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Cancer immunogenomics originally was framed by research supporting the hypothesis that cancer
mutations generated novel peptides seen as ‘‘non-self’’ by the immune system. The search for
these ‘‘neoantigens’’ has been facilitated by the combination of new sequencing technologies,
specialized computational analyses, and HLA binding predictions that evaluate somatic alterations
in a cancer genome and interpret their ability to produce an immune-stimulatory peptide. The re-
sulting information can characterize a tumor’s neoantigen load, its cadre of infiltrating immune
cell types, the T or B cell receptor repertoire, and direct the design of a personalized therapeutic.
Brief History of Tumor-Specific Mutant Antigens and
Immunogenomics
The underpinnings of modern immunogenomics resulted from

hypotheses generated and tested by visionaries in cancer immu-

nology during the late 1980s through the 1990s. Their central

hypothesis was that cancer cells presented novel, tumor-spe-

cific (i.e., mutated) peptides on the cancer cell surface bound

by the patient’s HLA molecules. By virtue of this cell surface pre-

sentation, specific T cell immunity might be elicited to these

‘‘neoantigens.’’ Supporting evidence for this hypothesis was

demonstrated in cancers of non-viral origin (Old and Boyse,

1964; Foley, 1953; Prehn and Main, 1957). This foundational

work led to the identification and characterization of the role

of MHC proteins in antigen presentation (Babbitt et al., 1985;

Bjorkman et al., 1987). Concomitantly, methods to grow anti-

gen-specific cytolytic T lymphocytes (CTLs) in culture were

also developed (Cerottini et al., 1974; Gillis and Smith, 1977),

as were the molecular biology procedures to clone and express

gene products. Thierry Boon’s laboratory combined these new

methods to identify the first tumor specific antigen (TSA), a point

mutation in a protein called P91A (De Plaen et al., 1988). Subse-

quently, Hans Schreiber’s laboratory demonstrated that TSAs

also function as neoantigens using primary UV-induced mouse

tumors (Monach et al., 1995). Similarly, groups studying human

melanomas showed they could identify T cells in the peripheral

circulation that bind melanoma cells preferentially over normal

cells from the same patient (Dubey et al., 1997; Knuth et al.,

1984; Robbins et al., 1996; Van den Eynde et al., 1989). Shortly

thereafter, Boon’s laboratory cloned the first human TSA, called

MAGEA1 (van der Bruggen et al., 1991), and Sahin’s group

demonstrated an autologous antibody-based method to clone

and identify different human TSAs (Sahin et al., 1995). While

these foundational studies established supporting evidence for

the existence of tumor-specific peptide neoantigens, the lengthy

and painstaking nature of these processes was unlikely to scale

to clinical application for cancer patients.
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More recently, these limitations have been alleviated by the

application of new sequencing technologies and associated

computational data analysis approaches. These methods,

collectively referred to as ‘‘immunogenomics,’’ have improved

the facility with which individual cancers can be studied to pre-

dict their neoantigens for prognostic purposes or to inform

immunotherapeutic interventions. Complementary methods

have been developed to study the changes in the T cell reper-

toire, to characterize the gene expression signatures of the im-

mune cell types present in the tumor mass, and to design

personalized vaccines or adoptive cell transfer (ACT) therapies.

The now scalable nature of immunogenomic methods should

permit their widespread clinical application, although there

remain issues and challenges to be resolved. This primer will

highlight the specificmethods and describe the known strengths

and weaknesses in modern immunogenomics.

Somatic Mutations Generate Neoantigens
It has long been known that cancer is caused by alterations to

genomic DNA that impact protein functions, ultimately disrupt-

ing cellular control of pathways and resulting in the outgrowth

of a tumor mass. Methods using next generation sequencing

platforms generate data from tumor and normal DNA isolates

that, once aligned to the Human Reference Genome sequence,

can be interpreted to identify somatic alterations (Ley et al.,

2008). In practice, such analyses aim to identify DNA alterations

in known cancer genes, both oncogenes and tumor suppressors

that combine to transform the founder cell. For certain onco-

genes, identified mutations indicate therapeutic interventions

that may successfully halt the tumor cell growth. By contrast,

immunogenomic approaches aim to identify tumor-specific

DNA alterations that predict amino acid sequence changes in

all encoded proteins, and then evaluate their potential as neoan-

tigens. In practice, most TSAs identified to-date are highly

unique to each patient and generally do not involve known can-

cer genes.
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Hence, the widespread use of next-generation sequencing

(NGS) instrumentation has enabled immunogenomics, providing

a facile way to generate data to predict tumor-specific neoanti-

gens in a rapid, inexpensive and comprehensive manner (Gubin

et al., 2015). NGS technologies have rapidly evolved over

the past 10 years, resulting in dramatically increased amounts

of sequencing data produced per instrument run at ever-

decreasing costs (Mardis, 2017). In immunogenomics, since

the focus is protein-coding genes, solution hybridization-based

methods are used to select these sequences (‘‘exome’’) prior

to sequencing (Bainbridge et al., 2010; Gnirke et al., 2009;

Hodges et al., 2009). Importantly, the concomitant development

of advanced variant detection algorithms that identify different

classes of mutations from NGS data has enabled the identifica-

tion of all classes of somatic variation. Accurate detection of var-

iants in this setting is influenced by multiple factors, which are

presented here in detail.

One important consideration for somatic variant detection is

depth of coverage by NGS sequencing reads from the tumor.

In principle, since tumor samples include variable percentages

of normal cells, adjustments to the depth of NGS data generated

must be flexible to ensure that a sufficient representation of tu-

mor-derived sequence reads are obtained. Isolating DNA from

selected, tumor-rich areas of a biopsy or resection sample is

ideal, but not always possible, so average read depths of 300-

to 500-fold exome coverage are typically attempted to compen-

sate for the normal cell DNA-derived reads. A second reason for

high coverage of the tumor-derived DNA is to enable the evalu-

ation of founder clone versus subclonal mutations in the resulting

data. Here, we define founder mutations as the original set of

mutations present in the cell that transformed from normal to

neoplastic, whereas subclonal mutations occur as the daughter

cells of this founder acquire additional mutations during growth

of the tumor mass. Based on this definition, founder clone

mutations in diploid regions of the exome have a proportional

fraction of variant-containing sequencing reads (variant allele

fraction or VAF) that is around 50% (adjusted for normal DNA

contribution), since most somatic mutations are heterozygous.

In theory, neoantigens that result from founder clone mutations

should elicit a T cell response that targets all cancer cells rather

than the subset of tumor cells that would be targeted by T cell

response to subclonal neoantigens in the vaccine.

Equally important to appropriate coverage depth for accurate

prediction of variants is the algorithm or set of algorithms

used to identify variants from the NGS exome data. The factors

to consider here include the types of variants one wishes to

evaluate in neoantigen discovery. For example, single nucleo-

tide variants (point mutations) are easiest to predict with high ac-

curacy because reads containing a single variant are readily

aligned to their reference genome ‘‘match,’’ and because there

are a variety of different algorithms that also can detect low

VAF variants. Variant detection from NGS reads has been an

area of rapid development and there are many algorithms to

choose from, with variable performance, as has been evaluated

(Cornish and Guda, 2015; Ghoneim et al., 2014; Krøigård et al.,

2016). By contrast, variants resulting from insertion or deletion

of one or a few nucleotides (‘‘indels’’) are significantly more diffi-

cult to identify due to issues of read alignment by standard align-
ment algorithms, that lead often to lower coverage in these

regions for the variant-containing sequencing reads (Jiang

et al., 2012, 2015; Ratan et al., 2015). However, indels may be

important to immunogenomics efforts because they can intro-

duce frameshift mutations that result in highly divergent amino

acid sequences in the resulting protein and hence may produce

strong predicted neoantigens. Increased read lengths on NGS

platforms have improved indel detection, as has the use of

gapped alignment or split-read algorithms that are computation-

ally intensive but better able to align the indel-containing reads

to the reference genome. Assembly-based realignment ap-

proaches also have been developed to improve the precision

of indel variant detection (Mose et al., 2014; Narzisi et al., 2014).

Another type of somatic variation that can lead to highly

altered amino acid sequences, and as a result create a neoanti-

genic peptide, is a structural variant which fuses two protein-

coding sequences. These can result from inversion or deletion

of a chromosomal segment or from chromosomal transloca-

tions. Detecting these alterations from exome sequencing data

is quite challenging and error-prone, but RNA-based analysis

can identify the resulting fusion transcript (Li et al., 2011; Scol-

nick et al., 2015; Zhang et al., 2016a; Kumar et al., 2016) and

compare the predicted fusion sequence to NGS data from

DNA (whole genome or exome sequencing) to identify support-

ing evidence of the genomic event causing the fusion. Recently,

we adapted this approach for neoantigen prediction with a pro-

cess called IntegrateNEO, using the TMPRSS2-ERG fusions

common in prostate cancer to evaluate its ability to identify

fusion peptide neoantigens (Zhang et al., 2016b). RNaseq data

bring added value to immunogenomics efforts beyond the

detection of fusion peptides, as will be described later.

Once variant detection is completed, each variant is annotated

to predict the resulting amino acid change(s) that result from the

altered DNA sequence (if any). There are widely utilized compu-

tational tools such as Annovar and VEP available to produce the

translated peptides from the DNA data. The translated peptides

constitute one type of input data for the neoantigen prediction

software to calculate the class I or class II predicted binding af-

finities.

The second data input for neoantigen prediction are the HLA

haplotypes of the patient, also derived from exome data, since

these reagents capture the HLA gene loci. Heretofore, HLA

typing was performed using a PCR-based and Sanger

sequencing-based clinical assay. The repetitive nature of the

HLA genes requires a high-stringency assembly of these genes,

which can be achieved using the >500 bp read lengths from

Sanger data. Sequence analysis of these regions based on

hybrid capture-derived NGS reads, which are relatively short

(�100 bp), requires a stringent alignment of the read data to

the IMGT/HLA database (Robinson et al., 2001) using a haplo-

type-resolved algorithm to interpret the HLA class I and II haplo-

types. There now exist multiple algorithms for accomplishing

these data interpretations, including Polysolver (Shukla et al.,

2015), HLAMiner (Warren et al., 2012), and OptiType (Szolek

et al., 2014). Typically, one interprets the normal tissue-derived

exome data to obtain the HLA haplotypes. Clinical analysis of

these genes also should include repeating the alignment of the

tumor-derived exome data and identification of mutations in
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order to identify HLA alleles that are impacted by nonsense mu-

tations, deletions, or other similarly deleterious types of somatic

alterations that may influence the presence of that allele (Shukla

et al., 2015). Some algorithms also can use RNA-derived data to

interpret the HLA haplotypes (Warren et al., 2012).

Another critical component of identifying neoantigens is the

in silico prediction of HLA class I and II binding affinities for

specific peptides. These predictions are quite computationally

complex and require machine learning-based approaches to

establish models for the different types of binding site interac-

tions. In particular, each peptide interacts with the binding

pocket residues of the many different HLA proteins through the

amino acid side chains of specific residues. Therefore, the

binding affinity of any peptide is sequence-specific relative to

that patient’s HLA proteins, some of which may be common

and some rare. There also are differences in the binding of

peptides by class I or class II HLA that impact the precision

of neoantigen prediction, as described later. Finally, there is

considerable debate about an appropriate cutoff value for bind-

ing affinity in terms of what does or does not constitute a strong

neoantigen candidate (Duan et al., 2014)(Bassani-Sternberg

et al., 2016)

The initial approach to computational HLA binding predictions

utilized a neural network-based learningmethod developed from

a training set of experimentally derived binding affinities for class

I HLA proteins and different peptides. This effort resulted in an

HLA class I binding prediction software known as netMHC,

devised by researchers in the Center for Biological Sequence

Analysis at the Technical University of Denmark (Lundegaard

et al., 2008a, 2008b; Nielsen et al., 2003). The predictor has

improved over time with the availability of training datasets for

HLA proteins that are more rare in the population, although

calculated binding affinities for the most rare HLA alleles in hu-

mans remain less certain (Wang et al., 2010). An interim

approach to address rare HLA class I binding calculations was

PickPocket, which extrapolated from variants with known bind-

ing specificity to thosewithout existing experimental data (Zhang

et al., 2009). The most recent version is netMHCstabpan (Ras-

mussen et al., 2016), which uses a neural network approach

based on a dataset of stability values calculated for different

peptide-MHC-1 complexes, rather than their binding affinity

values, since the stability of their interaction has experimentally

been shown to be more strongly correlated to T cell immunoge-

nicity. Another early method developed to generate class I bind-

ing predictions was based on a stabilized matrix method (SMM)

algorithm developed by Peters and Sette (Peters and Sette,

2005). This approach models the sequence specificity of binding

processes as a means of predicting outcomes for untested se-

quences. SMM not only predicts HLA binding but also evaluates

peptide transport as a function of antigen presentation and pro-

teasomal cleavage with the TAP algorithm. Subsequent efforts

to develop new class I binding affinity prediction software have

included the use of combined support vector machine-based

(SVM) and random forest machine-learning approaches (Srivas-

tava et al., 2013), or combined the information obtained from

amino acid pairwise contact potentials and quantum topology

molecular similarity descriptors (Saethang et al., 2013) to better

model HLA class I peptide interactions.
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With the requisite information generated by NGS to call so-

matic variants and interpret their impact on protein sequences,

and to identify the HLA haplotypes specific to the patient, neoan-

tigen prediction software can be used to predict both the class I

and class II HLA binding affinities for each tumor-unique set of

peptides. Considerations and specifics for these prediction ap-

proaches are described in detail below. There are a number of

binding prediction software and associated immunogenomics

algorithms available at the Immune Epitope DataBase (IEDB)

analysis resource (http://tools.immuneepitope.org/main/) (Rob-

inson et al., 2013). The IEDB web interface permits the input

of peptide sequences for sequential evaluation by user-config-

ured steps using the software of choice to predict neoantigens.

Publicly available software pipelines also are available for

local download and computing of neoantigen predictions by

end-users, including pVAC-seq (https://github.com/griffithlab/

pVAC-Seq) and epidisco (https://github.com/hammerlab). An

overall workflow for the processes described above is shown

in Figure 1.

Class I Predictions

Approaches to predict HLA class I neoantigens typically begin

by parsing the tumor-specific peptides predicted from variant

calling as 21-mer peptides that encompass the variant amino

acid(s) placed as near to the center of the 21-mer as possible.

This is easiest to envisage for simple non-synonymous amino

acid substitutions, shown in Figure 2A, which then are tiled

across the variant-containing peptides to define a set of 8-mer

to 11mers to input for binding calculations, based on HLA

class I binding characteristics (Figure 2B). These peptide sets

are parsed along with their corresponding wild-type peptide

sequences as input data for consideration by neoantigen

prediction software, along with information about the HLA

class I haplotypes determined for the patient. The resulting list

of neoantigens can be quite extensive, depending upon the

numbers and types of input peptide sequences and the diversity

of the HLA haplotypes. Applying several criteria, if desired,

can winnow the numbers of neoantigens. One conventional

approach is to only consider variant peptides with a strong-

to intermediate-binding affinity (typically lower than 500 nM)

but this arbitrary cut-off is controversial because strong neoan-

tigens can have lower calculated affinities than actual. This

sometimes is due to the presence of a rare HLA haplotype, for

which the neural net software provides an inaccurate binding af-

finity prediction. Thus, for each altered locus, one can select the

candidate peptide with the single best binding affinity to each

corresponding HLA allele across all peptide lengths considered,

or proceed with all candidates for all HLA alleles to additional

filtering steps, as follows.

Three important additional filters should be applied to re-

move false positives, (1) RNA-based filtering to remove genes

with no evidence of expression, (2) filtering based on exome

data coverage depth at the variant loci, and (3) filtering based

on variant allele fraction (VAF)-based metrics. The RNA expres-

sion filter ensures that each peptide is supported by evidence

of RNA expression, wherein evidence of RNA expression is

considered a reasonable, but not absolute, proxy that the

gene is expressed in the tumor cell proteome. For the NGS

coverage filter, a minimum level of normal read coverage depth
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Figure 1. An Overall Workflow for Neoanti-

gen Discovery and Personalized Cancer

Vaccine Design
Starting from next-generation sequencing of
DNA exomes to compare tumor to normal DNA,
and of tumor RNA to evaluate gene expression,
this figure illustrates the steps outlined in the
primer to identify tumor-specific mutant antigens
(neoantigens) from NGS data, to evaluate the
neoantigens, and to design a personalized neo-
antigen vaccine.
is required to ensure there is sufficient sequencing data

coverage from the normal tissue (i.e., supports a true positive

somatic variant call). Finally, both DNA and RNA data should

be evaluated to ascertain the percentage of variant-containing

reads or variant allele fraction (VAF). As described earlier, this

criterion helps to inform the final list of neoantigen candidates

by providing information on whether a specific alteration is

shared across all tumor cells (i.e., in the founder clone) or is

subclonal, based on DNA sequencing data, and ensures that

a variant is expressed in the tumor RNA. The latter is especially

important in tumor types with a high mutation load such as

those with chemical or UV damage to DNA, since upward of

50% of mutations are typically not expressed in RNA (or protein

by inference) for these tumors. With these filtering steps

completed, a list of high confidence, predicted neoantigenic

peptides and the HLA class I proteins predicted to bind

them, their calculated binding affinity value(s), and the binding

affinity of the cognate wild-type peptide values can be parsed

for further consideration in vaccine design or other immunolog-

ical evaluations such as neoantigen burden. In the former case,

neoantigen predictions have been tested in clinical trials of

personalized vaccines, with demonstrated ability to elicit spe-
cific T cell responses (Schumacher

et al., 2014; Carreno et al., 2015; Tran

et al., 2014). In the latter approach, there

are demonstrated correlations between

neoantigen burden and the likelihood of

response to checkpoint blockade inhibi-

tion therapies (Le et al., 2015; Rizvi et al.,

2015; Snyder et al., 2014; Van Allen

et al., 2015), and a demonstration that

predicted neoantigens also are the epi-

topes targeted by checkpoint blockade

immunotherapies (Gubin et al., 2014).

Class II Predictions

HLA class II predictions are significantly

more difficult to generate with precision

due to the nature of the HLA class II

proteins. First, class II HLA proteins are

heterodimers of alpha and beta peptides

encoded by four different loci in the

human genome. Only one of these four

loci is not highly polymorphic (Robinson

et al., 2003), meaning there is extensive

HLA class II polymorphism in the general

population. This becomes somewhat less
complex if neoantigen predictions focus on the most frequently

expressed class II molecules (McKinney et al., 2013). Second,

certain peptides bind to multiple different HLA class II molecules

and are responsible for the majority of antigen-specific T cell re-

sponses. These so-called ‘‘promiscuous peptides’’ are difficult

to predict using computational approaches. Third, the HLA

class II binding groove is open on both ends, and although the

core binding motif is a 9-mer amino acid, variable length pep-

tides are allowed to bind. Many of the HLA-II polymorphic sites

comprise other regions of the binding groove outside the core

motif binding region, which allows the flanking amino acid se-

quences on either side of the motif sequence to influence its

binding affinity. As a result, binding affinities are difficult to

predict with a high degree of precision. Input data for MHC

class II binding predictions consist of 15-mer representa-

tives of each somatic neoantigen candidate peptide, along

with the patient’s HLA class II haplotypes. A cutoff binding

of <1,000 nM may be utilized to distinguish strong binders but

given the vagaries of binding affinity predictions described

above, this cutoff may not be appropriate. RNA expression

level has been identified as a critical filtering parameter for pre-

dicted class II neoantigen candidates, whereby those peptides
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Figure 2. Idealized Selection of Mutant-

Containing Peptides for Neoantigen Predic-

tion
(A) The localized peptides that tile across and
contain the mutated amino acid substitution are
identified and parsed into the neoantigen predic-
tion pipeline. Each peptide is considered for HLA
binding strength relative to its non-mutant (wild-
type) counterpart.
(B) Shown is the top scoring candidate peptide
that was selected across all specified k-mers and
between all HLA types that were input to the ne-
oantigen prediction pipeline.
corresponding to genes with higher relative expression values

from RNaseq data analysis are considered to be the strongest

candidates (Kreiter et al., 2015).

Computational predictions, considering the aforementioned

caveats for both class I and II, therefore only offer putative

neoantigen candidates that may be subject to a variety of er-

rors or sources of inaccuracy. In addition to what we already

have described, there are other challenges to accurate neoan-

tigen prediction. First, even though RNA evidence supports

a variant as being expressed, the most accurate evidence

of a peptide’s presence in the cell is identifying that pep-

tide from mass spectrometry-based proteomic data derived

from the specific tumor under study. Second, binding affinity

calculations are more accurate for the common class I HLA

haplotypes, less so for rarer haplotypes. Third, a significant

biological confounder of neoantigen discovery is our inability

to predict precisely which of the putative neoantigen peptides

will be processed in the tumor cell degradasome, then bound
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to and properly presented by HLA

molecules on the cell surface. This

critical component of T cell activation

must occur for the neoantigen to stimu-

late a specific immune response, yet it

is presently not possible to computa-

tionally predict the processing and

presentation of peptides by HLA. One

way to inform neoantigen prediction

methods is using experimental mea-

surements of T-cell-based immune re-

sponses to the predicted peptide epi-

topes. There are conventional methods

such as EliSpot (IFN-gamma release)

assays (Cole, 2005), flow cytometry-

based dextramer assays (Carreno

et al., 2015), and mass spectrometry-

based evaluation of HLA-bound pep-

tides (Gubin et al., 2014). However,

scalable, high-throughput methods are

in development at present and will

require time and testing.

Immune Repertoire Profiling
Cellular immune responses from T cells

and humoral immune responses from
B cells are stimulated by exposures to antigens, including path-

ogens, allergens, and neoantigens. V(D)J recombination in the

primary lymphoid organs creates the incredibly diverse and

unique repertoire of the hypervariable regions of B cell receptors

(BCR) and T cell receptors (TCR), and somatic hypermutations

contribute to additional BCR diversity (Figure 3). During B and

T cell development, self-antigens are presented to B and

T cells to select out self-reacting types, and to ensure only B

and T cells that recognize and attack foreign antigens are in

the circulation. T cells only recognize foreign proteins presented

on MHC, while B cells can also target foreign DNA, lipids, or car-

bohydrates. Upon recognition of foreign antigens and with the

presence of co-stimulatory molecules, B and T cells express

cell surface activation markers, attack foreign antigens, secrete

cytokines, stimulate each other, and proliferate (Pasternack,

1994). One goal of immunogenomic studies is to characterize

the repertoire of B and T cells in patients with cancer, especially

before and after immunotherapy-based interventions.



Figure 3. Structure and Diversity in the T

Cell Receptor
(A) The mature T cell heterodimer, consisting of
a- and b-subunit chains. The a subunit chains
consist of variable (V), joining (J), and constant
(C) regions, whereas the b subunit includes an
additional diversity (D) region.
(B) V-D-J recombination and post-transcriptional
processing of a TCR-b subunit chain.
DNA sequencing approaches have enabled the characteriza-

tion of immune repertoires (Pasternack 1994; Robins 2013). After

a pioneering study introduced the technique (Freeman et al.,

2009), a plethora of immune repertoire methods have been pub-

lished and commercial solutions are also available. Several

studies (Calis and Rosenberg, 2014; Hou et al., 2016; Yaari

and Kleinstein, 2015) have evaluated the experimental tech-

niques and practical advice needed for immune repertoire

profiling. Basically, multiplex PCR can amplify the recombined

V(D)J regions from either mRNA or DNA in the B or T cells. The

V(D)J, and most importantly, the variable complementarity-

determining region CDR3 sequences, and their respective

abundance can be resolved by high-throughput sequencing.

Paired-end sequencing with additional PCR primers in the

middle of the fragment permits full-length TCR repertoire

sequencing with short read NGS technology to resolve the V/J

pairing (Cole et al., 2016). One caveat to this approach is that

PCR biases and sequencing errors can falsely increase the total

repertoire with deeper sequencing coverage, so unique molecu-

lar identifier barcodes should be used to eliminate such artifacts

(Cole et al., 2016), although such an approach is presently only

available for RNA-based repertoire profiling.

Computational methods, as summarized in (Greiff et al.,

2015a, 2015b) are important components for the analysis, anno-

tation, and visualization of immune repertoires. To this end,

IMGT (Giudicelli et al., 1997) is the most widely cited immunoge-

netics database and provides many useful tools such as

V-QUEST and HighV-QUEST (Alamyar et al., 2012) as well as

statistical metrics (Aouinti et al., 2015) for the analysis and anno-

tation of immune repertoire data. VDJtools (Shugay et al., 2015)

is a comprehensive analysis framework for T cell and B cell

repertoire sequencing data. It includes MIXCR for fast alignment
and clonal type assembly (Bolotin et al.,

2015), MIGEC for removing duplicates

and combining barcodes (Shugay et al.,

2014), and VDJviz for visualization (Bag-

aev et al., 2016), and provides basic sta-

tistical analyses for characterizing and

comparing different immune repertoires.

The initial output from a repertoire

profiling analysis is a list of BCR/TCR

CDR3 sequences, sometimes including

the adjoining V and J sequences, each

followed by an abundance estimate.

This output allows samples to be

compared and clustered, if desired. For

example, common CDR3 sequences

that are shared among individuals indi-
cate BCR/TCR clones that recognize common antigens such

as herpes or common cold viruses. In comparison, CDR3 clones

that are rare among patients but are abundant within a tumor,

and more importantly for BCR lineage-related CDR3s with small

numbers of mutations, indicate T/B cell recognition of the patient

tumor-specific antigens (Saul et al., 2016). Repertoire profiles

from individuals with similar ethnic backgrounds, lifestyles, or

environmental exposures are often clustered. Two independent

metrics, diversity (often measured by the Shannon entropy), and

evenness (indicative of the degree of clonal expansion), have

been proposed as important characteristics of immune reper-

toires (Greiff et al., 2015b). Since V(D)J recombination in TCR

only occurs in children, TCR diversity generally declines with

age. In contrast, V(D)J recombination in BCR occurs throughout

life although at reduced levels in adults, and activated BCR un-

dergoes somatic hypermutation to improve the antibody affinity

to the recognized antigen, so the BCR diversity distributions as-

sume more complex patterns. Although immune-stimulating

events such as allergy or vaccination could shift the abundance

of some clones, the immune repertoire has been suggested as a

means to monitor an individual’s immune health (Johnson et al.,

2014). The utility of this metric depends on the accurate measure

of clonal abundance, which requires linear amplification from

multiplex PCR products and additional normalization of TCR/

BCR expression levels for RNA-based profiles. Furthermore,

the method and time-span of sample storage can also influence

sample quality for repertoire profiling.

While immune repertoires are informative, profiling them over

large sample cohorts can be expensive. Computational methods

have been developed to directly infer immune repertoires from

unselected bulk tumor RNaseq data, such as TRUST for TCR

(Li et al., 2016a) and V’DJer for BCR (Mose et al., 2016). The
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hypervariability of the CDR3 regions of TCR andBCR renders the

RNaseq reads from these regions unmappable to the human

reference genome sequence, and somatic hypermutation adds

additional challenges to BCR mapping and alignment. Both of

the aforementioned methods select unmappable RNaseq reads,

align these unmapped reads to each other with de Brujin graph-

ing methods, de novo assemble these alignments into contigs,

and use IMGT (Giudicelli et al., 1997) to annotate those contain-

ing CDR3 motifs as potential BCR or TCR. Although these

approaches only recover the most abundant of the immune rep-

ertoires, they were used to analyze RNA-seq data across tumor

samples profiled by The Cancer Genome Atlas (TCGA) and re-

sulted in novel findings. For example, TRUST revealed increased

T cell clonal diversity in tumor types with higher mutational loads

and potential neoantigens based on their co-occurrence with

CDR3-containing sequences in the tumors (Li et al., 2016a),

while V’DJer reported higher somatic hypermutation in IgG and

IgA than in IgM (Mose et al., 2016).

Published studies havemade fascinating observations on how

immune repertoires can reflect an individual patient’s immune

health and predict their response to therapy. The ability to recon-

struct a more diverse TCR repertoire after autologous hemato-

poietic stem cell transplantation has been observed to predict

better transplant outcomes in multiple sclerosis patients (John-

son et al., 2014; Muraro et al., 2014). Another study used TCR

repertoire sequencing to compare each patient’s TCR before

and after dendritic cell-based neoantigen vaccine dosing, illus-

trating expanded TCRs for the vaccine peptides that elicited a

T cell response (Carreno et al., 2015). For metastatic melanoma

patients, the anti-CTLA4 antibody ipilimumab has been shown to

increase peripheral blood TCR diversity (Robert et al., 2014), and

those patients with higher peripheral TCR diversity before treat-

ment were reported to respond better to ipilimumab (Postow

et al., 2015). In contrast, the anti-PD-1 antibody pembrolizumab

showed better efficacy in melanoma patients whose pre-treat-

ment tumor-infiltrating T cells were less diverse and more clonal

(Tumeh et al., 2014). This study also demonstrated that more tu-

mor-infiltrating T cell clones expanded after treatment in the

therapy responsive group than in the (non-responding) disease

progression group. Although these pioneering studies were con-

ducted on a limited number of patients, they do suggest TCR

repertoire as a universal cancer immunotherapy biomarker

(McNeel, 2016). Potentially overall patient immune health from

the peripheral TCR and signs of neoantigen recognition and

clonal expansion from the tumor TCR before treatment could

predict better patient response to cancer immunotherapies. As

an example, one bioinformatics study using a Potential Support

Vector Machine-based approach reported the ability to predict

an individual’s age, health, transplantation status, and develop-

ment of lymphoid cancer based on repertoire profiles (Greiff

et al., 2015b).

Distribution of Tumor Infiltrating Lymphocytes
Large-scale molecular tumor profiling often selects samples

with high tumor purity to best characterize the molecular signa-

tures of the tumor. While most cancer genomics studies are

focused on the cancerous cells in the tumor tissue, the impu-

rities, such as stromal cells, endothelial cells, and immune cells,
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could havemajor impact on the development and progression of

cancer. With genomic profiling, tumor purity could be estimated

from DNA copy number (Carter et al., 2012), SNP allele fre-

quency (Li and Li, 2014), RNA-seq (Yoshihara et al., 2013), or

DNA methylation (Zhang et al., 2015; Zheng et al., 2014)

data. Interestingly, these methods using orthogonal tumor

profiling modalities yield very consistent tumor purity estimates,

in distinct contrast to the estimates provided by pathologists,

suggesting that molecular and morphological changes in the tu-

mor do not appear simultaneously.

Pertinent to immunogenomic studies of cancer is the evalua-

tion of tumor-infiltrating lymphocytes (TILs), which can involve

traditional approaches such as flow cytometry and multiplex

immunohistochemistry. Flow cytometry uses antibodies against

proteins uniquely expressed on different subpopulations of im-

mune cells to isolate specific subsets of these cells from blood

or tissues. The resulting cell counts characterize the relative

abundance of different subpopulations in individual cancer sam-

ples and can reveal changes following treatment. Flow-cytome-

try requires relatively large fresh tissue samples for study, but the

resulting isolated cells, once sorted, can be cultured and pro-

filed. Multiplex immunohistochemistry (IHC) can simultaneously

capture the expression levels of multiple proteins in formalin-

fixed paraffin-embedded (FFPE) tissue, with the advantage of

capturing their spatial organization and co-expression patterns,

although the number of proteins that can be differentially stained

on each tissue slide is limited.

In addition to these conventional approaches, recent compu-

tational methods have also advanced our understanding of TILs.

In a seminal study (Rooney et al., 2015), Rooney and colleagues

used Granzyme A and perforin expression levels to model the

immune cytolytic activities in tumors studied in TCGA, observing

increased cytolytic activities in tumors with higher mutation load,

copy number aberration, viral infection, and lower tumor stage.

This signature-gene based approach has been employed by

two recent studies (Angelova et al., 2015; Sxenbabao�glu et al.,

2016) to estimate immune subset abundance based on a collec-

tion of pre-selected markers. CIBERSORT (Newman et al., 2015)

used an expert-selected signature of about 500 genes to infer

the abundance of 22 different tumor infiltrating immune compo-

nents. In contrast, TIMER (Li et al., 2016b) selected cancer-spe-

cific signature genes to eliminate the bias from highly expressed

genes in cancer cells and deconvolved only six immune compo-

nents to ensure that colinear expression between closely related

immune cells did not affect the deconvolution accuracy. These

studies confirmed previous observations (Bindea et al., 2013;

Rooney et al., 2015) and reported that CD8+ T cells are associ-

ated with better overall survival and fewer relapses, whereas

macrophages are associated with worse clinical outcome in

many cancer types (Li et al., 2016b).

There have been inconsistent observations on whether the

abundance of B cells is associated with improved cancer sur-

vival (DiLillo et al., 2010; Perricone et al., 2004; Qin et al., 1998;

Schultz et al., 1990). One potential reason is that B cells

with different activation statuses may either inhibit or promote

T cell functions (Nelson, 2010). Another possible reason is that

B cells are sometimes enriched at the margins of tumor cap-

sules instead of evenly distributed throughout the tumor tissue



(Kroeger et al., 2016; Lao et al., 2016; Nelson, 2010; Shi et al.,

2013). Therefore, abundance estimates of B cells may be vari-

able due to the specific tumor section under assay. By contrast,

TCR-seq of different sections of a large ovarian tumor (Emerson

et al., 2013) revealed that T cells are spatially homogeneous

within the tumor, similar to peripheral blood. Therefore, it is

possible that the correlation of TIL abundance with patient

outcome will depend on the homogeneity of TIL distribution for

different cancer types.
Applications
The culmination of our renewed understanding of the immune

system and its interaction potential with cancer cells has

been a decades-long effort to develop therapeutic approaches

that boost existing immune responses against neoplastic

cells. These efforts span widely variable approaches, and a

comprehensive review has been recently published that ex-

plores the broad landscape of cancer immunotherapies (Galluzzi

et al., 2014).

Certain types of cancer immunotherapies act to re-invigorate

existing immunity that has been suppressed in the tumor micro-

environment. These so-called ‘‘checkpoint blockade’’ therapies

were devised to address our fundamental understanding of

immunosuppression and T cell exhaustion, and provide a rela-

tively tumor-specific immune response. However, there often

are attendant side effects of variable severity, because their ac-

tion targets native immunemolecules such as CTLA-4, PD-1 and

PD-L1. Potentially, more specific targeting could result from us-

ing putative neoantigens predicted by NGS-based analysis,

described above, delivered as patient-specific vaccines meant

to stimulate an immune response that is highly specific for the

tumor cells. In this paradigm, several different vaccine types

(or ‘‘platforms’’) have emerged and are actively being tested in

pre-clinical and clinical settings, as follows (Hirayama and Nish-

imura, 2016; Overwijk et al., 2013; Vormehr et al., 2015; Zhang

et al., 2016c).

DNA minicassette vaccines: One vaccine platform is based

on piecing together the individual coding sequences for

each predicted neoantigen peptide into a DNA construct

that contains a specific human promoter element to drive

peptide production, once introduced into the patient. The

sequence-verified vaccine construct can be electroporated

into patient-derived dendritic cells and the DCs then re-

infused into the patient. Synthetic DNA is relatively cheaply

and quickly obtained, even with the attendant GMP require-

ments for sequence verification prior to use in a human vac-

cine. Hence, concerns about cost and scalability of this

approach are minimal. One design consideration is ensuring

that no self-antigens are potentially encoded by the junctions

between each neoantigen sequence, but this is relatively

easy to confirm computationally once the proposed vaccine

design is in-hand.

Peptide vaccines: Synthetic peptides representing computa-

tionally identified neoantigens can be combined and solubi-

lized in the presence of one or more immune-stimulatory

adjuvants to create patient-specific peptide vaccines.

These can be directly injected intramuscularly, intradermally,
or subcutaneously as ameans of presenting the neoantigenic

peptides during maturation of native dendritic cells, which

then can prime a robust and specific immune response. Short

neoantigen peptides of 8–12 amino acids can directly bind

to HLAs expressed on the surface of antigen-presenting den-

dritic cells, thereby priming a T cell specific response. Peptide

vaccines also can be comprised of synthetic long peptides

(25–30 amino acids), which require uptake, processing, and

presentation by antigen-presenting cells in order to elicit an

immune response. While GMP-grade peptides are expensive

to manufacture, this is a scalable enterprise and, when

coupled with the simplicity of the peptide vaccine design, is

being applied in clinical trials of patient-specific vaccines

(W. Gillanders, personal communication).

RNA vaccines: Conceptually similar to DNA and peptide vac-

cines are RNA-based neoantigen vaccines, wherein the RNA

encodes the various predicted neoantigens that are unique to

each patient’s tumor. Aswith all RNA-based therapeutics, the

lability of RNA invokes a need to stabilize the RNA molecules

and to provide for appropriate uptake by antigen presenting

cells so the encoded peptides can be processed and pre-

sented. Cost and scalability of RNA synthesis are similarly

straightforward as for DNA, so the packaging and stabiliza-

tion are the challenging puzzles for this platform, which is be-

ing actively pursued in the research setting.

Autologous dendritic cell vaccines: Dendritic cells (DCs)

occupy a unique position at the interface of innate and

adaptive immunity, and have been shown to effect a robust,

therapeutically relevant anti-neoplastic immune response.

In particular, autologous dendritic cells can be isolated

from patients and conditioned ex-vivo to mature, thereby

providing immune-stimulatory functions. When coupled

with neoantigenic peptides from patient-specific analyses,

the resulting dendritic cell vaccine can be re-infused and

has been shown to elicit neoantigen-specific T cell immunity

and an attendant expansion of the neoantigen-specific TCR

(Carreno et al., 2015; Galluzzi et al., 2014). Emphasizing their

specificity for tumor cells, no severe adverse events were re-

corded in this initial trial of patient-specific DC vaccines.

However, not all of the predicted neoantigens elicited a

T cell response, indicating that our ability to predict even

class I neoantigens will require additional precision, as dis-

cussed herein. While these early first-in-human results are

exciting, the preparation of dendritic cell vaccines requires

significant amounts of peripheral blood mononuclear cells

for dendritic cell isolation, as well as time- and effort-intensive

laboratory work to culture and mature the DCs ex vivo.

Hence, their scalability may be in question for broad-based

clinical use.

Besides cancer vaccines, another type of genomics-driven

patient-specific cancer immunotherapy is adoptive cell transfer

(ACT), as pioneered by Rosenberg and colleagues (Rosenberg

and Restifo, 2015). Basically, T cells extracted from a cancer pa-

tient, either from peripheral blood or the resected tumor, can be

activated and expanded ex vivo by IL2 treatment, before infusing

them back to the same patient to kill the cancer cells. Prepara-

tory lymphodepletion either by chemotherapy or radiation of
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the patient is an important step done prior to infusion, to improve

the engraftment and persistence of the adoptively transferred

T cells, thus increasing durability of tumor regression (Dudley

et al., 2002). ACT cells not only persist months after infusion,

but also expand in the patient. Two additional genomic ap-

proaches below have been shown to further enhance tumor-

specific killing and broaden the applicable cancer types suitable

for ACT. Despite the cost and the technical and logistical chal-

lenges of ACT, this personalized immunotherapy has demon-

strated promising rates and duration of response.

Genetically engineering T cells: T cells extracted from pa-

tients can be genetically engineered to express TCRs that

specifically recognize proteins expressed only in the patient’s

cancer cells, such as the melanoma/melanocyte specific

MART-1 antigen (Morgan et al., 2006) or the cancer-testis an-

tigen NY-ESO-1 (Robbins et al., 2011). T cells also can be en-

gineered by viral transduction to express a chimeric antigen

receptor (CAR) that uniquely recognizes the B cell specific

CD19 (Kalos et al., 2011; Kochenderfer et al., 2010) on the

cell surface. Linking the CAR with a co-stimulatory domain

such as CD137 (Imai et al., 2004; Milone et al., 2009) or engi-

neering the cells to express another chimeric costimulatory

receptor recognizing a second antigen (Kloss et al., 2013)

have both improved T cell antitumor activity. Recently a

new clinical trial has been proposed, where CRISPR technol-

ogy is applied to further engineer the NY-ESO-1-targeting

CAR T cells. Using a small number of CRISPR guide RNAs

to knock out the PD-1 gene and the cells’ intrinsic TCR,

this approach aims to eliminate immune suppression and

improve the NY-ESO-1 receptor response. If proven effec-

tive, genome engineering technology could provide new op-

portunities to manipulate other genes in immune cells ex vivo

using the CRISPR technology to achieve desired cancer

killing phenotypes.

Expanding tumor-specific T cells: Instead of engineering the

autologous T cells ex vivo, this approach separately cultures

tumor-infiltrating T cell clones or subpopulations, then

selects those reacting against tumor cells for massive

expansion before patient infusion. With the emergence of

exome-sequencing, scientists can call somatic mutations

from the tumor and computationally predict immunogenic

neoantigens. Testing the immunogenicity of these mutations

in parallel uses minigene constructs (described above) en-

coding the mutated peptides into expression vectors and

the in vitro transcribed RNA from the vectors can be electro-

porated into antigen presenting cells (APC). Culturing the

tumor-infiltrating T cells for reactivity against these APCs

selects the tumor-specific T cells and identifies the immuno-

genic mutant minigenes (Robbins et al., 2013). Compared to

genetically engineered T cells, the final T cells infused into

patients using this approach are comprised of populations

of different T cells recognizing different neoantigens. While

most of these neoantigens are hypothesized to be passenger

mutations, recently the Rosenberg group identified four

T cell clones that specifically react to the KRAS G12D muta-

tion in colon cancer (Tran et al., 2016), thereby drugging the

undruggable.
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Future Perspectives
As high-throughput technologies improve and our immunology

knowledge grows, the future of immunogenomics-based appli-

cation to cancer appears quite promising and likely will continue

to broaden. Technological and computational innovations will be

instrumental to overcome existing challenges and move the field

forward. First, despite the advances offered by algorithms such

asNetMHC-pan, both the accuracy ofMHCpresentation predic-

tion, especially for rarer alleles, and of MHC class II presentation

await improvements. In addition, most studies useMHC presen-

tation of somatic mutations as a proxy to predict immunoge-

nicity, although it is unclear which presented somatic mutations

will elicit immune responses. Experimental assays such as

EliSpot are currently used to validate the predicted neoantigens,

although such assays are still conducted in a low throughput

fashion (Cole, 2005).

Second, TIL deconvolution methods such as CIBERSORT

and TIMER use reference expression profiling data on sorted

immune components from peripheral blood. These methods

could be combined with Nanostring-based measures of immune

marker genes in addition to bulk tissue RNA-seq data for inex-

pensive profiling of large archival tumor cohorts. However,

expression of immune cells in tumors might differ significantly

from that in peripheral blood, which could influence the accuracy

of these inference methods. Recent developments in single

cell analyses techniques, such as CyTOF (Newell et al., 2012)

and single-cell RNA-seq (Klein et al., 2015; Macosko et al.,

2015; Tirosh et al., 2016), might offer more quantitative alterna-

tives. However, for very detailed TIL deconvolution on large

sample cohorts, the required starting tumor material and cost

of single cell experiments need to decrease significantly for

widespread use.

Third, monitoring an individual patient’s immune repertoire in

peripheral blood or tumors provides insights into their immune

health as well as their response to allergens, vaccines or thera-

pies (Robins, 2013). However, there are still many challenges

ahead, such as how to identify the specific TCR / BCR that

recognizes each specific somatic mutation and how accurate

the immune repertoire is at predicting patient response to immu-

notherapy. Other challenges include how to robustly estimate

the total immune repertoire in different samples from the same

individual, normalize bias fromminor immune events, and distin-

guish immune repertoire signals from normal versus pathogenic

immune events.

Last but not least, predicting response to immunotherapies,

including tumor killing effects and autoimmune side effects, is still

an open question. So far, higher T cell infiltration (Taube et al.,

2012; Tumeh et al., 2014), higher PD-1 or PD-L1/L2 expression

(Garon et al., 2015; Herbst et al., 2014; Taube et al., 2012), higher

neoantigen load from BRCA or somatic mutations in DNA repair

pathway genes (Hugo et al., 2016; Snyder et al., 2014; Van Allen

et al., 2015), ormicrosatellite instability (Leet al., 2015), higher pe-

ripheral baseline TCR diversity (Postow et al., 2015), lower tumor

infiltrating TCR diversity (Tumeh et al., 2014), lack of mutations in

interferon gamma (INFG) (Gao et al., 2016), beta-2-microglobulin

(B2M) (Zaretsky et al., 2016), or JAK1/JAK2 (Zaretsky et al., 2016)

have been associated with better response to immunotherapies

in various cancer types. A comprehensive model that integrates



all of these factors to accurately predict patient response to

immunotherapy is still lacking, and likely will require much more

data to train and refine. In addition, methods to predict the

optimal combination of immunotherapies or with other targeted,

chemo, or radiation therapies for individual patients still await

development. Despite all the aforementioned challenges, the

exciting results obtained to-date from cancer immunotherapies

will continue to motivate the biomedical research community to

overcome these challenges and explore new frontiers.
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Krøigård, A.B., Thomassen, M., Lænkholm, A.-V., Kruse, T.A., and Larsen,

M.J. (2016). Evaluation of Nine Somatic Variant Callers for Detection of So-

matic Mutations in Exome and Targeted Deep Sequencing Data. PLoS ONE

11, e0151664.

Kumar, S., Razzaq, S.K., Vo, A.D., Gautam, M., and Li, H. (2016). Identifying

fusion transcripts using next generation sequencing. Wiley Interdiscip. Rev.

RNA 7, 811–823.

Lao, X.-M., Liang, Y.-J., Su, Y.-X., Zhang, S.-E., Zhou, X.I., and Liao, G.-Q.

(2016). Distribution and significance of interstitial fibrosis and stroma-infil-

trating B cells in tongue squamous cell carcinoma. Oncol. Lett. 11, 2027–2034.

Le, D.T., Uram, J.N., Wang, H., Bartlett, B.R., Kemberling, H., Eyring, A.D.,

Skora, A.D., Luber, B.S., Azad, N.S., Laheru, D., et al. (2015). PD-1 Blockade

in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 372, 2509–2520.

Ley, T.J., Mardis, E.R., Ding, L., Fulton, B., McLellan, M.D., Chen, K., Dooling,

D., Dunford-Shore, B.H., McGrath, S., Hickenbotham, M., et al. (2008). DNA

sequencing of a cytogenetically normal acute myeloid leukaemia genome. Na-

ture 456, 66–72.

Li, B., and Li, J.Z. (2014). A general framework for analyzing tumor subclonality

using SNP array and DNA sequencing data. Genome Biol. 15, 473.

Li, Y., Chien, J., Smith, D.I., and Ma, J. (2011). FusionHunter: identifying fusion

transcripts in cancer using paired-end RNA-seq. Bioinformatics 27,

1708–1710.

Li, B., Li, T., Pignon, J.-C., Wang, B., Wang, J., Shukla, S.A., Dou, R., Chen, Q.,

Hodi, F.S., Choueiri, T.K., et al. (2016a). Landscape of tumor-infiltrating T cell

repertoire of human cancers. Nat. Genet. 48, 725–732.

Li, B., Severson, E., Pignon, J.-C., Zhao, H., Li, T., Novak, J., Jiang, P., Shen,

H., Aster, J.C., Rodig, S., et al. (2016b). Comprehensive analyses of tumor im-

munity: implications for cancer immunotherapy. Genome Biol. 17, 174.

Lundegaard, C., Lund, O., and Nielsen, M. (2008a). Accurate approximation

method for prediction of class I MHC affinities for peptides of length 8, 10

and 11 using prediction tools trained on 9mers. Bioinformatics 24, 1397–1398.

Lundegaard, C., Lamberth, K., Harndahl, M., Buus, S., Lund, O., and Nielsen,

M. (2008b). NetMHC-3.0: accurate web accessible predictions of human,

mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic

Acids Res. 36, W509–W512.

McNeel, D.G. (2016). TCR diversity - a universal cancer immunotherapy

biomarker? J. Immunother. Cancer 4, 69.

Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tir-

osh, I., Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly Par-

allel Genome-wide Expression Profiling of Individual Cells Using Nanoliter

Droplets. Cell 161, 1202–1214.

Mardis, E.R. (2017). DNA sequencing technologies: 2006-2016. Nat. Protoc.

12, 213–218.

McKinney, D.M., Southwood, S., Hinz, D., Oseroff, C., Arlehamn, C.S.L.,

Schulten, V., Taplitz, R., Broide, D., Hanekom, W.A., Scriba, T.J., et al.

(2013). A strategy to determine HLA class II restriction broadly covering the

http://refhub.elsevier.com/S0092-8674(17)30062-4/sref30
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref30
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref31
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref31
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref31
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref32
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref32
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref32
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref32
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref33
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref33
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref33
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref34
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref34
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref34
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref35
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref35
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref35
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref35
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref36
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref36
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref36
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref37
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref37
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref37
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref37
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref38
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref38
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref39
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref39
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref39
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref39
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref40
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref40
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref40
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref41
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref41
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref41
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref41
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref42
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref42
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref42
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref42
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref43
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref43
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref43
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref44
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref44
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref44
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref45
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref45
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref45
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref46
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref46
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref46
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref46
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref47
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref47
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref47
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref48
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref48
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref48
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref49
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref49
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref49
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref50
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref50
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref50
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref50
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref50
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref51
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref51
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref51
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref51
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref52
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref52
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref52
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref52
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref53
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref53
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref53
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref53
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref54
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref54
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref54
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref55
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref55
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref55
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref56
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref56
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref56
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref57
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref57
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref57
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref57
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref58
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref58
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref59
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref59
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref59
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref60
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref60
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref60
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref61
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref61
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref61
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref62
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref62
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref62
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref63
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref63
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref63
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref63
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref64
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref64
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref65
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref65
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref65
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref65
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref66
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref66
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref67
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref67
http://refhub.elsevier.com/S0092-8674(17)30062-4/sref67


DR, DP, and DQ allelic variants most commonly expressed in the general pop-

ulation. Immunogenetics 65, 357–370.

Milone,M.C., Fish, J.D., Carpenito, C., Carroll, R.G., Binder, G.K., Teachey, D.,

Samanta, M., Lakhal, M., Gloss, B., Danet-Desnoyers, G., et al. (2009).

Chimeric receptors containing CD137 signal transduction domains mediate

enhanced survival of T cells and increased antileukemic efficacy in vivo.

Mol. Ther. 17, 1453–1464.

Monach, P.A., Meredith, S.C., Siegel, C.T., and Schreiber, H. (1995). A unique

tumor antigen produced by a single amino acid substitution. Immunity 2,

45–59.

Morgan, R.A., Dudley, M.E., Wunderlich, J.R., Hughes, M.S., Yang, J.C.,

Sherry, R.M., Royal, R.E., Topalian, S.L., Kammula, U.S., Restifo, N.P., et al.

(2006). Cancer regression in patients after transfer of genetically engineered

lymphocytes. Science 314, 126–129.

Mose, L.E.,Wilkerson,M.D., Hayes, D.N., Perou, C.M., and Parker, J.S. (2014).

ABRA: improved coding indel detection via assembly-based realignment. Bio-

informatics 30, 2813–2815.

Mose, L.E., Selitsky, S.R., Bixby, L.M., Marron, D.L., Iglesia, M.D., Serody,

J.S., Perou, C.M., Vincent, B.G., and Parker, J.S. (2016). Assembly-based

inference of B-cell receptor repertoires from short read RNA sequencing

data with V’DJer. Bioinformatics 32, 3729–3734.

Muraro, P.A., Robins, H., Malhotra, S., Howell, M., Phippard, D., Desmarais,

C., de Paula Alves Sousa, A., Griffith, L.M., Lim, N., Nash, R.A., and Turka,

L.A. (2014). T cell repertoire following autologous stem cell transplantation

for multiple sclerosis. J. Clin. Invest. 124, 1168–1172.

Narzisi, G., O’Rawe, J.A., Iossifov, I., Fang, H., Lee, Y.-H., Wang, Z., Wu, Y.,

Lyon, G.J., Wigler, M., and Schatz, M.C. (2014). Accurate de novo and trans-

mitted indel detection in exome-capture data using microassembly. Nat.

Methods 11, 1033–1036.

Nelson, B.H. (2010). CD20+ B cells: the other tumor-infiltrating lymphocytes.

J. Immunol. 185, 4977–4982.

Newell, E.W., Sigal, N., Bendall, S.C., Nolan, G.P., and Davis, M.M. (2012). Cy-

tometry by time-of-flight shows combinatorial cytokine expression and virus-

specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity

36, 142–152.

Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang,

C.D., Diehn, M., and Alizadeh, A.A. (2015). Robust enumeration of cell subsets

from tissue expression profiles. Nat. Methods 12, 453–457.

Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S.L., Lamberth, K.,

Buus, S., Brunak, S., and Lund, O. (2003). Reliable prediction of T-cell epitopes

using neural networks with novel sequence representations. Protein Sci. 12,

1007–1017.

Old, L.J., and Boyse, E.A. (1964). IMMUNOLOGY OF EXPERIMENTAL

TUMORS. Annu. Rev. Med. 15, 167–186.

Overwijk, W.W., Wang, E., Marincola, F.M., Rammensee, H.-G., and Restifo,

N.P. (2013). Mining the mutanome: developing highly personalized Immuno-

therapies based on mutational analysis of tumors. J. Immunother. Cancer

1, 11.

Pasternack, M.S. (1994). Review of Fundamental Immunology Edited by Wil-

liam E. Paul, 3rd edition (New York: Raven Press), 1993. 1,490 pp., illustrated.

$95. Clin. Infect. Dis. 19, 996–997.

Perricone, M.A., Smith, K.A., Claussen, K.A., Plog, M.S., Hempel, D.M., Rob-

erts, B.L., St George, J.A., and Kaplan, J.M. (2004). Enhanced efficacy of mel-

anoma vaccines in the absence of B lymphocytes. J. Immunother. 27,

273–281.

Peters, B., and Sette, A. (2005). Generating quantitative models describing the

sequence specificity of biological processeswith the stabilizedmatrixmethod.

BMC Bioinformatics 6, 132.

Postow,M.A., Manuel, M.,Wong, P., Yuan, J., Dong, Z., Liu, C., Perez, S., Tan-

neau, I., Noel, M., Courtier, A., et al. (2015). Peripheral T cell receptor diversity

is associated with clinical outcomes following ipilimumab treatment in meta-

static melanoma. J. Immunother. Cancer 3, 23.
Prehn, R.T., and Main, J.M. (1957). Immunity to methylcholanthrene-induced

sarcomas. J. Natl. Cancer Inst. 18, 769–778.
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