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Neural network architecture search with AMBER
Deep learning applied to genomics can learn patterns in biological sequences, but designing such models requires 
expertise and effort. Recent work demonstrates the efficiency of a neural network architecture search algorithm in 
optimizing genomic models.

Yi Zhang, Yang Liu and X. Shirley Liu

Deep learning has been powerful 
in learning complex functions 
from data and has been applied 

in computer vision, natural language 
processing and biology. If we view the 
human genome as a book with three billion 
letters of nucleotides represented by A, C, G 
and T, genes and gene-controlling sequences 
are encoded in the book and variations in 
the genome can link to disease conditions. 
Neural network models that extract patterns 
from the sequences can help predict 
functional genomic elements and interpret 
genetic variations. However, the current 
deep learning models for genomics usually 
involve expert-designed neural network 
structures and require extensive tuning, 
making such models unapproachable for 
most other scientists. In a recent publication 
in Nature Machine Intelligence, Zhang and 
colleagues1 present a framework called 
Automated Modelling for Biological 
Evidence-based Research (AMBER), which 
incorporates a deep learning architecture 
searching algorithm and demonstrates 
efficient and automatic model selection for 
genomic problems.

Recent work that applies deep learning 
to biological sequences has improved our 
understanding of the human genome. 
Examples include clinical impact inference 
for protein-coding mutations2, pattern 
recognition among sequences bound by 
transcription factors (TF)3, and epigenetic 
effect prediction for genetic variations4. 
Specifically, as epigenetic profiles of a 
genomic region reflect biological functions, 
deep learning models that predict epigenetic 
profiles from genomic sequences have been 
powerful in extracting patterns in functional 
biological sequences (Fig. 1a). Convolutional 
neural networks (CNNs) are well suited for 
this task due to their advantage in extracting 
spatial patterns in sequences. For instance, 
Zhou et al.4 constructed a CNN-based 
model called DeepSEA to map genomic 
sequences to epigenetic profiles. The trained 
model can thus predict genetic variants with 
significant epigenetic effects. Built on the 
previous success with the expert-designed 

CNN in DeepSEA, Zhang et al. expanded 
the work to achieve an optimized model 
by incorporating a state-of-the-art neural 
network architecture searching algorithm 
called Efficient Neural Architecture Search 
(ENAS)5. Usage of ENAS avoided the 
combinatorial explosion in the CNN model 
search space and sufficiently explored 
various architectures to reach an optimized 
architecture.

The idea of ENAS is to first define a set 
of basic layers used in the CNN, as well as 
ways of connecting the layers, followed by a 
recurrent neural network (RNN) controller 
to automatically decide what operation to 

choose at each layer and how to connect 
layers in each candidate model (Fig. 1b). 
Therefore, the parameters trained in the 
ENAS include both the candidate model 
weights and the parameters of the RNN 
controller. During the training process, 
the model is updated by reinforcement 
learning so that the performance of the 
current candidate architecture works as a 
reward. Finally, the search will converge 
at an optimized model. A previous Neural 
Architecture Search (NAS) algorithm6, 
searches over each candidate model but 
has high computation cost. Another 
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Fig. 1 | Neural architecture search for genomic problems. a, The convolutional neural network is able 
to model spatial patterns in genomic sequences and predict epigenetic profiles which are biological 
function indicators. b, Each candidate model is a convolutional neural network allowing connection 
among layers. The neural networks architecture is updated by reinforcement learning. c, The predicted 
functional annotations of the genetic variations can be evaluated by two independent analyses: 
allele-specific binding of transcription factor (TF), and heritability enrichment of single nucleotide 
polymorphism (SNPs) from genome-wide association studies (GWAS).

Nature Machine Intelligence | VOL 3 | May 2021 | 372–373 | www.nature.com/natmachintell

http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-021-00350-x&domain=pdf
http://www.nature.com/natmachintell


373

news & views

(HNAS)7 method applies a hierarchical 
structure to constrain the search space, 
but depends on well-designed computing 
cells. Compared to the previous algorithms, 
the ENAS strategy significantly improves 
computing efficiency by allowing weights to 
be shared among all candidate models and 
by using reinforcement learning in RNN 
controller updates.

In Zhang et al., the optimal CNN model 
generated by ENAS took as input genomic 
sequences of length 1,000 base-pair and was 
trained to predict 919 epigenetic profiles in 
a multitasking regime. The model search 
space consists of 12 layers, each layer chosen 
from 7 commonly used operations including 
convolution, dilated, max-pooling and 
Rectified Linear Unit (ReLU). Based on 
multiple runs of ENAS, the authors showed 
that the optimal models (AMBER-Seq 
models) outperformed baseline sampled 
models (AMBER-Base) in the epigenetic 
profile prediction task. Interestingly, the 
authors observed that the optimal model 
prefers convolutional operation of kernel 
size 8 in the bottom and middle layers while 
selecting max-pooling operation in top 
layers closer to output. This reflects that the 
optimized model tends first to convolute  
the spatial sequence content and then  
pool and condense the feature to generate  
a prediction.

Given that the optimized model has 
good performance in predicting functional 
categories of genomic sequences, this model 
can predict the effects of genetic variations. 
The authors showed that the performance 
improvement by the AMBER-Seq 

optimized model could be confirmed by 
two analyses that independently measure 
biological significance of genetic variants 
(Fig. 1c). The first is allele-specific binding 
of TFs, quantified by allelic imbalance 
in genomic reads from chromatin 
immunoprecipitation with sequencing 
(ChIP-seq) technology. The other is 
heritability enrichment of genetic variants 
from genome-wide association studies 
(GWAS) that discover disease-associated 
risk variants. In predicting allele specificity 
of TFs, AMBER-Seq outperforms the 
expert-designed models, including 
DeepSEA, deltaSVM8, and DeepBind9. 
Specifically, the authors presented a case 
where the AMBER-Seq models align 
better with biological data. Specifically, 
AMBER-Seq models predicted stronger 
binding of SPI1 at G allele at the single 
nucleotide polymorphism (SNP) rs11658786 
compared to A allele, consistent with the 
DeepSEA model and the ChIP-seq data. 
Other models — including AMBER-Base, 
deltaSVM, DeepBind and Jaspar 
motif — give the opposite direction of 
allele-specificity. In GWAS heritability 
enrichment, the authors showed that the 
annotation generated by AMBER-Seq 
optimized model delivers more information 
of variant impact than the AMBER-Base 
sampled model.

Overall, Zhang et al. demonstrated the 
power of neural architecture searching to 
improve deep learning models in genomics. 
The proposed AMBER framework 
is an innovative step that enables the 
improvement of deep learning models built 

on genomic sequences. The framework 
is generalizable to other biological 
machine learning tasks that take biological 
sequences as input. Examples include 
imputing TF binding profile in a new cell 
type and predicting neoantigen capable 
of eliciting antitumor responses. Moving 
forward, algorithms that boost biological 
interpretability for deep learning models 
can lead to more scientific discoveries and 
insights in genomics. ❐
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