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Determinants of transcription factor regulatory
range
Chen-Hao Chen1,2,3, Rongbin Zheng4, Collin Tokheim1,3, Xin Dong4, Jingyu Fan4, Changxin Wan4, Qin Tang3,5,

Myles Brown3,5, Jun S. Liu6, Clifford A. Meyer1,3✉ & X. Shirley Liu1,3,6✉

Characterization of the genomic distances over which transcription factor (TF) binding

influences gene expression is important for inferring target genes from TF chromatin

immunoprecipitation followed by sequencing (ChIP-seq) data. Here we systematically

examine the relationship between thousands of TF and histone modification ChIP-seq data

sets with thousands of gene expression profiles. We develop a model for integrating these

data, which reveals two classes of TFs with distinct ranges of regulatory influence, chromatin-

binding preferences, and auto-regulatory properties. We find that the regulatory range of the

same TF bound within different topologically associating domains (TADs) depend on intrinsic

TAD properties such as local gene density and G/C content, but also on the TAD chromatin

states. Our results suggest that considering TF type, binding distance to gene locus, as well as

chromatin context is important in identifying implicated TFs from GWAS SNPs.
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ChIP-seq is broadly used for identifying the genome-wide
binding sites of specific TFs1,2. Thousands of these
binding-site profiles, or cistromes3, have been produced in

cells and tissues3. One important use of cistromes is to identify
the TFs that regulate a given gene. However, it is difficult to
assign most TF-binding events to a gene (or vice versa) because
relatively few TF-binding sites occur very near or within a gene
promoter3. In most studies, target genes are designated using ad
hoc methods, such as assigning TF-binding sites to the nearest
gene or to genes within arbitrary genomic distance thresholds.
More accurate approaches4 use soft thresholds and consider the
effect of multiple binding sites, but still use arbitrarily defined
parameters and model all genes with the same parameters4. More
recently, genome-wide chromatin conformation Hi-C maps have
revealed that the genome is organized as a hierarchically nested
structure. Topologically associating domains (TADs)5 represent
one level of this hierarchy that influence enhancer activity by
facilitating enhancer-promoter interactions within TADs5.
However, Hi-C maps detect fewer enhancer-promoter interac-
tions than expected based on known regulatory interactions6.
How to use Hi-C observations in quantitative models of cis-
regulatory interactions remains an open question. In principle,
systematic analysis of Hi-C, TF cistromes, histone mark ChIP-
seq, and gene expression data could reveal insights into gene
regulatory mechanisms that lead to better predictions of TF target
genes and, in turn, more accurate interpretation of non-coding
GWAS hits.

In this study, we systematically model the genomic distance
over which TFs regulate genes, and evaluate how these regulatory
ranges depend on TFs and on genomic and chromatin contexts
(measured by H3K27ac ChIP-seq7). Our integrative analyses of
large compendia of ChIP-seq3, gene expression8,9, and eQTL9

data reveal a previously undescribed relationship between TF
regulatory ranges and local genomic and chromatin contexts.
These results suggest the existence of two distinct ‘short-range’
and ‘long-range’ classes of TF with contrasting characteristics,
including genome-wide binding, auto-regulatory, tissue-restricted
expression, and pioneer-factor like properties. In addition, the
regulatory ranges of long-range TFs are longer in repressed
genomic regions than in more active ones, suggesting the wide-
spread existence of enhancers that regulate genes up to a hundred
kb away in gene-sparse regions. Finally, we apply our findings to
identify TFs implicated with disease-associated SNPs. Unlike
previous studies, which mostly focus on individual TFs, our
findings illustrate commonalities between TFs and provided a
succinct framework for interpreting complex gene regulation.

Results
Distance-based model of TF binding and gene expression. TF
cistromes produced by ChIP-seq represent the genome-wide
locations of TF-binding sites and potential cis-regulatory ele-
ments. To infer the gene regulatory characteristics of different
TFs, we used the regulatory potential (RP) model10 to describe
the relationships between TF cistromes and gene expression
(Fig. 1a). The RP model considers contributions of all binding
sites of TF i near the transcription start site (TSS) of gene j by
summing the regulatory effect of individual binding sites weigh-
ted by binding-site-to-TSS distances. This model is based on two
assumptions consistent with experimental observations. First, a
TF-binding site’s regulatory effects on a gene’s expression level
typically diminishes monotonically with the genomic distance
separating the TF-binding site and the gene TSS. This assumption
is motivated by the genomic distance-dependent monotonic
decay observed in chromatin interaction experiments11, eQTL
studies showing that SNPs associating with the gene expression

often fall close to the gene12, and CRISPR enhancer screens
showing perturbations affecting expression are enriched near the
TSS13. The second assumption is that the contribution of each
enhancer is independent of the others so that the influence of
multiple enhancers on a gene is represented by the sum of their
individual contributions. With these assumptions, we used an
exponential decay function, parameterized by a “decay distance”
constant Δ, within which distance the TF regulatory effects
are halved. We calculated the RP score, Ri;j Δð Þ; using the sum of
TF i binding sites weighted by their distance to the TSS of gene j
with an exponential decay distance constant (Δ), to estimate the
regulatory effect of TF i on gene j. (Fig. 1a; See methods for
statistical details).

Although the RP model does not encompass the full
complexity of gene regulation, it does allow us to quantify the
genomic distances over which TFs influence genes. When the
decay distance (Δ) is small, only TF-binding sites near the TSS
contribute to the regulation of the gene; when the decay distance
(Δ) is large, distant binding sites contribute. In a gene expression
experiment involving the perturbation of the expression of a
single TF, comparison of mRNAs before and shortly after the
perturbation reveals the differentially expressed (DE) genes that
are likely to be directly regulated by that TF. If ChIP-seq data for
a TF was available under the same experimental conditions, the
RP model can be applied to predict the likely TF target genes
from the ChIP-seq peaks. It is important to note
that Ri;j(Δ) depends on the decay distance, Δ, and changing the
decay distance will affect the ranking of modeled TF i regulatory
effects on gene j. Systematically varying Δ across a broad range we
can determine the Δ that best separates the DE gene set from the
other genes by calculating the Kolmogorov–Smirnov statistic for
each of the tested Δ value. We refer to the optimal decay distance
as Δ*

i , the “regulatory decay distance” of TF i. Using this
approach, we estimated Δ*

i for the sets of genes that are
downregulated on knockdown of MYC14, FOXM115, GABPA16,
ESR117, or upregulated on dihydrotestosterone stimulation of
AR18 and on dexamethasone stimulation of NR3C119 (Fig. 1b,
Supplementary Fig. 1a). In all cases the associations between the
differentially expressed gene sets and the peak RPs were highly
significant. We observed different regulatory decay distances Δ*

i

� �
for different TFs. The Δ*

i for MYC, GABPA, and FOXM1 were
shorter (Δ*

i < 1 kb) than for AR, ESR1, and NR3C1 (Δ*
i > 10 kb).

Besides, a comparison of the RP model with a model that predicts
target genes from TF ChIP-seq on the basis of the distance from
the TSS to the nearest peak shows that the RP model better
predicts target genes (Supplementary Fig. 1b).

Different regulatory distances define two classes of TF. TF
perturbation data sets with DE genes and TF ChIP-seq data
generated in the same cell type are scarce. To infer the regulatory
decay distances (Δ*

i ) for more TFs, we used gene expression to
identify likely TF target genes. We used correlations between gene
expression levels of TFs and other genes across cell lines or tis-
sues, reasoning that the TF expression would better correlate with
expression of genes regulated by that TF than those not regulated
by the TF. We estimated the Δ*

i to be the Δ value that maximizes
the agreement between target genes calculated from TF i binding
sites and target genes calculated from TF i gene expression cor-
relations (Fig. 1c; methods). With Δ*

i , the association between the
RP scores of TF i on gene j ðRi;jðΔ*

i ÞÞ and the correlations of TF i
with gene j (ρexpri;j ) is highly significant (p value < 10−8) for all TFs
included in this study (Supplementary Fig. 2a).
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We first inferred the Δ*
i using the Cistrome DB TF ChIP-seq

collection3 and gene expression data across ~1000 cell lines from
the Cancer Cell Line Encyclopedia (CCLE). Δ*

i is <1 kb for some
TFs such as YY1, CREB1, FOXM1, ATF1, and TFDP1 (Fig. 1d left,
Supplementary Fig. 2b left), but is >10 kb for TFs such as PPARG,
FOXA1, GRHL2, FOSL2, and TEAD1 (Fig. 1d right, Supplemen-
tary Fig. 2b right). We repeated the analysis above using another
five gene expression cohorts20–24, and further used Genotype-
Tissue Expression (GTEx)9 to infer tissue-specific Δ*

i (methods).

These analysis yielded similar estimates of Δ*
i across different

gene expression cohorts using both linear and nonlinear
approaches (Methods, Supplementary Fig. 2d–e). Moreover, for
the same TF, the inferred Δ*

i is similar in different tissues
(Supplementary Fig. 2f). Of 108 TFs with at least three ChIP-seq
samples containing at least 20,000 peaks in Cistrome DB3, we
identified 60 TFs with at least three ChIP-seq samples that yielded
significant Δ*

i estimates in at least three gene expression cohorts
(Supplementary Data 1). We observed a distribution of Δ*

i
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(Fig. 1e, Supplementary Fig. 2c) with two strong modes,
suggesting two distinct classes of TF: short-range TFs (100 bp
to 3 kb) and long-range TFs (>3 kb). Although there might exist
more than two modes, the following two-class analysis remains
useful in contrasting the properties of short- and long-range TFs.

Compared with the cistromes of long-range TFs, those of
short-range TFs are significantly enriched within 1 kb of TSSs
(Supplementary Fig. 2g) and CpG islands (Supplementary
Fig. 2h). This indicates that the distinct regulatory ranges
observed in our model recapitulate the biological properties of
traditionally defined promoters and enhancers.

Long- and short-range TFs have distinct properties. We
investigated other properties of short- and long-range TFs. First,
we wondered whether different groups of TFs preferentially bind
to genomic regions with different levels of H3K27ac, a marker of
active promoters and enhancers7. To define genomic intervals
likely to be of relevance to transcriptional regulation, we selected
Hi-C-derived TADs as genomic units. We characterized TADs
using mean H3K27ac ChIP-seq read density from 1545 human
H3K27ac ChIP-seq samples across diverse cell types in the Cis-
trome DB3 and examined their signals across 3051 previously
defined TADs5 (Supplementary Data 2). We clustered TADs
across samples using the mean H3K27ac signal, revealing coor-
dinated TAD usage in different cell lineages (Fig. 2a, top). Genes
within TAD clusters were enriched in gene ontology categories
relevant to the tissue clusters25 (Supplementary Data 3, 4). By
mapping the TAD clusters to A/B compartments annotated in 21
Hi-C samples26, we found the H3K27ac level corresponds with
the percentage of compartment A (Fig. 2a, bottom). Therefore, we
defined A-type TADs (316 TADs) and B-type TADs (649 TADs),
corresponding to high and low H3K27ac signal across most
samples, respectively (Fig. 2a, top). B-type TADs have more A/T-
rich DNA27, lower gene density, longer gene transcripts, and
more tissue-restricted gene expression (Supplementary Fig. 3a–b).

Having characterized the genomic regions with differential
H3K27ac marks, we went on to examine the binding density of
1396 TF ChIP-seq samples. In general, TFs prefer to bind to A-
type TADs (Supplementary Data 5, Fig. 2b, top). To investigate
whether regulation within a given TAD could be dominated by a
given TF, we calculated a z score for each TF-TAD pair, reflecting
the binding density of this TF in the TAD relative to the binding
densities of other TFs in the same TAD. Certain TFs, such as YY1,
favor A-type TADs, while others, such as TEAD1, favor B-type
TADs (Fig. 2b, bottom). In general, the short-range TFs tend to
have higher z scores in the A-type TADs, whereas a large
proportion of long-range TFs tend to prefer the B-type TADs
(Supplementary Fig. 3c). This finding is consistent with well-
known principles in which lineage-specifying genes are subject to

more long-range regulation, whereas ubiquitously expressed
genes are regulated at closer range.

Previous studies suggested that TADs partition the genome
into functional domains that help coordinate gene expression28,
and genes with related functions are occasionally clustered
together29 and expressed in the same tissues30. We reasoned
that if a set of TADs were heavily bound by one long-range TF, its
long-range regulatory properties would enable that TF to regulate
a significant proportion of the genes located within those TADs.
We defined a TF’s “target” TADs as those TADs that are densely
bound by the given TF relative to other TFs in the Cistrome DB
(z score > 1, Fig. 2c). An example of a TEAD1 target TAD (Fig. 2d
top) demonstrates the nearly perfect colocalization of TEAD1 and
H3K27ac ChIP-seq peaks, suggesting that TEAD1 dominates the
activity of its target TAD. Indeed, the GO term enrichment of
genes within the target TADs correspond to the known functions
of the dominating TFs (Supplementary Data 6).

To investigate whether long-range TFs may influence the
chromatin state of target TADs as predicted, we examined
whether the expression of long-range TFs are robustly associated
with H3K27ac levels in the target TADs. For each TF, we selected
CCLE cell lines with available H3K27ac ChIP-seq data and sorted
these cell lines by the TF expression level. We observed positive
associations between the TF expression and the mean H3K27ac
levels of its target TADs for most long-range TFs such as TEAD1
(Fig. 3a–b), but weaker or negative associations for short-range
TFs such as YY1 (Fig. 3a–b). Similarly, such significant positive
associations hold between the expression of long-range TFs, such
as TEAD1, and genes located in their target TADs (Fig. 3c–d,
Supplementary Fig. 3d) and weaker associations for short-range
TFs. These contrasting results between long- and short-range
TFs suggest that long-range TFs might influence the chromatin
state and gene expression across their target TADs than short-
range TFs.

As lineage-specifying genes are subject to more long-range
regulation, we assessed whether the long-range TFs are expressed
in a lineage-specific manner. As predicted, their expression across
48 GTEx tissues shows that long-range TFs are generally expressed
in a tissue-restricted fashion, reflected by their higher coefficients of
variation across GTEx tissues (Fig. 3e). Self-activating TF
comprised positive feedback loops have been proposed as a
mechanism for establishing stable gene expression programs
during lineage specification31. Indeed, compared with short-range
TFs, TADs that harbor long-range TF genes are heavily bound by
these TFs themselves (p value= 0.008), suggesting that long-range
TFs tend to have auto-regulatory properties (Fig. 3f, Supplemen-
tary Fig. 3e). This indicates that multiple binding sites of the same
TF within the TAD harboring the TF gene itself may serve as a
robust auto-regulatory mechanism for maintaining lineage
restricted long-range TF expression.

Fig. 1 RP mode reveals two distinct TF classes: short-range and long-range. a Schematic of the regulatory potential (RP) model. The regulatory effect of
TF i on gene j is modeled as the RP, Ri, j(Δ), which sums up all TF i ChIP-seq binding effects on the gene j. The effect of a single binding site k of TF i on gene
j decays exponentially with increasing xijk , the genomic distance between TSS of gene j and TF i binding site k. The exponential decay function (2

�xijk
Δ ) is

parameterized by the decay distance (Δ), the distance at which the TF regulatory effects are halved. b TF i-specific regulatory decay distances (Δ*
i ) can be

inferred as the Δ that best separates TF i perturbation-induced differentially expressed (DE) genes from other genes. Ri;j Δð Þ with short-range (<1 kb) best
separates FOXM1-knockdown or GABPA-knockdown DE gene sets (left). AR overexpression or ESR1-knockdown DE gene sets are best separated by Ri;j Δð Þ
with long-range Δ (>10 kb). The two-sided Kolmogorov–Smirnov two-sample test is used to estimate the degree of separation of DE genes from other
genes. c Δ*

i can also be inferred as the Δ that leads to the best concordance between TF i regulatory effects estimated by TF i ChIP-seq (Ri;j Δð Þ) and
expression cohorts (ρexpri;j : TF i-gene j expression correlations), respectively. A second correlation coefficient ρexpr;RPðΔÞi was calculated to measure the
concordance between ρexpri;j and Ri;j Δð Þ (see the main text for the rationale and Methods for statistical details). d TFs with short-range Δ*

i (100bp-3 kb)
include YY1, CREB1, FOXM1, ATF1, and TFDP1 (left). TFs with long-range Δ*

i (3 kb–100 kb) include PPARG, FOXA1, GRHL2, FOSL2, and TEAD1 (right).
Colored shaded regions depict the 95% confidence intervals derived from all ChIP-seq samples that passed QC for each TF. Dots along the line are Δ
values being tried. e Distribution of regulatory decay distances (Δ*

i ) of 11 short-range TFs (left) and 49 long-range TFs (right). Source data are provided as a
Source Data file.
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Having shown that a large proportion of long-range TFs bind
to B-type TADs, we reasoned the abundant long-range TF
binding within these TADs might require pioneer-like properties,
characterized by the capability to facilitate the binding of other
TFs at their binding sites32. In the CCLE cell lines, we evaluated
whether a TF’s DNA motif becomes more enriched in the ChIP-
seq peaks of other factors as the TF’s expression increases. For
instance, in cell lines with increased TEAD1 expression, the
TEAD1 motif becomes more enriched in the ChIP-seq peaks of
other factors (Fig. 3g). TFs with such “pioneer-factor-like”
properties are generally long-range TFs (Fig. 3h, Methods,
Supplementary Data 7), including known pioneer factors
(FOXA132, GRHL233) and previously unknown ones (FOSL2)
(Supplementary Fig. 3f).

Regulatory distances differ between A- and B-type TADs.
Having shown that the regulatory distances are TF specific, we
investigated other determinants. In the RP model, we have
assumed that for a given TF the same regulatory distance Δ*

i
applies to all target genes and found the modal regulatory dis-
tance of long-range TFs to be 47 kb (Fig. 1e). However, several
genes, including BCL11A34, GATA335, PAX636, SHH37, and
SOX938, are regulated by enhancers over much longer genomic
distances. Notably, these genes occur in genomic regions that
have low gene densities and low gene expression levels. We
hypothesized that there exist systematic differences in TF reg-
ulatory decay distances between active and repressed genomic
regions.

Having defined A-type and B-type TADs with high and low
H3K27ac marks, respectively (Fig. 2a), we examined whether
regulatory distances differ between these TAD types. Using the RP
model while restricting the analysis to genes located within A-type
and B-type TADs, respectively, we calculated TAD type-specific
regulatory decay distances, ΔA

i (in A-type TADs) and ΔB
i (in B-

type TADs) for each TF i. For long-range TFs, their regulatory
decay distances are longer in the B-type TADs (i.e. ΔB

i > ΔA
i )

(Fig. 4a), suggesting the few documented long-range enhancer
activity in B-type TADs being the norm rather than the
exception35. We obtained consistent results using CCLE gene
expression data and tissue-matched GTEx data (Fig. 4b; Supple-
mentary Fig. 4a). Although TF-binding sites and TSSs tend to be
sparser in B-type TADs, the model is not merely reflecting peak to
gene distance distributions. An analysis of regulatory decay
distances inferred using the most significant 10,000 and 20,000
peaks produces almost the same results (Supplementary Fig. 4b),
whereas the peak-to-TSS distances are inversely related to peak
numbers (Supplementary Fig. 4c).

We went on to verify whether enhancers regulate genes over
longer genomic distances in B-type TADs than in A-type ones
using complementary data. CAGE-seq39, which captures the TSSs
of both mRNAs and eRNAs, allows us to compute the
transcription correlation between coding genes and eRNAs as a
function of their separation distances. We found higher
enhancer-promoter correlations over longer genomic distances
in B-type TADs (Supplementary Fig. 4d). Analysis of GTEx eQTL
data revealed the distances between eQTLs and the corresponding
gene TSSs to be significantly longer in B-type TADs in most
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tissues (Fig. 4c), with neural tissues having the largest distance
differences. This phenomenon is not due to linkage disequili-
brium (LD), as the LD block sizes are similar in B-type and A-
type TADs (Supplementary Fig. 4e).

We next examined whether the difference in the regulatory
behavior in A-type and B-type TADs is owing to differences in

chromatin interaction frequencies within these TAD types. Using
Hi-C chromatin interaction data40, we compared contact
frequencies within A-type TADs to those within B-type TADs
as a function of genomic distance. Decay rates in Hi-C data are
typically quantified using power-law models11. Therefore, for a
fair comparison, we modified the RP model using the power-law
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equation (methods) and determined the decay constants of long-
range TFs to lie in a range between −0.35 and −0.47. The model
determined decay rates to be steeper in A-type TADs (−0.4 ~
−0.5) than in B-type TADs (−0.3 ~ −0.45) (Fig. 4d), consistent
with what we described above. These decay rates are smaller (in
terms of absolute magnitude) than those observed in Hi-C data,
which are well beyond −0.5 (Fig. 4e). Although it is interesting to
note the differences in A-type and B-type TAD Hi-C decay rates
in the 250 kb to 1Mb range, this range is beyond the regulatory
range of TFs observed in our model-based analysis.

Regulatory distances change with chromatin states. Our ana-
lyses revealed that the binding of long-range TFs in A-type and B-
type TADs have different regulatory ranges. However, several
genetic properties of TADs contribute to the establishment of
their chromatin states and influence their designation as A-type
or B-type. To tease out the true chromatin effect from the genetic
properties, we next assessed whether different chromatin states in
the same TADs in two different cell types, have different impacts
on regulatory distances (Fig. 5a). We identified the nuclear factor
NF-kappa-B p65 subunit, RELA, for which gene expression data
in GTEx and multiple ChIP-seq data sets are available in the
lymphoblastoid cell line GM12878 and lung carcinoma cell line
A549. We defined TADs with statistically significant differences
in H3K27ac ChIP-seq signals between the two cell lines as
GM12878-predominant (more H3K27ac in GM12878 than in
A549) or A549-predominant TADs. We then used GTEx lym-
phoblastoid and lung tissue expression data to find the regulatory
decay distances of RELA in the GM12878-predominant TADs
(ΔGM12878

i ) and A549-predominant TADs (ΔA549
i ), respectively.

We observed that the regulatory decay distance estimated using
lymphoblastoid gene expression data are shorter in GM12878-
predominant TADs (ΔA549

i >ΔGM12878
i , lymphoblastoid expres-

sion). Conversely, the RELA decay distance estimated using lung
gene expression data is shorter in A549-predominant TADs
(ΔGM12878

i >ΔA549
i , lung expression) (Fig. 5b). This suggests that

the regulatory decay distance for a given TF becomes shorter in a
given TAD as that TAD becomes more active.

To explore this phenomenon more broadly, we examined the
chromatin effects on regulatory decay distance using eQTL data
from various tissues and cell types, including brain cortex,
stomach, lymphoblastoid, and whole blood. We then identified
the tissue-restricted TADs and determined whether the eQTLs
within these TADs are closer to their associated genes in the
tissues where these TADs are more active. For example, the
eQTLs derived from brain cortex tissue tend to be closer to the
TSSs of their associated genes in the TADs that are more active in

brain. Likewise, lymphoblastoid eQTLs are closer to the TSSs of
the associated genes in the TADs that are more active in
lymphoblastoid cells (Fig. 5c). This is not a result of ascertain-
ment bias because such bias would lead to the opposite result:
there is greater statistical power to detect weak, distant, eQTL
associations for highly expressed genes. In fact, this phenomenon
holds true for most pairs of GTEx tissues with available H3K27ac
ChIP-seq data we examined (Supplementary Fig. 5). These results
support our hypothesis that chromatin states of the TADs, in
addition to their genetic properties, influence regulatory decay
distances. More specifically, Δ*

i becomes shorter in the same
TADs when the TADs become active. Further investigation is
needed to understand the mechanisms underlying this
phenomenon.

A TAD-wise TF-regulation model helps interpret GWAS.
Genome-wide association studies (GWAS) have determined
many trait-associated single-nucleotide polymorphisms (SNPs)41

in the non-coding regions, but the functional interpretation of
these non-coding variants remains challenging. GWAS SNPs are
enriched in enhancers and DNase hypersensitive regions42, sug-
gesting roles in gene regulation, presumably by modulating TF-
binding affinities43. The implicated TFs were inferred as those
with enriched motifs or ChIP-seq peaks significantly overlapping
causal SNPs, which were fine mapped using statistical evidence or
through functional annotation44. Such approaches often cannot
produce satisfactory results for the following reasons: (1) limited
numbers of trait-associated SNPs; (2) sparse TF ChIP-seq peaks
across the genome; and (3) differential TF-binding densities in
different genomic regions. To illustrate the last point, consider
two TFs, TF X and TF Y, each with a total of 10 ChIP-seq peaks
genome-wide. A B-type TAD harbors one TF X and three TF Y
ChIP-seq peaks, and an A-type TAD harbors nine TF X and
seven TF Y peaks. Although the total numbers of peaks are the
same for TF X and TF Y, TF Y would play a dominant role in the
B-type TAD, whereas playing a similar role as TF X in the A-type
TAD. In other words, it is important to consider the density of a
particular TF’s binding relative to other TFs. Analysis of sparse
trait-associated SNPs and sparse TF ChIP-seq peaks can be
facilitated by relaxing the requirement for ChIP-seq peaks to
overlap SNPs. The trait-associated SNPs in GWAS studies are
after all only proxies for causal SNPs and the TADs harboring
these causal variants can be well estimated. The same principle
applies to TF ChIP-seq: although not all TF-binding sites are
necessarily identified in ChIP-seq, the peaks that are observed
may well approximate the relative abundances of TF binding
within TADs. Therefore, we can infer implicated TFs by

Fig. 3 Long-range TFs and short-range TFs have distinct regulatory properties. a Right: increase of H3K27ac levels in TEAD1 target TADs in cell lines
with high TEAD1 expression (p value 0.003; two-tailed Pearson correlation). Left: no increase of H3K27ac levels in YY1 target TADs with YY1 expression.
x-axis: CCLE cell lines ranked by YY1 (left) or TEAD1 (right) gene expression. y axis: YY1 (left) or TEAD1 (right) target TADs. Heatmap colors represent
H3K27ac ChIP-seq signal for cell line – TAD pairs. b Strong correlation between TF expression and H3K27ac ChIP-seq signal in TF target TADs for long-
range TFs but not for short-range ones. (p value= 0.0002; two-tailed Student’s t test). c Right: the average expression of genes in TEAD1 target TADs is
high in cell lines with high TEAD1 expression. Left: there is no association between YY1 gene expression and gene expression in YY1 target TADs. d Strong
correlation between TF expression and expression of genes in TF target TADs for long-range TFs but not for short-range ones. (p value 7.9e−6; two-tailed
Student’s t test). e Tissue-restricted expression of long-range TFs. Compared with short-range TFs, long-range TFs have higher expression coefficients of
variation across 48 GTEx tissues. f Long-range TFs (green) have more binding sites within the TAD harboring the TF gene itself (p value 0.008; two-tailed
Student’s t test). g Right: ChIP-seq peaks of TFs besides TEAD1 are more highly enriched with the TEAD1 motif in cell lines with higher TEAD1 expression.
Left: no such association is observed in the YY1 case. x axis: CCLE cell lines ranked by YY1 (left) or TEAD1 (right) gene expression. y axis: ChIP-seq of TFs
besides TEAD1 or YY1. Each cell represents the enrichment of YY1 (left) or TEAD1 (right) motifs in the ChIP-seq peaks of the corresponding TF-cell line
pair. h Long-range TFs tend to possess pioneer-like properties. The “pioneer-like” property of a TF is defined as the association between the level of that
TF’s expression and its motif enrichment in the ChIP-seq peaks of other TFs (p value 0.02; two-sided Fisher’s exact test). Source data are provided as a
Source Data file.
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Fig. 4 Long-range TFs have longer regulatory decay distances in B-type TADs. a–b Long-range TFs have longer regulatory decay distances in B-type
TADs than in A-type TADs. c In 47 (out of 48) GTEx tissues, eQTL-TSS distances are longer in B-type (blue) TADs than those in A-type (red) TADs.
Tissues were sorted using differential eQTL-TSS distances between A-type and B-type TADs. The box plot extends from the lower to the upper quartile
values of the data, with a line at the median. d The power-law decay rates of 49 long-range TFs measured in A-type TADs (−0.4 ~−0.5) are significantly
larger (in terms of absolute magnitude) than those measured in B-type TADs (−0.3 ~−0.45), (two-sided Student’s t test p value= 0.0013). The box plot
extends from the lower to the upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data.
e In human embryonic stem cells (hESC), mesendoderm (ME), neural progenitor (NP), and trophoblast-like (TB) Hi-C data, the average contact frequency
between two loci decreases as the distances between the loci increases, following a power-law relationship. In the range of TAD sizes (median size 680
kb), the decay rates are more negative than −0.5. Source data are provided as a Source Data file.
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overlapping SNPs with TADs, characterized by different relative
TF abundances (methods). We inferred the implicated TFs using
fine mapped SNPs44, and found our approach to outperform
SNP-TF ChIP-seq peaks overlaps in ranking known diseases-
associated TFs45 (Fig. 6a).

Our approach can also be understood as associating the non-
coding SNPs that are likely to affect genes with the TAD-
dominant long-range TFs that are likely to regulate these same
genes (Fig. 2c–h). Applying this method to infer the possible role
or long-range TFs in diseases with >20 annotated associated SNPs
in the GWAS catalog41, we identified clusters of TFs associated
with distinct groups of diseases, such as the previously known
association of RUNX1 with autoimmune46 diseases, KLF5 with
breast cancer47, and CEBPA as well as HNF4A with lipid

metabolism48 (Fig. 6b). This analysis also revealed co-occurring
diseases that have been reported in epidemiological studies, such
as autoimmune diseases and chronic lymphocytic leukemia49, as
well as type-2 diabetes and breast cancer50. These findings
demonstrate how a TAD-wise analysis of TF relative binding
enrichment could help prioritize long-range TFs germane to traits
of interest in GWAS studies.

Discussion
Despite intensive scientific investigation into the role of TFs in
regulating metazoan gene expression, the mechanisms by which
TFs regulate specific genes are still not well understood. In this
study, we quantitatively modeled the ranges of genomic distance
over which TFs regulate genes in different genomic and
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Fig. 5 Regulatory decay distances change with TAD activity and chromatin state. a Schematic illustration of TF regulatory decay and eQTL-TSS
distances decreasing with increasing TAD activity. b The regulatory decay distance of RELA gets shorter as TADs become more active. RELA is expressed
in both lymphoblastoid and lung, which possess distinct distributions of active TADs. In the TADs that are more active in lung than in lymphoblastoid cells,
the lung-specific RELA regulatory distance is shorter than the lymphoblastoid-specific RELA regulatory distance (left). On the other hand, in the TADs that
are more active in lymphoblastoid cells than in lung, the lymphoblastoid-specific RELA regulatory distance is shorter than the lung-specific RELA regulatory
distance (right). The lung-specific RELA regulatory decay distance is estimated using RELA ChIP-seq in A549 lung cells and GTEx lung expression data, and
the lymphoblastoid-specific RELA regulatory decay distance is estimated using RELA ChIP-seq in GM12878 and GTEx lymphoblastoid expression data. c
GTEx eQTL-TSS distances are shorter in the TADs that are more active in the tissues in which the eQTLs are measured. As in b, the distribution of GTEX
eQTL-TSS distances measured in brain (gray) or lymphoblastoid (orange) were compared in TADs that are more active in brain than in lymphoblastoid
cells and vice versa. Left: TADs more active in brain than in lymphoblastoid. Right: TADs more active in lymphoblastoid than in brain. The different log-
transformed eQTL-TSS distances in individual groups of TADs were compared using the two-sided Student’s t test. The box plot extends from the lower to
the upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. Source data are provided
as a Source Data file.
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chromatin contexts. We systematically examined 3406 TF ChIP-
seq, 1545 H3K27ac histone modification ChIP-seq, gene expres-
sion from 1037 CCLE cancer cell lines and 48 GTEx tissues, and
further analyzed eQTL and GWAS catalog data.

Our analyses revealed two distinct classes of TF with different
ranges of regulatory influence, chromatin-binding preferences,
pioneer-like properties, and auto-regulatory behaviors. Although
the precise mechanisms that underlie these regulatory classes
remain unclear, it is clear that different TFs have different reg-
ulatory genomic ranges of influence. Regarding the TF properties
explored in this study, classifying TFs into two groups is sufficient
to contrast their differences. Our results suggest that the binding
sites of short-range TFs that are located far away from gene TSSs,
which usually account for the majority of binding sites, are
unlikely to influence gene expression. Transcription is known to
involve several distinct stages including recruitment of RNA
polymerase II (PolII) to the promoter and release of the paused
early elongation complex into productive elongation51. We
speculate that short-range TFs might participate primarily in the
PolII recruitment and initiation stages, whereas the long-range
TFs might primarily influence elongation. A division in labor for
transcriptional regulatory proteins has been reported for a small
number of TFs and cofactors. For example, Bromodomain and
ExtraTerminal proteins, mediator and the p-TEFb complexes are
known to be important for productive transcriptional elonga-
tion51, and the TF Sp1 has a known role in PolII pre-initiation
complex recruitment52,53. In addition, Sp1 and CTF activation

domains have been found to stimulate initiation, whereas VP16,
p53, and E2F1 stimulate both initiation and elongation54,55. Our
results suggest such a division of labor applies to many DNA-
binding TFs. Recent observations that promoters can act like
enhancers for other genes56 might depend on the recruitment of
long-range TFs to enhancer-like promoters.

The genome is compartmentalized into TADs; some TADs are
“B-type” with low levels of activity in most cell types, whereas
others are “A-type” and highly active in most cell types. Known
cases of genes being regulated by enhancers over extremely long
genomic distances mostly occur in B-type TADs, prompting us to
examine whether these observations were part of a general trend.
Our analysis of TF ChIP-seq and eQTL data shows that, in gen-
eral, regulatory decay distances are longer in B-type TADs than in
A-type ones. By measuring the regulatory distance in the same
TADs under different chromatin states, we found that regulatory
decay distances become shorter when chromatin becomes more
active. As it is widely believed that enhancers regulate target genes
through direct physical loop formation, we explored Hi-C data to
determine whether the Hi-C interactions in A-type and B-type
TADs could explain our results, but they did not. It is possible that
current interaction–detection technologies or data processing
techniques do not capture all regulatory interactions on the rele-
vant time and length scales or that non-looping mechanisms may
mediate certain enhancer functions. The discordance between the
interaction data and our decay distance analysis corresponds with
recent high-resolution microscopy experiments on the regulation
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Fig. 6 TAD-wise analysis of non-coding GWAS hits prioritizes relevant TFs. a Evaluation of the inference of GWAS-SNP relevant TFs on the basis of
rankings of known disease-associated TFs. Blue boxes are known disease-associated TFs ranked by overlapping SNPs with TF ChIP-seq peaks, whereas
orange boxes are known disease-associated TFs ranked by overlapping SNPs with TADs characterized by different relative TAD-wise TF abundances. The
later approach can be approximated as cosine similarities between relative TAD-wise TF occupancies and numbers of disease-associated SNPs in TADs.
The two-sided Wilcoxon signed-rank test p value of the paired median TF rankings is 0.005 (n= 14). The box plot extends from the lower to the upper
quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. b The heatmap shows the long-range
TFs implicated from GWAS SNPs. The x axis represents traits in the GWAS Catalog, especially autoimmune disease, cancers, and metabolic syndromes,
and the y axis are inferred long-range TFs. Each entry is the color-coded cosine similarity between relative TF occupancies in TADs and numbers of trait-
associated SNPs in TADs. Red squares or blue squares are trait-TF pairs with significantly (p value < 0.001 using one-sided permutation considering
multiple hypothesis test) positive or negative cosine similarities, respectively. TFs and traits were clustered using hierarchical clustering. Source data are
provided as a Source Data file.
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of SOX257 and SHH58, which are regulated by certain distal
enhancers without direct physical enhancer–promoter interaction.
In addition, a recent study in Drosophila showed that disrupting
long-range inter-TAD loops does not alter expression for the
majority of genes59.

Non-looping regulatory mechanisms may involve thermo-
dynamically induced phase separation phenomena60. The com-
partments that have been observed in Hi-C data suggest that
heterochromatin and euchromatin regions of the genome are
spatially segregated5 and may form different nuclear structures
such as lamin-associated domains61, nucleoli, nuclear speckles,
PML bodies, and Cajal bodies62. In addition, altering the nuclear
position of a locus has been observed to modify the expression of
nearby genes63. Our analysis raises the possibility that TF-
induced disruption of heterochromatin, by disruption of tran-
scriptionally repressive zones or by nucleation of transcriptionally
active ones, can lead to alterations in the regulatory micro-
environment of genes and account for the chromatin state-
dependent regulatory decay distances. Recent experimental work
using a CRISPR-Cas9 based technology to induce phase-
separated chromatin droplet formation at targeted genomic loci
has shown that droplet formation in heterochromatin regions can
cause large disruptions of heterochromatin domains64. The
coordinated binding of pioneer factors to heterochromatin rich
TADs could seed droplet nucleation points64 and the enhancer
activity of these binding sites might be related to the release of a
gene from a repressive environment. An alternative mechanism is
facilitated tracking, in which enhancer-bound protein complexes
move toward the promoter in a progressive, unidirectional fash-
ion, whereas possibly remaining bound to the enhancer65. In
principle, the presence of enhancers or promoters between the
tracking enhancer and its target promoter may impede the
tracking progress and would explain the shorter regulatory dis-
tances in A-type domains.

Our modeling of regulatory decay distances is based on large-
scale TF cistrome data and gene expression cohorts of various cell
lineages. Although the Cistrome DB contains most publicly
available TF cistromes, and the CCLE and GTEx expression
cohorts include many different cell and tissue types, we are far
from covering all the TFs in all cellular contexts. Nonetheless, the
high degree of consistency between analyses using large amounts
of orthogonal data provides solid support that the trends we
observed are likely to reflect the general behavior of most TFs.
These findings may help the interpretation of GWAS SNPs: sig-
nificant SNPs in B-type TADs can impact the expression of
distant genes in the same TAD; significant SNPs in A-type TADs,
on the other hand, are less likely to be associated with (>100 kb)
distant genes. Some TADs are densely bound by certain long-
range TFs, and the chromatin states of these TADs are dominated
by these TFs. These TADs, which are “targets” of TFs, are pre-
dominantly of the B-type. Genes located in these target TADs
usually have tissue-specific functions and the target TADs often
harbor the TF gene itself, indicating TAD-wise autoregulatory
control of cell lineage specification. Integration of the hetero-
geneous distribution of long-range TFs and GWAS SNPs can
better prioritize the TFs implicated in the manifested phenotype
than the conventional SNP-TF ChIP-seq overlap approach. A
hierarchical probabilistic framework in which relative TAD-wise
TF abundance combined with local TF information may further
improve the inference. Further work are needed to understand
the mechanistic basis of these TF-specific and context-dependent
gene regulatory effects.

Methods
TAD annotation. The TAD annotations were downloaded from http://
chromosome.sdsc.edu/mouse/hi-c/download.html, and their coordinates were

converted from hg18 to hg38 using liftOver software from UCSC: http://
hgdownload.cse.ucsc.edu/goldenPath/hg18/liftOver/.

TF ChIP-seq data processing. The raw sequence data of TF ChIP-seq were
downloaded from Gene Expression Omnibus and processed through standard
workflow of ChiLin66, consisting of quality control and peak calling using MACS.
For fair comparisons of TF occupancy distributions between samples, those TF
ChIP-seq samples with <20,000 peaks were discarded, and for other TF ChIP-seq
samples only the top 20,000 peaks based on peak intensities were included for
downstream analysis.

Identification of TF enriched TADs. For each TF ChIP-seq sample, we calculated
the TF-binding density in each TAD (number of peaks/kb). Noticing that for all
TFs this density is higher in the A-type TADs than the B-type TADs, we examined
whether some TADs are more densely bound by certain TFs relative to others. To
achieve this, for each TAD we calculated the mean and standard deviation of the
TF-binding density in the TAD across all TFs. We then applied a z score trans-
formation to all TF ChIP-seq samples, and calculated the z score of a given TF to
get the TAD-specific relative occupancies of the given TF compared with other TFs.
For example, a TF i with a high z score in a given TAD j, indicates that TAD j is
more densely bound by TF i in comparison with other TFs. For each TF, we define
TF target TADs as those TADs with z scores higher than 1.

RP model. In our model of transcription regulation by a given TF i, we assume that
multiple TF i binding sites contribute additively to the regulation of a gene j. In this
model, we modeled the effect of a single ChIP-seq peak k of TF i on gene j with an
influence function that decays exponentially with the genomic distance between the
TSS of gene j and peak k, xi;j;k . The decay distance (Δ) defines the half-life of the
exponential decay function. The RP, Ri;j Δð Þ, defines the total regulatory effect of TF
i on gene j by summing all binding sites of TF i within TAD of the gene j (Eq. 1).

Ri;j Δð Þ ¼
X

peak k of TF i

2
�xi;j;k

Δ ð1Þ

This RP model can be also built using power-law functions:

Ri;j λð Þ ¼
X

peak k of TF i

xλi;j;k

Where λ is power-law decay rate.

Inferring TF regulatory ranges using TF perturbations. Assuming that the DE
genes upon TF perturbation would comprise TF direct target genes, we hypothesize
that the RP, Ri;j Δð Þ, with correct regulatory decay distance can best separate DE
genes from other genes. In TF perturbation related gene expression data matched
to TF ChIP-seq data, we calculated the Ri;j Δð Þ for each gene using Eq. (1) and
derived DE genes (absolute log2 fold change > 1 and p value < 0.01). We then used
Kolmogorov–Smirnov test to measure how Δ separates DE genes from other genes.
The regulatory decay distance Δ*

i

� �
was then defined as the Δ that gave rise to the

most significant KS test value.

Inferring TF regulatory ranges using gene expression cohorts. The method for
inferring the regulatory decay distance of a TF i is based on the relationship
between TF i gene expression, the gene expression of other genes, and the ChIP-seq
peaks of TF i. In step 1, we calculate a statistic (the Pearson correlation coefficient)
that summarizes the association between the expression of TF i and the expression
of the other genes. In step 2, the summary statistic from step 1 is combined with TF
ChIP-seq data in a model of cis-regulatory effect that uses RPs to estimate the
regulatory decay distance. In step 2, a range of values for the regulatory decay
distance parameter Δi for TF i is evaluated to determine which value of Δi max-
imizes the association between the TF i ChIP-seq data and the gene expression
correlation of TF i gene with other genes.

Step 1: Association between the gene expression of a TF and other genes. We
make the following two assumptions about the relationship between a TF’s gene
expression and the expression of the genes it regulates: (1) TFs are regulators of
gene expression, and (2) TFs do not influence gene expression unless they are
expressed. We approximate the relationship between the gene expression of TF i
and another gene j in sample k using the linear relationship:

Ej;k ¼ αþ γi;jEi;k þ ϵj ð2Þ

where Ei;k and Ej;k are the standardized expression levels of TF i and gene j in
sample k (i.e., Ei � N 0; 1ð Þ and Ej � N 0; 1ð Þ). γi;j summarizes the transcriptional

regulatory effect TF i might have on gene j, and ϵj ~ Nð0; σ2Þ. Below we show that,

under these assumptions, the Pearson correlation coefficient (ρexpri;j ) between the
gene expression of TF i (Ei) and another gene j (Ej) is the maximum likelihood
estimator of the regulatory effect parameter, γi;j.
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Given expression data ðEi;1; Ej;1Þ ðEi;2; Ej;2Þ¼ ðEi;n; Ej;nÞ, the conditional
probability distribution of the data under Eq. (2) is:Yn

k¼1

p Ej;kjEi;k; α; γi;j; σ2
� �

¼
Yn
k¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
ðEj;k�ðαþγi;j Ei;k ÞÞ2

2σ2

The log-likelihood of the parameters based on the observed expression data is:

l α; γi;j; σ
2

� �
¼
Xn
k¼1

log p Ej;kjEi;k; α; γi;j; σ2
� �

¼ � n
2
log 2π � nlogσ � 1

2σ2
Xn
k¼1

ðEj;k � ðαþ γi;jEi;kÞÞ2

γ̂i;j , the maximum likelihood estimator of γi;j , can be derived using
∂l α;γi;j ;σ

2ð Þ
∂ γi;j

¼ 0:

γ̂i;j ¼
Pn

k¼1 Ej;k � Ej
� �

� ðEi;k � EiÞPn
k¼1ðEi;k � EiÞ2

¼ Cij

S2i

where Cij is the covariance between Ei, and Ej . As Ei;k and Ej;k are standardized
expression levels of TF i and gene j, and thus S2i = S2j = 1.

γ̂i;j ¼
Cij

S2i

¼ Sj
Si
� Cij

Si � Sj
�
Si ¼ Sj

�
¼ Cij

Si � Sj
ðDefinition of Pearson correlation coefficientÞ

¼ ρexpri;j

ð3Þ

Where ρexpri;j is the Pearson correlation coefficient between Ei and Ej .
Step 2: Association between gene expression correlation and TF ChIP-seq data.

We assume that, for some value Δi , the ChIP-seq peak derived RP model, Ri;j;ðΔiÞ,
can approximate γ̂i;j , the gene expression based estimator of the possible
transcriptional regulatory effect of TF i on gene j:

γ̂ij ¼ f Ri;j Δ*
i

� �� �
þ ϵij ð4Þ

f �ð Þ can be a linear or nonlinear function, and we conduct the analysis using
both linear and nonlinear model.

Linear model (for Step 2). γ̂i;j , the cis-regulatory effect of TF i on gene j, can be
approximated as:

γ̂ij ¼ αi þ βiRi;j Δ*
i

� �
þ ϵij ð5Þ

Where Ri;j Δ
*
i

� �
is the RP model of cis-regulatory effect of TF i on gene j

parameterized by TF-specific regulatory decay distance Δ*
i , defined as (1), and

ϵij ~Nð0; σ2i Þ.
The parameters in Eq. (5) can be inferred using maximum likelihood

estimations:

α̂i; β̂i;
cΔ*
i ;
bσ2i ¼ argmax � n

2
ln 2πð Þ � n

2
ln σ2i
� �� 1

2σ2i

Xn
j¼1

γ̂i;j � αi � βi � Ri;j Δ*
i

� �� �2 !
ð6Þ

Where n is the number of genes. To get the maximum likelihood estimator

α̂i; β̂i;
cΔ*
i ;
bσ2i , we first fixed Δ*

i , and α̂i; β̂i;
bσ2i are:

β̂i ¼
Pn

j¼1 γ̂i;j � γ̂i;j

� �
Ri;j Δ

*
i

� �� Ri;j Δ
*
i

� �� �
Pn

j¼1 Ri;j Δ
*
i

� �� Ri;j Δ
*
i

� �� �2
α̂i ¼ γ̂i;j � β̂i � Ri;j Δ

*
i

� �
bσ2i ¼ 1

n

Xn
j¼1

γ̂i;j � α̂i � β̂i � Ri;j Δ*
i

� �� �2
Then with fixed α̂i; β̂i;

bσ2i ,cΔ*
i ¼ argmax � n

2
ln bσ2i� �� �

¼ argmin bσ2i� �
¼ argmaxðρ2Þ ð7Þ

Where ρ, the Pearson correlation coefficient between γ̂i� and Ri� Δ
*
i

� �
, is given by:

ρ
expr;RPðΔ*

i Þ
i � ρ

γ̂i� ;Ri� Δ*
ið Þ

i ¼
Pn

j¼1 γ̂i;j � γ̂i;j

� �
Rij Δ

*
i

� �� Ri;j Δ
*
i

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 γ̂i;j � γ̂i;j

� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 Ri;j Δ

*
i

� �� Ri;j Δ
*
i

� �� �2r
ð8Þ

Therefore, to approximate cΔ*
i , the maximum likelihood estimator of Δ*

i , we

tested a range of different Δ values from 100 bp to 4000 kb, and determined cΔ*
i , as

the one that maximizes Eq. (7).

Nonlinear model (for Step 2). In an alternative method we measure the asso-
ciation between the gene expression association, γ̂i;j , and the ChIP-seq based
RP, Ri;jðΔÞ, using “distance correlation” (dCor), a measure of association that,
unlike the Pearson correlation, is independent of the underlying variable dis-
tributions67. Systematically varying Δ, regarding Ri;jðΔÞ with different Δ as dif-
ferent models, we perform model selection using goodness of fit tests:

Δ*
i ¼ argmaxΔ dCor γ̂ij;Ri;j Δð Þ

� �� �
Empirical assessment of assumptions. The purpose of this model is to use gene
expression to quantify the possible regulatory relationships between a TF and other
genes, based on an analysis of gene expression and TF ChIP-seq data. In the
empirical evaluation of Step 2 (Supp. Fig. 2a) we find that γ̂ij and Ri;j; Δ

*
i

� �
are

indeed significantly correlated, suggesting that Δ*
i . inferred using a linear relation

in Eq. (5) captures the association between γ̂ij and Ri;j; Δð Þ. For all the TFs used in
this study, the p values were found to lie in a range between 10−200 (< machine
precision ~10−16) and 10−8. Supp. Fig. 2d, e show that the inferred regulatory
distances derived on the basis of linear and distance correlation based approaches
are similar.

Procedure for inferring regulatory ranges of TFs. Based on Eq. (7), we can
estimate TF i-specific Δ*

i by integrating TF ChIP-seq from Cistrome and gene
expression data from CCLE and other gene expression cohorts. The detailed steps
are as follows:

1. We modeled γ̂i;j , the maximum likelihood estimator of transcriptional
regulatory effect of TF i on gene j, with Rij Δ

*
i

� �
using Eq. (5). Ri;j Δ

*
i

� �
was

calculated based on TF ChIP-seq data with Eq. (1).
2. In Eq. (3), γ̂i;j equals to the Pearson correlation coefficient, ρexpri;j , between the

expression of TF i and gene j, using normalized gene expression data. The
expression data can be CCLE, GTEx, or other gene expression cohorts.

a. CCLE: we downloaded CCLE gene expression data and normalized the
log-transformed RPKM values in different cell lines using quantile
normalization, so that the distributions of gene expression values were
the same in each cell line. Data were then normalized gene-wise by
mean centering.

b. GTEx: to infer tissue-specific Δ*
i , we matched the ChIP-seq cell line to

GTEx tissue type. We downloaded normalized GTEx gene expression
data, and derived tissue-specific Pearson correlation ρexpri;j jtissue.

3. As Eq. (6), cΔ*
i can be inferred as the Δ that gives rise to the maximum

ρexpr;RPðΔÞi as Eq. (7). Therefore, we repeated the above step 1–2 with Δ
ranging from 100 bp to 4000 kb, and defined cΔ*

i as:cΔ*
i ¼ argmax

Δ
abs ρexpr;RP Δð Þ

i

� �� �
Specifically, we derived the cΔ*

i using the following steps:

a. We defined qualified TF ChIP-seq samples if there is any Δ giving rise to
ρexpr;RðΔÞi greater than 0.1.

b. If there were more than two qualified TF i ChIP-seq samples, we
averaged the ρexpr;RðΔÞi for each Δ. If the maximum average correlation is
larger than 0.1, we chose the Δ that gives rise to the maximum average
correlation coefficient as the cΔ*

i .
c. For GTEx, we matched the ChIP-seq cell line to GTEx tissue type and

derived tissue-specific regulatory decay distance, cΔ*
i jtissue as step 3a–b.

Modeling dynamic regulatory distances of TFs. For the investigation of the
regulatory decay distance dependence on chromatin context, we proceeded as
follows:

1. To infer TAD type-specific (e.g., B-type TADs or A-type TADs) regulatory
decay distances, in step 3 of “Inferring regulatory decay distances of
transcriptional factors using Cistrome TF ChIP-seq data and CCLE or GTEx
gene expression data” we included only genes located within the designated

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16106-x

12 NATURE COMMUNICATIONS |         (2020) 11:2472 | https://doi.org/10.1038/s41467-020-16106-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


TAD type (e.g., B-type TADs or A-type TADs). Other steps remained
the same.

2. To investigate whether the regulatory decay distances depend on chromatin
status in addition to genomic features, we focused on TADs that have
distinct activity status levels in different lineages. Take lung and
lymphoblastoid tissues, for example. We first computed the lung H3K27ac
level for each TAD by averaging the TAD H3K27ac mean values over all
H3K27ac ChIP-seq samples associated with the lung cluster. The
lymphoblastoid H3K27ac TAD levels were calculated in a similar way.
We defined the lung-specific TAD clusters as those with significantly
(p value < 1e−10) higher H3K27ac levels in lung compared with H3K27ac
ChIP-seq produced from lymphoblastoid. The lymphoblastoid-specific TAD
clusters were defined in a similar way. For the RELA analysis we used GTEx
lung expression data and RELA ChIP-seq samples in A549 to compute the
lung-specific regulatory decay distance. RELA ChIP-seq in lymphoblastoid
and GTEx lymphoblastoid expression data was used to compute the
lymphoblastoid-specific regulatory decay distance.

H3K27ac clustering. The raw sequence data of H3K27ac ChIP-seq were down-
loaded from Gene Expression Omnibus and processed through standard workflow
of Chilin66 with peak calling using MACS and the processed data are accessible
through the Cistrome Data Browser. We calculated the average H3K27ac occu-
pancies in each TAD using bigWigAverageOverBed, and further normalized each
sample using z transformation. We then clustered the H3K27ac CHIP-seq samples
and TAD as 10 clusters, both using hierarchical clustering. We defined the TAD
cluster with the weakest and strongest H3K27ac signals as B-type TADs and A-type
TADs, respectively.

Pioneer-like factor identification. Pioneer factors can access closed chromatin
and facilitate the binding of other TFs to the accessible genomic loci. To probe
whether a TF such as TEAD1, for example, possesses pioneer-like factor properties,
we investigated whether there is a gain in TEAD1 motif enrichment in peaks of
non-TEAD1 TF ChIP-seq samples in cell lines with high levels of TEAD1
expression. We processed as following steps:

1. Calculate the TEAD1 motif enrichment in peaks of all non-TEAD1 TF
ChIP-seq samples using Homer68. TEAD1 motif enrichment represents the
ratio of the proportion of non-TEAD1 ChIP-seq peaks with the TEAD1
motif to the proportion of background sequences with the TEAD1 motif.

2. Average the TEAD1 motif enrichment for redundant TF cell pairs.
3. Define the median TEAD1 enrichment across all non-TEAD1 TF ChIP-seq

samples in each cell line i as yi and define xi as the level of TEAD1 gene
expression in that cell line. Defining �y as the mean of yi across all cell lines,
we further derived y*i as follows:

y*i ¼ 1ðyi ≥�yÞ
4. Perform logistic regression y*i � xi , and define TEAD1 as “pioneer-factor

like” if the logistic regression p value is smaller than 0.05.

GTEx eQTL analysis. We downloaded eQTL loci across multiple tissues from the
GTEx database (accession phs000424.v7.p2), remapped the coordinates from
GRCh37/hg19 to GRCh38/hg38, and removed eQTL-TSS pairs with p values lar-
ger than 1e−5. To investigate whether eQTL-TSS pairs in B-type TADs have longer
distances than those in A-type TADs, we selected those eQTL-TSS pairs with
TSS located in B-type and A-type TADs, and then compared their log-transformed
eQTL-TSS distances using Student’s t test. To further examine whether the eQTL-TSS
distances become shorter as chromatin becomes more active, we focused on TADs
that have distinct activities in different lineages. Take brain cortex and lympho-
blastoid for instance, we compared their H3K27ac level using Cistrome and defined
brain-specific active TADs as those with significantly (p value < 1e–10) higher
H3K27ac level in brain cortex compared with lymphoblastoid. Lymphoblastoid-
specific active TADs were defined in the same way. Further for eQTL-TSS pairs with
TSS located in brain-specific or lymphoblastoid-specific active TADs, we compared
the log-transformed distances measured in brain cortex and lymphoblastoid using
GTEx data.

For more-comprehensive comparisons, we compared all possible pairs from
whole blood, stomach, lymphoblastoid, and brain cortex. We defined those pairs
with eQTL-TSS distances longer in tissue-specific active TADs as non-significant.

Hi-C analysis. The Hi-C data in cool format was downloaded from ftp://cooler.
csail.mit.edu/coolers/hg19/. We mapped contact pairs to B-type and A-type TADs,
respectively, and compared the decreasing rate of contact frequencies with dis-
tances. Specifically, for given genomic distances (d), we calculated the average
contact frequencies (F):

FðdÞ ¼
P

all interacting pairsðdÞ counts

jall possible interaction pairsðdÞj

GWAS-SNP enrichment analysis. We mapped the disease-associated SNPs to
TADs and calculated the number of SNPs in each TAD. Relative TAD-wise TF
abundance was calculated as following steps:

1. For each of 216 TF ChIP-seq samples, the top 20,000 peaks were included.
2. For each of 3051 TADs, numbers of TF peaks located within were

calculated. The relative TAD-wise TF abundance was calculated by dividing
TF peak number with the mean TF peak number.

Using the relative TAD-wise TF abundance to approximate the TF occupancies
overlapping with SNPs, we can write the equation as:

TFscore ¼
X
TADs

#SNPs � ðrelative TAD � wise TF abundanceÞ

Which can be further approximated as cosine similarities:P
TADs #SNPs � ðrelative TAD� wise TF abundanceÞ
j#SNPsj2 � jrelative TAD� wise TF abundancej2

We plotted the diseases/traits–TF heatmap with cosine similarities between
relative TF occupancies and number of disease SNPs in TADs, and clustered the
diseases/traits and TFs using hierarchical clustering.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available as follows: Cistrome [http://
cistrome.org/db/#/], CCLE [https://portals.broadinstitute.org/ccle], GTEx [https://www.
gtexportal.org/home/], Hi-C40 [ftp://cooler.csail.mit.edu/coolers/hg19/], GWAS41

[https://www.ebi.ac.uk/gwas/home], Linkage disequilibrium blocks69 [http://distild.
jensenlab.org/download.html], CAGE39 [http://enhancer.binf.ku.dk/presets/]. All other
relevant data supporting the key findings of this study are available within the article and
its Supplementary Information files or from the corresponding authors upon reasonable
request. Key processed data for Figs. 1e, 2a, 2b, 2c, 3h, and Supplementary Fig. 2d are
provided as Supplementary Data. Data set used for figures in the current study are
available as Source Data. A reporting summary for this Article is available as a
Supplementary Information file.

Code availability
Open source software is listed below: MACS2 2.1.2: https://github.com/taoliu/MACS.

LiftOver: http://hgdownload.soe.ucsc.edu/admin/exe/macOSX.x86_64/liftOver.
Homer v4.11: http://homer.ucsd.edu/homer/index.html. For inference of TF regulatory
decay distance: https://bitbucket.org/liulab/tf_regulatory_distance/src/master/. Scripts
specific for each figure are available with request to corresponding authors.
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