includes sense gene transcription and antisense transcrip-

tion emanating from the SEs. In such AID off-target regions, anti-

sense eRNA transcription generally occurs at lower levels than

sense transcription (Figures 2 and 4). Thus, most genic sense

transcription likely proceeds unimpaired to generate full length

mRNAs with only a small fraction encountering antisense tran-

scription, consistent with ability of cells to generate products

of these genes (Storb, 2014). Prior yeast studies showed that,
C

within convergently transcribed sequences, Pol II elongation

complexes proceeding in opposite directions cannot bypass

each other, and consequential Pol II collisions lead to stalling

or stopping (Hobson et al., 2012). We propose that such Pol II

stalling due to convergent transcription leads to AID recruitment

and further downstream events similar to those implicated in

specialized Ig gene targets (Figure 7C) (Pavri et al., 2010; Basu

et al., 2011). Beyond AID recruitment, convergent transcription

could also generate ssDNA substrates for AID. Thus, following

Pol II collisions, RNA exosome or other RNase activities could

remove nascent transcripts (Basu et al., 2011; Pefanis et al.,

2014; Andersson et al., 2014) to provide local ssDNA targets

(Figure 7C).

Implications of AIDOff-Target Activity for AIDOn-Target
Ig Gene Activity
AID activity generally occurs at much higher levels on special-

ized Ig gene targets than on off-targets (Liu and Schatz, 2009;

Yamane et al., 2011; Chiarle et al., 2011; Klein et al., 2011).

Whether or not the ConvT mechanism we propose for off-tar-

gets can be applied to on-targets remains to be determined.

In CSR-activated B cells, we observed ConvT within the very

50 Sm region (Figure S1H). However, the transcription profile

of core S regions cannot be obtained due to poor mappability

of repetitive S regions (Pavri et al., 2010). Clearly, S regions

evolved specialized structural features that facilitate AID

recruitment and access to the ssDNA substrates (Alt et al.,

2013). However, mechanisms by which AID specifically targets

Ig variable region exons for SHM in GCs may be more relevant.

In this regard, a long-standing paradox involves that fact that

SHM of variable region exons occurs only in GC B cells and

not in CSR-activated B cells, even though the variable region

exons are transcribed in both (Liu and Schatz, 2009). Our

preliminary analyses reveal potentially higher relative levels of
ell 159, 1538–1548, December 18, 2014 ª2014 Elsevier Inc. 1545



A

C

B Figure 7. Model of AID Targeting at Off-

Targets

(A) Venn diagram showing the number of AID off-

target regions that overlapped with SEs and ConvT

in MEFs with ectopic AID overexpression.

(B) Venn diagram showing number of AID off-target

regions that overlapped with SEs and ConvT in

Ramos Human Burkitt’s lymphoma cell line.

(C) Model of AID ‘‘off-targeting.’’ Left: at AID off-

targets, SEs overlap with gene bodies and this

combination generates regions of sense/antisense

convergent transcription due to sense gene tran-

scription encountering the enhancer antisense

transcription. Right: stalled RNA polymerase with

the help of Spt5 recruits AID and generates regions

of ssDNA. RNA Exosome or other RNases degrade

the aborted sense and antisense transcripts and

works together with RPA to help AID access to the

ssDNA substrates. Some aspects adapted from

Basu et al. (2011). See Discussion for other details.

See also Figure S6 and Table S4.
antisense to sense transcription on the downstream edge of the

KI V(D)J (VB1-8) exon in GC versus naive or CSR-activated B

cells (Figure S1H). However, as we cannot map transcription

within the main body of the KI VB1-8 due to many highly related

unexpressed, upstream VHJ558 sequences, final testing of this

potential mechanism for specific AID targeting of V(D)J exons

will require additional mouse models that eliminate sequence

redundancies.

Role of SE Transcription in Genome Instability and
Cancer
SEs are important for establishment of cell lineage and expres-

sion of cell lineage-specific genes (Whyte et al., 2013; Hnisz

et al., 2013). Correspondingly, SEs are associated frequently

with genes highly expressed in activated B cells (Table S3).

Many of the 51 genes that we have shown to have SEs that

are AID off-targets are B cell-specific genes and a notably

high proportion (25%) are known oncogenes (Figure S2B). In

this regard, many human B cell lymphomas contain transloca-

tions or mutations of oncogenes that are initiated by off-target

AID activity (Alt et al., 2013; Küppers and Dalla Favera, 2001.

Reminiscent of the AID off-targeting pattern in mouse CSR-

activated and GC B cells, human B cell oncogene translocation

sites often occur downstream of TSSs (Migliazza et al., 1995;

Pasqualucci et al., 2001; Shen et al., 1998). Indeed, we have

analyzed SEs in human tonsil B cells (enriched in GC B cells)

and found that many oncogene translocations in human B cell

lymphoma, including those in c-myc, Pax5, Bcl6, Bcl2, Pim1,

Ocab, Lcp, and Bcl7a, occur in regions downstream of TSSs

where SEs overlap with gene bodies (Figure S6C). Thus,

beyond contributing to deregulated oncogene expression (Cha-

puy et al., 2013), our findings suggest that SEs may target on-

cogenes for translocations in B cell lymphoma. Finally, AID also
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has been implicated in genomic insta-

bility and translocations in cells beyond

those of the immune system (Lin et al.,

2009; Marusawa et al., 2011). Our MEF
studies suggest ConvT from SEs could play a role in such

settings.

EXPERIMENTAL PROCEDURES

B Cell Purification

Splenic naive B cells were purified from VHB1-8 heavy chain knock-in mice as

described (Cato et al., 2011). Naive B cells were activated with aCD40 plus IL4

for 60 hr to generate CSR-activated B cells. VHB1-8 knock-in mice were immu-

nizedwith 53 108 sheep red blood cells (SRBCs) for 9 days. Splenic GCB cells

were purified as described (Cato et al., 2011) (see Extended Experimental Pro-

cedures for details.) All animal experiments were performed under protocols

approved by the Institutional Animal Care and Use Committee of Boston Chil-

dren’s Hospital.

GRO-Seq and ChIP-Seq

GRO-seq (Core et al., 2008) and H3K27AcChIP-seq (Chapuy et al., 2013) were

performed as described. Three biological replicates of each mouse B cell type

were performed. Two biological replicates of mouse MEF experiments and

one biological replicate of Ramos experiments were performed.

AID Off-Targets

HTGTSwas performedwith aCD40 plus IL4 or RP105-activated ATM-deficient

CSR-activated B cells as described (Hu et al., 2014) and also with a new

HTGTS method (Frock et al., 2015). AID off-target coordinates were retrieved

via a new HTGTS pipeline (Frock et al., 2015) (see Extended Experimental Pro-

cedures for details).

Data Analysis

GRO-seq and ChIP-seq data sets were aligned using Bowtie software

(Langmead and Salzberg, 2012) to mouse genome build mm9/NCBI37 or

human genome build hg19/NCBI37. Uniquely mapped, nonredundant

sequence reads were retained. We used Homer software (Heinz et al.,

2010) to de novo identify transcripts from both strands of the genome in

the context of the GRO-seq data and considered broad sense/antisense

overlap regions (>100 bp) as ConvT regions. We used the MACS1.4 soft-

ware (Zhang et al., 2008) to identify regions of ChIP-seq enrichment over

background with a p value threshold of 10�5. We used ROSE software to



identify SEs (Whyte et al., 2013) (see Extended Experimental Procedures

for details).
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The Gene Expression Omnibus databank accession number for all deep
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G., Tang, Z., Mathé, E., Benner, C., et al. (2014). B cell super-enhancers and

regulatory clusters recruit AID tumorigenic activity. Cell 159. Published online

December 4, 2014. http://dx.doi.org/10.1016/j.cell.2014.11.013.

Rajagopal, D., Maul, R.W., Ghosh, A., Chakraborty, T., Khamlichi, A.A., Sen,

R., and Gearhart, P.J. (2009). Immunoglobulin switch mu sequence causes

RNA polymerase II accumulation and reduces dA hypermutation. J. Exp.

Med. 206, 1237–1244.

Richter, K., Brar, S., Ray, M., Pisitkun, P., Bolland, S., Verkoczy, L., and Diaz,

M. (2009). Speckled-like pattern in the germinal center (SLIP-GC), a nuclear

GTPase expressed in activation-induced deaminase-expressing lymphomas

and germinal center B cells. J. Biol. Chem. 284, 30652–30661.

Shen, H.M., Peters, A., Baron, B., Zhu, X., and Storb, U. (1998). Mutation of

BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig

genes. Science 280, 1750–1752.

Sonoda, E., Pewzner-Jung, Y., Schwers, S., Taki, S., Jung, S., Eilat, D., and

Rajewsky, K. (1997). B cell development under the condition of allelic inclusion.

Immunity 6, 225–233.

Storb, U. (2014). Why does somatic hypermutation by AID require transcription

of its target genes? Adv. Immunol. 122, 253–277.

Victora, G.D., and Nussenzweig, M.C. (2012). Germinal centers. Annu. Rev.

Immunol. 30, 429–457.

Wang, L., Wuerffel, R., Feldman, S., Khamlichi, A.A., and Kenter, A.L. (2009). S

region sequence, RNA polymerase II, and histone modifications create chro-

matin accessibility during class switch recombination. J. Exp. Med. 206,

1817–1830.

Wang, D., Garcia-Bassets, I., Benner, C., Li, W., Su, X., Zhou, Y., Qiu, J., Liu,

W., Kaikkonen, M.U., Ohgi, K.A., et al. (2011). Reprogramming transcription by

distinct classes of enhancers functionally defined by eRNA. Nature 474,

390–394.

Ward, D.F., and Murray, N.E. (1979). Convergent transcription in bacterio-

phage lambda: interference with gene expression. J. Mol. Biol. 133, 249–266.

Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H.,

Rahl, P.B., Lee, T.I., and Young, R.A. (2013). Master transcription factors and

mediator establish super-enhancers at key cell identity genes. Cell 153,

307–319.

Wu, X., and Sharp, P.A. (2013). Divergent transcription: a driving force for new

gene origination? Cell 155, 990–996.

Yamane, A., Resch, W., Kuo, N., Kuchen, S., Li, Z., Sun, H.W., Robbiani, D.F.,

McBride, K., Nussenzweig, M.C., and Casellas, R. (2011). Deep-sequencing

identification of the genomic targets of the cytidine deaminase AID and its

cofactor RPA in B lymphocytes. Nat. Immunol. 12, 62–69.

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E.,

Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008). Model-

based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

Zhang, Y., McCord, R.P., Ho, Y.J., Lajoie, B.R., Hildebrand, D.G., Simon, A.C.,

Becker, M.S., Alt, F.W., and Dekker, J. (2012). Spatial organization of the

mouse genome and its role in recurrent chromosomal translocations. Cell

148, 908–921.

http://dx.doi.org/10.1016/j.cell.2014.11.013

	Convergent Transcription at Intragenic Super-Enhancers Targets AID-Initiated Genomic Instability
	Introduction
	Results
	Deep GRO-Seq Transcription Profiles of Naive, GC, and CSR-Activated B Cells
	Enhanced Identification of AID Off-Target Sites in αCD40 plus IL4-Stimulated B Cells
	AID Off-Targets Cluster at Sense/Antisense Transcription Sites Downstream of the TSS
	Genome-wide Association of ConvT and AID Off-Targets in CSR-Activated B Cells
	Convergent Transcription at AID Off-Targets Arises from Intragenic SEs
	Intragenic SEs with Robust ConvT Represent the Most Common AID Off-Targets
	AID Off-Targets in GC B Cells Associate with Convergent Transcription
	Convergently Transcribed Intragenic SEs Target AID in Non-B Lymphoid and Human Cells

	Discussion
	Off-Target AID Activity in Convergently Transcribed Intragenic SEs
	Potential Mechanisms by which SEs and ConvT Contribute to AID Off-Target Activity
	Implications of AID Off-Target Activity for AID On-Target Ig Gene Activity
	Role of SE Transcription in Genome Instability and Cancer

	Experimental Procedures
	B Cell Purification
	GRO-Seq and ChIP-Seq
	AID Off-Targets
	Data Analysis

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References


