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Abstract

The tumour stroma regulates nearly all stages of carcinogene-
sis. Stromal heterogeneity in human triple-negative breast
cancers (TNBCs) remains poorly understood, limiting the devel-
opment of stromal-targeted therapies. Single-cell RNA sequenc-
ing of five TNBCs revealed two cancer-associated fibroblast
(CAF) and two perivascular-like (PVL) subpopulations. CAFs clus-
tered into two states: the first with features of myofibroblasts
and the second characterised by high expression of growth
factors and immunomodulatory molecules. PVL cells clustered
into two states consistent with a differentiated and immature
phenotype. We showed that these stromal states have distinct
morphologies, spatial relationships and functional properties in
regulating the extracellular matrix. Using cell signalling predic-
tions, we provide evidence that stromal-immune crosstalk acts
via a diverse array of immunoregulatory molecules. Importantly,
the investigation of gene signatures from inflammatory-CAFs
and differentiated-PVL cells in independent TNBC patient
cohorts revealed strong associations with cytotoxic T-cell
dysfunction and exclusion, respectively. Such insights present
promising candidates to further investigate for new therapeutic
strategies in the treatment of TNBCs.
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Introduction

Heterotypic interactions between stromal, immune and malignant

epithelial cells play important roles in solid tumour progression and

therapeutic response. Cancer-associated fibroblasts (CAFs) play an

integral part in the tumour microenvironment (TME) and can influ-

ence many aspects of carcinogenesis including extracellular matrix

(ECM) remodelling, angiogenesis, cancer cell proliferation, invasion,

inflammation, metabolic reprogramming and metastasis (Kalluri,

2016). Recent studies have described roles for CAFs in mediating

immune suppression and chemoresistance, establishing CAFs as

novel and attractive targets for anti-cancer therapies in advanced

breast cancer (Brechbuhl et al, 2017; Cazet et al, 2018; Costa et al,

2018; Givel et al, 2018; Su et al, 2018). Despite their well-described

roles in cancer biology, CAFs remain enigmatic: limited studies

suggest phenotypic heterogeneity, plasticity and functional
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diversity, with both tumour-promoting and tumour-suppressive

properties (Kalluri, 2016). The multi-faceted nature of CAFs suggests

that they are comprised of diverse subpopulations, and an improved

understanding of stromal heterogeneity may explain how CAFs

contribute to the dynamic complexity and functional malleability of

the tumour ecosystem.

CAFs of the tumour parenchyma are routinely studied using a

handful of markers including a-smooth muscle actin (a-SMA),

fibroblast activation protein (FAP), CD90 (THY-1), platelet-derived

growth factor receptor a and b (PDGFRa and PDGFRb), podoplanin
(PDPN) and fibroblast-specific protein 1 (FSP-1, also named

S100A4) (Kawase et al, 2008; Kisselbach et al, 2009; Neri et al,

2015; Kalluri, 2016). However, these markers are not necessarily co-

expressed, nor specific to the fibroblast lineage (Costa et al, 2018).

For instance, a-SMA not only identifies CAFs with a myofibroblast

morphology but also serves as a general marker for myoepithelial

cells and perivascular cells. a-SMA+ cells in the breast tumour

stroma can also arise from different mesenchymal lineages including

resident fibroblasts, smooth muscle cells and pericytes (Ronnov-

Jessen et al, 1995). In addition, FSP-1 is also expressed in macro-

phages, other immune cells and even cancer cells (Osterreicher

et al, 2011). Thus, a categorical definition of cancer-associated stro-

mal cells and specific cell surface markers remains challenging and

is urgently needed (Kalluri, 2016).

Three broad CAF subtypes have been recently profiled in

mouse models of pancreatic ductal adenocarcinoma (PDAC)

(Ohlund et al, 2017; Biffi et al, 2018; Elyada et al, 2019). These

are characterised by a myofibroblast-like (myCAFs) phenotype,

inflammatory properties (iCAFs) and antigen-presenting capabili-

ties (apCAFs) (Ohlund et al, 2017; Biffi et al, 2018; Elyada et al,

2019). Although little is known about the mechanistic role and

clinical relevance of iCAFs and apCAFs, an accumulation of the

myCAF marker a-SMA has been shown to correlate with poor

outcome in breast and pancreatic cancer (Yamashita et al, 2012;

Sinn et al, 2014). We have shown that targeting Hedgehog-acti-

vated CAFs, which have a myofibroblast-like phenotype in ECM

regulation, results in markedly improved survival, chemosensitiv-

ity and reduced metastatic burden in pre-clinical models of TNBC

(Cazet et al, 2018). In addition, myofibroblast-like CAFs have been

shown to contribute to an immunosuppressive microenvironment

by attracting T-regulatory cells in breast and ovarian cancer (Costa

et al, 2018; Givel et al, 2018). While these studies point towards

the therapeutic targeting of myofibroblast-like CAFs, genetic abla-

tion of a-SMA+ cells in a mouse model of PDAC resulted in more

aggressive tumours and reduced mouse overall survival, indicating

complex stromal functionalities across distinct tissue sites

(Ozdemir et al, 2015).

Recent advances in single-cell RNA sequencing (scRNA-Seq)

have overcome some of the technical hurdles in the investigation of

cellular heterogeneity amongst complex tissues such as carcinomas.

Recent patient studies have dissected the TME in head and neck

squamous cell carcinomas and lung tumours, revealing new insights

into stromal and immune subsets associated with disease progres-

sion (Puram et al, 2017; Lambrechts et al, 2018). Single-cell studies

of human breast cancers have been limited to immune cells, while

studies in mouse models have revealed four subclasses of CAFs

(Bartoschek et al, 2018). Although CAFs from human breast carci-

nomas have been profiled by flow cytometry and bulk sequencing,

comprehensive single-cell profiling has yet to be performed in TNBC

patients (Costa et al, 2018).

TNBC is an aggressive breast cancer subtype, which is lacking in

effective targeted therapeutic options. It is clinically defined by

negative status for targetable hormone receptors (oestrogen receptor

and progesterone receptor) or HER2 amplification. Studies in mice

and humans have demonstrated that TNBC progression can be influ-

enced by stromal cells; however, a comprehensive understanding of

the stromal hierarchy is yet to be established (Brechbuhl et al, 2017;

Cazet et al, 2018; Costa et al, 2018; Givel et al, 2018; Su et al,

2018). To investigate this in more detail, we performed unbiased

high-throughput scRNA-Seq to profile the TME directly in patient

tumour tissues. In addition to CAFs, we identified stromal cells with

a perivascular-like (PVL) profile, which were not necessarily associ-

ated with blood vessels. Our study focuses exclusively on CAFs and

PVL cells, which we collectively refer to as “stroma”. Using orthogo-

nal methods, we found that functions previously ascribed to CAFs

as unitary cell types are actually performed by specialised subsets of

stromal cells with distinct morphological, spatial and functional

properties (Bartoschek et al, 2018). In addition, by sampling cells

from the entire TME, we were able to predict paracrine signalling

between stromal and immune cell subsets. From this, we analysed

large patient gene expression datasets to show significant associa-

tion between inflammatory-like CAFs and differentiated-PVL cells

with immune evasion. Our human TNBC single-cell datasets provide

a new taxonomy of human cancer-associated stromal cells, which

we envisage can be used to further develop TME-directed therapies.

Results

Composition of triple-negative breast cancers at
cellular resolution

We performed scRNA-Seq on primary breast tumours collected from

five patients (Fig EV1A and B) using a marker-free approach. Fresh

tissues were dissociated into single-cell suspensions prior to single-

cell capture on the Chromium controller (10× Genomics) and

sequencing on the NextSeq 500 (Illumina) (Figs 1A and EV1C). In

total, we sequenced 24,271 cells, with an average of 4,854 cells per

patient (Fig EV1D). A total of 28,118 genes were detected with an

average of 1,658 genes expressed, and 6,215 unique molecular iden-

tifiers (UMIs) detected per cell (Fig EV1E–H). Data from individual

tumours were integrated and clustered using canonical correlation

analysis (CCA) in Seurat (Satija et al, 2015).

Epithelial cells (Fig 1B and C) and stromal-immune cells (Fig 1D

and E) were first annotated through the expression of canonical cell

type gene markers. This revealed four major cell states within the

epithelial compartment (Fig 1B and C), including a major cluster of

4,095 cancer cells (16.9% of all cells; EPCAM+, ESR1�) and a

second cluster of 614 cancer cells with high proliferation (2.5%;

MKI67+). The remaining two smaller epithelial clusters had gene

expression features consistent with normal luminal (277 cells,

0.9%; EPCAM+, ESR1+) and myoepithelial cells (212 cells, 0.9%;

EPCAMlo, KRT5+, KRT14+ and ACTA2+). Neoplastic or normal

status of these cell clusters was confirmed by inferring genome copy

number alterations over large genomic regions using InferCNV

(Appendix Fig S1) (Patel et al, 2014). In addition to marker genes,
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stromal and immune clusters were further classified through scoring

against published cell type signatures from the XCell database with

an area under the curve approach (AUCell) (Fig EV2A; Aibar et al,

2017; Aran et al, 2017). In the immune compartment (Fig 1D and

E), we identified 7,990 T lymphocytes (32.9%; CD3D), 1,245 B cells

(5.1%; MS4A1), 1,955 plasma cells (8.1%; JCHAIN) and 4,606

myeloid cells (19.0%; CD68). Through re-clustering of the T

lymphocytes (Fig EV2B–D), we identified 175 T-follicular helper

cells (2.2%; CXCL13 and CD200), 994 T-regulatory cells (12.4%;

FOXP3 and BATF), 2,003 other CD4+ T cells (25.1% of all T cells;

CD4, IL7R and CD40LG), 3,691 CD8+ T cells (46.2%; CD8A and

GZMH), 605 proliferating T cells (7.6%; MKI67), 358 NK Cells

(4.5%; GNLY, KLRD1, NCR1, XCL1 and NCAM1) and 164 NKT cells

(2.1%; GNLY, KLRD1, NCR1 and CD3D�). The remaining cells

consisted of 610 endothelial cells (2.5%; PECAM1) and two distinct

clusters (with 1,409 and 320 cells, 5.8 and 1.3%, respectively) shar-

ing the expression of common stromal markers including PDGFRB,

S100A4 (FSP-1), ITGB1 (CD29) and THY1 (CD90). These non-
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Figure 1. Cellular composition of five triple-negative breast carcinomas.

A Schematic highlighting the application of our single-cell RNA sequencing experimental and analytical workflow for primary patient tissue.
B UMAP visualisation of 4,986 epithelial cells aligned using canonical correlation analysis in Seurat. Cells are coloured by their cell type annotation (left) and patient of

origin (right).
C Log-normalised expression of markers for epithelial (EPCAM), mature luminal epithelial (ESR1), myoepithelial (KRT5, KRT14 and ACTA2) and proliferating cancer cells

(MKI67).
D UMAP visualisation of 19,285 stromal and immune cells aligned and visualised as represented in (B).
E Log-normalised expression of markers for fibroblasts (PDGFRB, THY1, COL1A1, ITGB1 and S100A4), endothelial cells (PECAM1), T cells (CD3D), CD8 T cells (CD8A),

T-regulatory cells (FOXP3), B cells (MS4A1), myeloid cells (CD68) and plasma cells (JCHAIN).
F Proportion of cell types across each patient.
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endothelial nor immune cells (collectively referred to as stromal in

this study) were enriched for a fibroblast cell type signature from

XCell (Fibroblasts_FANTOM_1; Fig EV2A). All annotated cell types

were detected in each patient, with varying proportions of cell types

between cases, indicating no patient specific subpopulations in our

integrated dataset (Fig 1F).

Re-clustering stromal cells revealed four distinct sub-clusters
in human TNBCs

Although the stromal clusters shared many common markers used

to study CAFs, we further inspected their heterogeneity through re-

clustering each population (Fig 2A). Sub-clusters were detected

across multiple clustering resolutions in the FindClusters function in

Seurat (resolutions 0.2, 0.3 and 0.4), with varying proportions from

each patient (Fig 2B). The first cluster, which was classified as CAFs

through the expression of fibroblast-specific markers (PDGFRA,

COL1A1, FAP and PDPN), formed two sub-clusters (Fig 2A–C). The

first CAF sub-cluster was comprised of 280 cells (16.2% of all stro-

mal; red cluster) and was classified as myofibroblast-like CAFs

(myCAFs) through the elevated expression of activated fibroblast

markers (ACTA2, FAP and PDPN) and collagen-related genes

(COL1A1 and COL1A2) (Fig 2C and D; Ohlund et al, 2017; Biffi

et al, 2018; Elyada et al, 2019). The second CAF sub-cluster

comprised of 1,129 cells (65.3%; orange cluster; Fig 2A–C) and

resembled inflammatory-CAFs (iCAFs) through the enrichment of

the CAF chemokine marker CXCL12 (also known as SDF-1) (Fig 2C

and D; Ohlund et al, 2017; Biffi et al, 2018; Elyada et al, 2019). We

next compared our CAF clusters to the subsets previously reported

in pancreatic cancer (Ohlund et al, 2017; Biffi et al, 2018; Elyada

et al, 2019). This was performed by scoring published CAF gene

signatures across our stromal clusters using the AUCell method

(Fig EV2E; Aibar et al, 2017). This revealed the enrichment of

pancreatic myCAF and iCAF signatures in our breast myCAF and

iCAF clusters, respectively, suggesting similar phenotypes likely

exist across both tissue sites (Fig EV2E). While the signatures were

largely conserved, a number of human PDAC CAF markers were

detected in opposing cell types, for example IL6 was expressed by

PVL cells rather than iCAFs (Fig EV2F). No clusters showed any

particular enrichment for signatures of antigen-presenting CAFs,

potentially because they are a rare cell type that was not sampled,

or are unique to pancreas tumours (Fig EV2E).

In contrast, the second stromal cluster was enriched for perivas-

cular markers, including genes associated with pericytes and

smooth muscle cells (ACTA2, MCAM, CAV1, TAGLN, MYH11,

MYLK and RGS5; Fig 2C and D; Hamzah et al, 2008). MCAM (also

known as CD146) has shown to be a robust marker to differentiate

perivascular cells from fibroblasts in human tissues (Li et al, 2003;

Middleton et al, 2005; Covas et al, 2008; Crisan et al, 2008). PVL

cells were further classified as either differentiated-PVL (dPVL; 122

cells in light blue, 7.1%), characterised through the enrichment of

myogenic differentiation genes (TAGLN, MYH11 and MYLK), or

immature-PVL (imPVL; 198 cells in dark blue; 11.5%), characterised

by the elevated expression of genes associated with an immature

phenotype (PDGFRB, CD36 and RGS5) (Fig 2C and D; Song et al,

2005). To our surprise, both PVL subsets were also enriched for the

human PDAC myCAF signature, suggesting PVL cells share some

similarities in gene expression profile with myCAFs (Fig EV2E and F).

All four stromal subsets were detected in all five patients; however,

there were differences in the proportions between the patients

(Figs 2B, and EV3A and B). The stromal profiles of Patient-1 (P1)

and P2 were predominantly comprised of iCAFs, myCAFs were

highest in P3, while PVL cells were highly abundant in P4 and P5

(Figs 2B, and EV3A and B).

Next, we identified differentially expressed genes (DEGs)

between the four subsets using the MAST method, which compares

each subset against all other subsets (Finak et al, 2015). This identi-

fied a total of 894, 610, 258 and 289 DEGs (log fold change threshold

of 0.1, P-value threshold of 1 × 10�5 and FDR threshold of 0.05) by

myCAFs, iCAFs, dPVL and imPVL cells, respectively (Fig 2D;

Dataset EV1). We performed gene ontology (GO) analysis using the

top 250 DEGs from each subset using the clusterProfiler tool

(Fig 2E; Dataset EV2) to determine the pathway level differences

driving stromal heterogeneity (Yu et al, 2012). This revealed an

enrichment of collagen biosynthesis and ECM regulatory pathways

in myCAFs, which included fibrillar collagen genes COL1A1 and

COL1A2 and ECM remodelling metalloproteinases MMP1 and

MMP11 (Fig 2D and E). We identified the enrichment of develop-

mental signalling pathways and chemotactic regulation in iCAFs,

including soluble factors such as IGF1, FIGF and PDGFD, and the

chemokines CXCL12 and CXCL13 (Fig 2D and E). Stem cell markers

including ALDH1A1 and ID2, and the growth factor receptor EGFR

were also upregulated in iCAFs (Fig 2D). Within the PVL cells, the

dPVL cluster was enriched for pathways related to the muscle

system and contractility, while the imPVL cluster was enriched for

pathways related to focal and substrate adhesion, including the inte-

grin molecule ITGA1 (Fig 2D and E). No stromal clusters expressed

canonical markers for proliferation, including MKI67 and AURKA.

As many of the genes and pathways identified were related to cell

activation and contractility, we hypothesised that the stromal sub-

clusters resembled cell differentiation stages rather than distinct

subpopulations. Cell trajectories were examined using the Monocle

method, which revealed subsets of CAFs and PVL cells distributed

across pseudotemporal space (Fig EV3C and D; Qiu et al, 2017). For

example, COL1A1, ACTA2 and CXCL12 expression transitioned

throughout CAF differentiation (Fig EV3C), while CD36, RGS5 and

MYH11 transitioned throughout PVL differentiation (Fig EV3D). Our

findings indicate that the stroma in TNBC is comprised of four major

transcriptional states related to cell differentiation, which branch

from the two major fibroblast and perivascular-like lineages.

Transcription factor pathways enriched across
stromal subclasses

We next sought to investigate if gene regulatory networks could

further explain the underlying heterogeneity in stromal subpopula-

tions. To examine the activity of CAF and PVL transcription factors

(TFs), we applied the SCENIC method to build gene regulatory

networks from scRNA-Seq data and identify activating cis-regulatory

elements (Aibar et al, 2017; Moerman et al, 2018). Through apply-

ing this to the normalised stromal gene expression matrix, SCENIC

identified a total of 190 activated TFs, of which 166 were identified

to be significantly different across the four stromal subsets (one-way

ANOVA; P-value threshold of 1 × 10�5). We focused on the top 50

strongest candidates based on their average AUC values (Fig 3;

Appendix Fig S2).

4 of 20 The EMBO Journal e104063 | 2020 ª 2020 The Authors

The EMBO Journal Sunny Z Wu et al



Differentiated PVLs
Inflammatory CAFs

Immature PVLs

Myofibroblast-like CAFs

A C

Differentiated PVLs

Inflammatory CAFs

Immature PVLs

Myofibroblast-like CAFs

0

5

10

20

30

-log10(q-val)

co
lla

ge
n 

ca
ta

bo
lic

 p
ro

ce
ss

rr

EC
 s

tru
ct

ur
e 

or
ga

ni
za

tio
n

EC
M or

ga
niz

ati
on

ER lumen

proteinaceous ECM 

rr

canonical Wnt signaling pathwaychemoattractant activity

grorr wth factor activity

PDGFR signaling pathway

regulation of epithelial cell proli
rr

feration
ff

ac
tin

 b
in

di
ng

ac
tin

 c
yt

os
ke

le
to

n

co
ntr

ac
tile

 fib
er

contra
ctil

e fib
er p

artmuscle system process
rr

actin filament bundle

angiogenesis

cell−substrate adherens junction

cell−substrate junction

focal adhesion

ff

ECM

Development
& Signalling

Angiogenesis
& Adhesion

Muscle
Contraction

D
Proportion of 
stromal cells

Lo
g 

E
xp

re
ss

io
n

Lo
g 

E
xp

re
ss

io
n

Lo
g 

E
xp

re
ss

io
n

B

E

Figure 2. Stromal landscape of TNBCs reveals four subpopulations of cancer-associated fibroblasts and perivascular-like cells.

A t-SNE representation of the four subclasses of cancer-associated fibroblasts (CAFs) and perivascular-like cells (PVL), named myofibroblast-like CAFs (myCAFs; 280
cells), inflammatory-like CAFs (iCAFs; 1,129 cells), differentiated-PVL cells (dPVL cells; 122 cells) and immature-PVL cells (imPVL cells; 198 cells).

B Plot showing the proportion of the four stromal subsets across all five patients.
C Log expression of parenchymal gene markers commonly associated with CAFs and perivascular cells.
D Cluster averaged log-normalised expression of the top 300 differentially expressed genes between the four stromal subsets with stromal-related genes of interest

annotated. Expression values are scaled per cluster.
E Circle histogram plot of the top gene ontologies enriched in each of the four stromal subsets, with pathways broadly grouped for ECM, development and signalling,

muscle contractile features and angiogenesis and adhesion. Scale bar represents the �log10 q-value for the enrichment of individual GO terms, as determined using
ClusterProfiler.
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In examining the top candidate TFs (Fig 3; Appendix Fig S2),

ZEB1 and FOXP1 were enriched in myCAFs. A recent study inhibit-

ing stromal ZEB1 in the PyMT mouse model of breast cancer

reduced tumour growth, invasion and impaired ECM deposition (Fu

et al, 2019). In other tissue contexts, FOXP1 was reported to regu-

late the fibrotic potential of stromal cells via the Wnt/beta-catenin

pathway, including myCAF marker genes such as ACTA2 and

COL1A1 (Shao & Wei, 2018). Known roles of such TFs are consis-

tent with the predicted ECM-regulating phenotype of myCAFs. The

EGR2 and TCF7L2 regulons were enriched in iCAFs (Fig 3). EGR2 is

known to regulate the expression of immunomodulatory molecules

in mesenchymal stem cells (Tamama & Barbeau, 2012). The TCF

family including TCF7L2 (also known as TCF4) are Wnt-regulated

TFs that are highly expressed during early development (Hrckulak

et al, 2016). As iCAFs also expressed the stem cell markers

ALDH1A1 and ID2, we hypothesised that they resemble a stem or

progenitor-like state.

For PVL cells, MEF2C was a highly enriched driver in both

subsets (Fig 3). Myocyte enhancer factor 2 (MEF2) is a well-defined

regulator for the development of vascular smooth muscle cells

(Creemers et al, 2006; Gordon et al, 2009). We identified KLF2

enriched in dPVL cells, and NR2F2 enriched in imPVL cells (Fig 3).

KLF2 is required for smooth muscle cell migration and maturation

in blood vessel formation, consistent with the predicted differentia-

tion state of dPVL cells (Wu et al, 2008). Furthermore, NR2F2, also

known as COUP-TFII, is highly expressed by myogenic precursors

and is known to inhibit muscle development, which is consistent

with the predicted immature state of imPVL cells (Lee et al, 2017).

A B

Figure 3. Polarised gene regulatory states between cancer-associated fibroblasts and perivascular-like subclasses.

A Polarised gene regulatory states underlying stromal subclasses. Heatmap shows the averaged regulon activity (area under the curve; AUC) for the top 50 highest TFs
regulons as estimated using SCENIC. All regulons are statistically enriched across the four subsets (P < 1 × 10�5 One-way ANOVA). Heatmap is clustered using
Euclidean distance and complete linkage.

B Candidate transcriptional drivers of each CAF and PVL subset. Violin plots showing the log-normalised gene expression (left) of the TF and its respective AUC regulon
activity (right). TFs ZEB1 and FOXP1 enriched in myofibroblast-like CAFs, EGR2 and TCF7L2 enriched in inflammatory-like CAFs, MEF2C enriched in PVL cells and
NR2F2 enriched in immature-PVL cells.
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In summary, we identified unique and novel TF drivers in each of

the four stromal subclasses, providing further insights into the tran-

scriptional drivers underlying stromal heterogeneity.

Validation of stromal subsets in primary breast cancer tissue

To validate the existence of the four stromal subclasses described

above in TNBC patient tissue (Fig 4A), we first performed fluores-

cence-activated cell sorting (FACS) isolation on scRNA-Seq matched

human tissue sections (Fig 4B). Our gating strategy used EPCAM,

CD45 and CD31 as negative markers to exclude epithelial, immune

and endothelial cells, respectively (Fig 4B). We additionally used

PDGFRb to positively select all stromal populations and avoid

contaminations from cancer stem cells and breast myoepithelial

cells which have low EPCAM expression (Prater et al, 2014; Hyun

et al, 2016). Based on our initial scRNA-Seq findings, we deter-

mined PDGFRa and CD146 (MCAM) as good markers to discrimi-

nate CAFs and PVL cells, respectively. Following the initial isolation

and culturing of CAFs (PDGFRb+/PDGFRa+/CD146�) and PVL cells

(PDGFRb+/PDGFRa�/CD146+), we next performed simultaneous

FACS analysis of additional stromal markers to validate the presence

of the four stromal subsets in culture. We show that myCAFs and

iCAFs could be distinguished by FAPHIGH/CD90HIGH and FAPLOW/

CD90LOW expression, respectively (Figs 4B, and EV3E and F), while

imPVL cells could be discriminated from dPVL cells by CD36+

expression (Fig 4B). We validated the gene expression of cultured

bulk and sorted CAF fractions using quantitative real-time PCR

(qPCR) (Fig EV3G). As controls, PDGFRA and PDGFRB were

expressed in both the FAP-high and FAP-low populations. Consis-

tent with the FACS sorting strategy and scRNA-Seq findings, FAP

and ACTA2 were enriched in FAPHIGH(myCAF) sorted cells, while

CXCL12 and EGFR were enriched in FAPLOW (iCAF) sorted cells

(Fig EV3G). We next performed immunofluorescence (IF) to further

validate additional markers and explore potential morphological dif-

ferences. Here, ⍺-SMA expression was used to identify myCAFs

from iCAFs (Fig 4C; Appendix Fig S3), and CD36 to distinguish

imPVL from dPVL cells (Fig 4D; Appendix Fig S3). From our obser-

vations, myCAFs and dPVL cells had a more elongated morphology

in comparison to iCAFs and imPVL cells (Fig 4C; Appendix Fig S3),

which is consistent with the predicted differentiation state of each

subset. Importantly, we defined a novel gating strategy that allowed

us to purify the four stromal subsets for subsequent in vitro func-

tional characterisation.

Myofibroblast-like CAFs have elevated capabilities for collagen
secretion and alignment

From the above results, we predicted myCAFs to be the predomi-

nant subset synthesising ECM components. To investigate this, we

generated cell-derived matrices (CDMs) to compare the ability of

each human stromal subset to lay down collagen, as previously

described (Cukierman et al, 2001). Purified stromal subsets were

seeded and cultured onto glass for 7 days. To assess Collagen I

deposition, we used second harmonic generation (SHG) microscopy,

which is a sensitive method for quantifying fibrillar collagen density

and orientation in an unlabelled manner. This revealed FAPHIGH

myCAFs had a significant increase in SHG signal intensity compared

to FAPLOW iCAFs, while PVL cells had a significantly lower SHG

signal compared to both CAF subsets (Fig 4E). Higher densities of

stromal collagen are a hallmark of breast tumour growth, invasive-

ness and risk of disease development (McCormack & dos Santos

Silva, 2006; Levental et al, 2009; Huo et al, 2015). Our findings also

indicate that PVL cells do not adopt fibroblast-like traits in

contributing to the collagenous TME. Further analyses of collagen

fibre orientation also revealed that in addition to increased amounts,

the orientation of the collagen fibres deposited by myCAFs was

more uniformly aligned compared to iCAFs and PVL cells (indicated

by the higher, narrow peak in Fig 4F). It has been previously shown

that tumour-associated collagen signatures (TACs), characterised by

the alignment of collagen fibres, is a good factor for predicting

breast cancer survival (Conklin et al, 2011). In further parallels to

pancreatic cancers, FAP-overexpressing fibroblasts have been

shown to produce more parallel aligned fibres, enhancing the direc-

tionality and velocity of cancer cell invasion (Lee et al, 2011).

Importantly, these data highlight that the regulation of the ECM,

namely in collagen density and orientation, is mainly regulated by

the specialised myCAF subsets. In summary, our findings demon-

strate that the stromal subclasses described here are functionally

distinct and provide a novel strategy for their purification from

breast cancers.

Stromal subclasses are spatially distinct

To investigate the spatial localisation of CAFs and PVL cells, we

performed immunohistochemistry (IHC) with markers identified by

scRNA-Seq on data matched patient tissues. We also wanted to vali-

date that CAFs and PVL cells localise to the intratumoural regions of

tumour specimens and are not from adjacent normal tissue or blood

vessels. We stained serial 4 lm sections and identified stromal cell

types using a combination of markers identified previously by

scRNA-Seq and DGE (Fig 2C): pan-stromal (PDGFRb+), myCAFs

(PDGFRb+, ⍺-SMAHIGH and CD146�), iCAFs (PDGFRb+, ⍺-SMA�,
CD34HIGH and CD146�) and PVL cells (PDGFRb+, ⍺-SMAHIGH,

CD34� and CD146+). As CD34 and CD146 are commonly used

markers of the endothelium but are mutually exclusive in CAFs and

PVL cells, we used their co-localisation in combination with

PDGFRb staining and morphology (rings surrounding lumen) to

identify endothelial cells (Middleton et al, 2005). This IHC strategy

revealed regions where myCAFs (⍺-SMAHIGH) were located in close

proximity to the invasive tumour interface, while iCAFs (CD34HIGH)

were relatively distal to this interface (Fig 4G). In these particular

cases, no PVL cells were present in these regions and CD146 was

completely restricted to blood vessels (Fig 4G). In distal regions

which were enriched for iCAFs, we also identified a high co-localisa-

tion of tumour-infiltrating lymphocytes as identified by morphology

(Fig 4G).

By definition, vascular smooth muscle cells (vSMCs) and peri-

cytes should be localised around arteries and veins to facilitate

vascular development and stability. To examine whether PVL cells

are vessel-associated, we used co-IF staining for CD31 and CD146 to

mark endothelial cells and PVL cells, respectively. We readily

detected PVL cells at non-blood vessel regions in the stroma of 4 out

of 5 matched patient tissue sections (all cases except P3), including

P4 where it was highly abundant (Figs 4H and I, and EV4A). Consis-

tent with the cell proportions identified by scRNA-Seq, PVL cells

were highly abundant in P4, and lowly detected in P3 (Fig 2B). PVL
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cells were highly dispersed throughout the tumour stroma with no

obvious co-localisation to the invasive malignant borders. Impor-

tantly, our findings suggest that these smooth muscle-like cells, like

CAFs, can be readily identified disseminated throughout the stroma,

independent of blood vessels.

To understand how the four stromal subpopulations correspond

to their normal tissue counterparts, we repeated the staining of

PDGFRb, CD34, ⍺-SMA and CD146 on healthy breast tissue

collected from four women. This revealed a high abundance of

iCAF-like fibroblasts (PDGFRb+, ⍺-SMA�, CD34HIGH and CD146�)
surrounding ductal regions, while myCAF-like fibroblasts

(PDGFRb+, ⍺-SMAHIGH and CD146�) were sparsely detected across

all four cases (Fig EV4B and C). While this small panel of markers

do not highlight the large transcriptional changes that may occur

upon CAF activation, it does suggest that the broad iCAF-like and

myCAF-like fibroblast subsets are resident cell types which are reac-

tivated during carcinogenesis. For PVL cells, IHC staining of CD146

was completely restricted to blood vessels (Fig EV4C). This further

confirmed using co-IF staining for CD31 and CD146 on the normal

tissue cases, where CD146 was completely restricted to CD31-posi-

tive blood vessels (Fig EV4D). Our findings suggest that dissemi-

nated PVL cells are a distinct feature in a subset of TNBCs.

Distinct ligand–receptor expression predicts diverse stromal
crosstalk to the tumour microenvironment

We next sought to investigate how spatially distinct stromal

subclasses may interact with other cells within the TME. Here, we

annotated our scRNA-Seq dataset using a published set of curated

human ligand–receptor pairs (Ramilowski et al, 2015). We used

these annotations to construct a cell-to-cell communication network

and predict intratumoural signalling between the four stromal clus-

ters, and the surrounding neoplastic, immune and endothelial

microenvironment. This revealed diverse stromal signalling profiles

(Fig 5A), with myCAFs and iCAFs having the highest overall

predicted ligand activity out of all the cell types (Fig 5B). The

“interaction strength”, or the weight of each edge, was defined as the

product of expression levels of the corresponding ligand and

receptor. All ligand–receptor pairs with an arbitrary “interaction

strength” cut-off of 0.1 were classified as candidate signalling mole-

cules, which revealed a total of 570, 482, 437 and 357 unique

predicted interactions between stromal clusters with cancer epithelial

cells, endothelial cells, myeloid cells (Appendix Fig S4A–C) and

T-cell subpopulations, respectively (Appendix Fig S4D; Dataset EV3).

Consistent with the enrichment of growth factor signalling gene

ontologies in iCAFs (Fig 2E), we identified a strong upregulation of

crosstalk via the FGF (FGF7 and FGF10), BMP (BMP4 and BMP7),

HGF and IGF1 pathways to their cognate receptors across cancer

cells and endothelial cells (Fig 5C; Appendix Fig S4A and B). These

factors are known to be highly expressed in breast tumours and

associated with breast cancer proliferation, invasion and inducing

cancer stem cell (CSC) phenotypes (Palmieri et al, 2003; Alarmo

et al, 2007; de Ostrovich et al, 2008; Kuang et al, 2017). Different

ligands from these pathways were also identified from myCAFs and

dPVL cells, suggesting that neoplastic phenotypes could also be

influenced by different stromal cells (Appendix Fig S4A). As we

identified iCAFs to be located more distal to the invasive tumour

interface, we hypothesise that these secreted factors function from a

distance. For signalling to the endothelial compartment, iCAFs and

PVL cells were both enriched for well-characterised growth factors

involved in angiogenesis (Appendix Fig S4B). Classical angiogenic

pathways including VEGFs (FIGF, also known as VEGFD), PDGFs

(PDGFC), IGFs (IGF1 and IGF2) and Notch signalling (DLK1) were

enriched in signals emanating from iCAFs (Appendix Fig S4B).

These pathways suggest that the inflammatory-CAF phenotype is

also associated with tumour neovascularisation (Samani et al, 2007;

Wang et al, 2019). In addition, PVL-derived signals were enriched

for the canonical ANGPT1/ANGPT2-TIE1 pathway, which are known

stimuli that can induce the sprouting of new vessels during the

formation of new endothelial tubes (Fagiani & Christofori, 2013).

Given the reported immunoregulatory properties of mesenchy-

mal cells (Costa et al, 2018; Givel et al, 2018), we next focused on

the signalling of stromal cytokines and checkpoint molecules to

immune populations. Here, we identified an enriched interaction

between iCAFs and myeloid cells via the complement cascade acti-

vation interaction C5-C5AR1 (Fig 5D; Appendix Fig S4C). C5

◀ Figure 4. Morphological, phenotypic and spatial differences underlying stromal heterogeneity.

A Summary of the markers distinguishing each of the four stromal subpopulations identified in this study.
B FACS validation in matched patient tissue. Stromal cells are negatively gated for EPCAM (epithelial), CD45 (immune) and CD31 (endothelium) and positively

selected for PDGFRb. Subsequent markers PDGFRa and CD146 (MCAM) are used to distinguish CAFs and PVL cells, respectively. Expression of FAPHIGH, FAPLOW,
CD36+ and CD36� is further used to define myofibroblast-like CAFs, inflammatory-like CAFs, immature-PVL cells and differentiated-PVL cells, respectively.

C, D Immunofluorescence of cultured human CAFs (C) and PVL cells (D) from passage 8, staining for CD34 (CAFs), ⍺-SMA (myCAFs and PVL cells), CD146 (PVL cells) and
CD36 (imPVL cells).

E, F Quantitative analysis of collagen abundance (E) and orientation (F) using second harmonic generation (SHG) from cellular derived matrices from stromal subsets
and representative images multiphoton SHG images (n = 3 biological replicates). All SHG intensity values within each replicate were normalised to the SHG
intensity of the myCAFs. Error bars represent standard deviation. Statistical significance for collagen abundance (E) was determined using unpaired two-tailed
Student’s t-test with equal standard deviation with P-values denoted by asterisks: *P < 0.05, **P < 0.01 and ***P < 0.001. After normalisation of the orientation
peak distributions (F), statistical significance was determined using a Kruskal–Wallis test with Dunn’s post hoc multiple comparisons test (P-value < 0.0001).

G, H Immunohistochemical staining of PDGFRb, ⍺-SMA, CD34 and CD146 in serial sections cut 4 lm apart from matched cases; Patient-2 (G) and Patient-4 (H). Images
were aligned using FIJI. Tumour (T) regions are annotated by the solid yellow line. Co-localisation of CD34 and CD146 was used to distinguish blood vessels (BV),
where their differential staining was used to identify CAFs and PVL cells. (G) MyCAFs were found to be localised at the invasive stromal interface (insert A), while
iCAFs were located at distal regions (insert B) with a high abundance of tumour-infiltrating lymphocytes (TILs). (H) Case with a high abundance of perivascular-like
(PVL) cells in regions surrounded by blood vessels.

I Validation of disseminated PVL cells from blood vessels using co-immunofluorescence of CD31 (red), CD146 (green) and DAPI (blue). Representative images from
Patient-4 is shown.

Source data are available online for this figure.

ª 2020 The Authors The EMBO Journal e104063 | 2020 9 of 20

Sunny Z Wu et al The EMBO Journal



activation in the TME acts as a chemotactic factor for the recruit-

ment of immunosuppressive myeloid cells to suppress T-cell activi-

ties (Markiewski et al, 2008). In addition, myCAFs and iCAFs were

enriched for TGFB1-TGFBR1 and TGFB2-TGFBR1 interactions with

myeloid cells, respectively (Fig 5D; Appendix Fig S4C). As TGFb-
activated myeloid cells have been shown to enhance breast cancer

progression and metastasis in vivo, it suggests that both CAF subsets

could influence myeloid phenotypes (Li et al, 2012). While the

TGFBR1 receptor was predominantly enriched on myeloid clusters,

it is worth noting that its expression was also detected by cancer

and endothelial clusters (Fig 5D). Although PVL cells had lower

ligand expression profiles compared to CAFs, several immunomodu-

latory cytokine interactions were predicted between PVL cells and

myeloid cells, including an enrichment of the CCL8-CCR1, IL6-IL6R

and CCL2-CCR1 pathways (Fig 5D; Appendix Fig S4C). CCL2

produced by the microenvironment in other cancers has been

shown to be essential for the recruitment of T-Regs and tumour-

associated macrophages, supporting an additional role of PVL cells

in recruiting immunosuppressive cells (Chang et al, 2016).

For the signalling to the lymphocyte compartment, iCAFs had a

strong upregulation of the chemo-attractant pathways CXCL12-

CXCR4 and CXCL13-CXCR5 with T- and B cells (Fig 5E; Appendix Fig

S4D). CAF-derived CXCL12 has been shown to recruit and regulate

the activity of CD4+/CD25+ T-Regs in breast cancers, suggesting

iCAFs may have a direct role in recruiting immunosuppressive popu-

lations (Costa et al, 2018; Givel et al, 2018). CXCL12 and CXCL13

signalling axes have also been shown to mediate lymphocyte recruit-

ment to tertiary lymphoid structures (TLS) (Sautes-Fridman et al,

2016). MyCAFs were also enriched for secreted immunoregulatory

molecules and checkpoints including CXCL9-CXCR3, CXCL11-CXCR3

and CD274-PDCD1 (PDL1-PD1) with T cells (Fig 5E; Appendix Fig

S4D). Lastly, only few candidates were identified between PVL cells

with T cells, including the enrichment of CCL21-CCR7, which is asso-

ciated with immune tolerance in favour of tumour progression

(Fig 5E; Appendix Fig S4D) (Shields et al, 2010). It is evident from

our signalling predictions that diverse immunoregulatory molecules

are expressed in the stroma, highlighting that immune evasion can

be regulated by distinct stromal subpopulations in TNBC.

Inflammatory-CAFs associated with cytotoxic
T-lymphocyte dysfunction

To further investigate the influence of stromal subsets on immune

evasion, we explored the association between distinct stromal gene

signatures and immune content in three large independent TNBC

patient cohorts with associated bulk gene expression data
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Figure 5. Predicted stromal crosstalk to cancer and immune cells.

Overview of the predicted stromal paracrine signalling conserved across the five TNBC patients. The scRNA-Seq dataset was annotated by ligand–receptor pairs as curated in

Ramilowski et al (2015).

A Circos plot summary of the stromal ligand–receptor interactions. Outer sectors are weighted according to the number of annotated ligand–receptor interactions
per cell type. Links between sectors are weighted according to the “Interaction Strength”, calculated as a product of ligand and receptor expression. Links are
coloured by the respective stromal subsets; myCAFs (red), iCAFs (orange), dPVL cells (blue) and imPVL cells (light blue).

B Summary of the total ligands and receptors annotated per cell type.
C–E Imputed gene expression of selected candidate signalling molecules identified between the four stromal subsets and malignant (C) epithelial, (D) myeloid and

(E) T cells. Expression of ligands in stromal clusters is represented on the left, with cognate receptors on target cells on the right.
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(METABRIC, GSE8812 and GSE21653) (Sabatier et al, 2011; Curtis

et al, 2012; Jezequel et al, 2015). Using a computational model

called tumour immune dysfunction and exclusion (TIDE), we exam-

ined two primary mechanisms of immune evasion. The first exami-

nes factors driving the “dysfunction” of cytotoxic T lymphocytes

(CTLs), while the second examines factors preventing the infiltra-

tion of CTLs to the tumour, known as “exclusion” (described below)

(Jiang et al, 2018). TIDE first estimates CTL levels in each sample

within a bulk sequencing cohort using the averaged expression of

CTL-specific genes (See Materials and Methods). Patients are then

stratified into high and low CTL groups based on comparisons to

the mean CTL level within the cohort. For dysfunction, we then

evaluated whether gene signatures from each of the stromal subsets

influence the beneficial effect of CTL levels on patient prognosis

(Jiang et al, 2018). This analysis revealed a strong enrichment of

genes from the iCAF signature that were significantly associated

with CTL dysfunction in all three bulk tumour cohorts (Fig 6A). In

patients with a low iCAF dysfunction signature level, a significant

survival benefit was associated with high CTL levels (Figs 6B and

EV5A). This is consistent with previous clinical observations in

TNBCs where lymphocyte infiltration is a robust prognostic factor

for improved disease-free survival and overall survival benefit (Loi

et al, 2013). Remarkably, in patients with a high iCAF dysfunction

signature level, CTL levels were not associated with prognosis in

any of the three cohorts (Figs 6B and EV5A), suggesting a role for

stromal iCAFs in driving dysfunctional CTLs in TNBC. Other stromal

subset signatures did not show a significant enrichment of prognos-

tic genes in the context of CTL dysfunction.

To investigate whether CTLs in each patient were indeed

dysfunctional, we scored a published T-cell exhaustion gene signa-

ture in our CD8+ T-cell populations from each patient using an AUC

approach (Fig 6C; Blackburn et al, 2009). This gene set includes

canonical markers of exhausted T cells including PDCD1 (PD-1),

LAG3, TIGIT and CTLA4 (Blackburn et al, 2009). This revealed

heterogeneity for exhausted CD8+ T-cell populations in all five

patients (Fig 6C), with P2 and P4 having the highest average

exhausted gene signature score. In contrast, the exhaustion signa-

ture was not enriched in any other cell population with the excep-

tion of the myeloid cell cluster (Fig 6C). Myeloid cells, which can

include tumour-associated macrophages and myeloid derived

suppressor cells, are known to hold immunosuppressive properties

and can also express inhibitory molecules associated with T-cell

suppression (Jiang et al, 2015).

Differentiated-PVL cells associated with cytotoxic
T-lymphocyte exclusion

We next explored whether particular stromal subsets were associ-

ated with CTL exclusion, a cold “immune-desert” phenotype with

“low CTL” activity. This was examined using the Pearson correla-

tions between all CTL levels and the respective correlation score

between the bulk tumour sample and the single-cell cluster of inter-

est. The averaged expression of all genes from the single-cell cluster

are referred to as a signature in this section. Previous studies have

reported an association between CAFs and CTL exclusion (Jiang

et al, 2018). Consistent with this, the collective bulk signature from

all stromal cells correlated negatively with CTL levels in four TNBC

patient cohorts (Figs 6D and EV5B). As a positive control, CD4+

and CD8+ T-cell signatures from our dataset positively correlated

with CTL levels as expected (Figs 6D and EV5B). To investigate if

this was predominantly driven by one stromal subset, we repeated

this analysis with the averaged gene expression of myCAFs, iCAFs,

dPVL and imPVL clusters independently (Figs 6E and EV5C). This

revealed that dPVL cells were the only subset with a significant

negative correlation with CTL level in three of four cohorts, suggest-

ing they are the primary subset associated with T-cell exclusion

(Figs 6E and EV5C). To further explore this correlation in our five

patients, tumour-infiltrating lymphocytes (TILs) and CTLs were

scored in matched tumour sections by a specialist breast patholo-

gist. Total TILs were estimated using standard H&E-based assess-

ment (Fig 6F), while stromal CTLs were accurately quantified by

CD8 staining and scored as previously described (Fig 6G; Salgado

et al, 2015). The latter measurements were performed as TILs can

also be comprised of non-CTL populations including CD4+ T cells,

T-Regs and B cells. TILs and CTL scoring revealed that 2 out of 5

patients (P4 and P5) had very low CTL infiltration (< 5% TILs and

< 50 CD8+ T cells per 1 mm2), whereas P3 had a very high infiltra-

tion (> 70% TILs and > 200 CD8+ T cells per 1 mm2) (Fig 6F–H).

In support of dPVL cells as drivers of T-cell exclusion, only 4% of

stromal cells from P3 were annotated as dPVL cells, while P4 and

P5 had the two largest proportions of dPVL profiles with 35.5 and

26.8%, respectively (Fig 2B). Furthermore, no disseminated PVL

cells could be readily detected in P3 using co-IF (Fig EV4A). While

small numbers, our findings are consistent with the proposal that

specialised stromal subclasses are associated with immune evasion.

Discussion

Our study describes a detailed taxonomy of human stromal

subclasses in TNBC at cellular resolution. The activated tumour

stroma is classically described using a broad ‘CAF’ classification.

Here, we provide evidence that it is also comprised of functionally

distinct perivascular-like cells which are not necessarily associated

with the endothelium. We show that stromal heterogeneity diverges

to four distinct states: myofibroblast-like, inflammatory-like CAFs

and differentiated and immature-PVL cells. Similar to CAFs

described in pancreatic ductal adenocarcinoma, we find stromal

subclasses are spatially distinct, with myCAFs localised to the inva-

sive tumour front, while iCAFs are located distal to this interface

(Ohlund et al, 2017). From our systematic scRNA-Seq of the TME,

we used receptor expression on other cell types to predict diverse

stromal-immune crosstalk via an array of immunoregulatory mole-

cules to immune populations. We go on to show that iCAF and

dPVL subsets are highly associated with immune evasion in multi-

ple independent TNBC cohorts, suggesting a clinical relevance for

unique stromal subsets (Sabatier et al, 2011; Curtis et al, 2012; Jeze-

quel et al, 2015).

Few studies have investigated the functional heterogeneity of the

cancer stroma. A recent scRNA-Seq study profiled CAFs in a mouse

model of breast cancer and defined matrix, vascular-like, cycling

and developmental CAF subsets (Bartoschek et al, 2018). We did

not find a cycling-CAF cluster driven by proliferation markers

(Appendix Fig S5A), likely reflecting unique features of animal

models. In addition, the authors proposed mouse “developmental

CAFs” to be of epithelial to mesenchymal transition origin
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(Bartoschek et al, 2018). In contrast, we found the expression of

proposed developmental CAF markers Scrg1, Sox9 and Sox10 exclu-

sively in cancer epithelial clusters, which are classified based on the

expression of epithelial lineage exclusive keratins (Appendix Fig

S5B and C). Our comparisons suggest that developmental CAFs are

either unique to mouse models or are cancer cells whose expression
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Figure 6. Inflammatory-CAFs and differentiated-PVL cells associated with immune evasion in TNBC patient cohorts.

Significant associations between iCAF and dPVL gene signatures with cytotoxic T-lymphocyte (CTL) dysfunction and exclusion inmultiple TNBC patient cohorts, respectively,

as determined using the tumour immune dysfunction and evasion (TIDE) method.

A iCAF T-cell dysfunction gene signature highlighting genes significantly associated with CTL dysfunction in two out of three independent patient cohorts
(METABRIC, GSE21653 and GSE58812).

B Representative cohort (METABRIC) showing the prognostic value of iCAF T-cell dysfunction signature in the context of CTLs for a total of 233 patients. Kaplan–Meier
present two groups of patients, “low CTL” (blue line) and “high CTL” (red line), as estimated according to the average expression of CTL-specific genes and stratified
as compared to the mean. Tumours with low iCAF T-cell dysfunction signatures (top) show patients with high CTL levels have a better survival outcome. In
contrast, this survival benefit is lost in tumours with a high iCAF T-cell dysfunction signature (bottom). P-values were defined from the Cox proportional hazard
(Cox-PH) model.

C Dysfunctional CTLs detected in all five TNBC patients determined through scoring a T-cell exhaustion signature. UMAP featureplot of the exhaustion signature
across all stromal and immune cells as in Fig 1D.

D Bulk stromal signature associates with CTL exclusion. Pearson correlation was computed between all inferred CTL levels (y axis) and the respective correlation
between the bulk sample and the single-cell cluster (x axis). Signature of all stromal cells divided over all cells correlated negatively with CTL levels, while control
CD4+ and CD8+ gene signatures show a positive correlation. P-values were computed using a two-sided t-test for correlation and were adjusted using the
Benjamini–Hochberg procedure.

E dPVL cells associated with CTL exclusion. Repeated analysis in the same manner as in (D), instead with myCAF, iCAF, dPVL and imPVL clusters divided over all
stromal cells independently, highlighting that CTL exclusion is mainly driven by dPVL cells. Representative cohort GSE58812 is shown.

F–H dPVL profiles and CTL exclusion consistent in our study. (F) Patients with the highest dPVL profiles by scRNA-Seq (P4 and P5) show the lowest tumour-infiltrating
lymphocyte (TIL) pathology counts. (G, H) Accurate quantification of CTLs (G) and representative immunohistochemistry staining for CD8 on matched patient
tumour sections (H). n = 5 stromal 1 mm2 regions were counted per tumour. The central band, boxes and whiskers represent the median, lower/upper quartile and
min/max CTL counts per 1 mm2, respectively. P3 is shown as an example of a low dPVL profile with high CTLs. In contrast, P4 has a high dPVL profile with low
CTLs. Statistical significance was determined using pairwise comparison with Student’s t-test with P-values denoted by asterisks: *P < 0.05, **P < 0.01,
***P < 0.001 and ****P < 0.0001.

Source data are available online for this figure.
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of EPCAM is down-regulated, which was a negative marker used for

CAF isolation in these studies (Prater et al, 2014; Hyun et al, 2016).

Despite well-characterised roles in cancer progression, the cellu-

lar origins of CAFs remain poorly understood. Our results support

the notion that dispersed stromal cells can also arise from perivascu-

lar cells, likely delaminated from vascular structures. Although PVL

cells clustered distinctly from CAFs and express perivascular mark-

ers including MCAM (CD146), CAV1, RGS5, MYH11 and TAGLN

(SM-22-Alpha), they also expressed an array of markers commonly

used to classify CAFs, including ACTA2 (⍺-SMA), PDGFRB, THY1

(CD90), S100A4 (FSP-1) and ITGB1 (CD29) (Hamzah et al, 2008;

Costa et al, 2018). Similar PVL subsets were identified in a previous

mouse model of breast cancer (Bartoschek et al, 2018). The authors

defined these cells as “vascular-like CAFs” through the expression

of vessel development markers such as CD146 (Bartoschek et al,

2018). Although the authors hypothesised that vascular-like CAFs

are derived from perivascular cells such as pericytes, the concept of

pericyte-to-fibroblast transition has been debated (Hosaka et al,

2016). Our findings from functional assays suggest PVL cells do not

possess the defining fibroblast trait of collagen deposition and

remain phenotypically distinct from the fibroblast lineage (Fig 4E).

The functional role of perivascular cells in breast cancer is poorly

understood. A very early study found that 4 out of 10 breast tumours

showed substantial infiltration of vascular smooth muscle cells

based on staining for markers including ⍺-SMA, smooth muscle

myosin and calponin (Ronnov-Jessen et al, 1995). This finding went

without further exploration until this manuscript, where we validate

their existence using state-of-the-art scRNA-Seq and staining of

CD146 in matched patient tissue. From our TF analysis, we predict

the MEF2 regulon to be a strong activating TF of the PVL subclass.

MEF2C is a well-defined regulator for establishing vSMCs during

development, highlighting a likely vSMC origin of the described PVL

cells (Creemers et al, 2006; Gordon et al, 2009). As observed during

wound healing, we hypothesise that vSMCs could be stimulated by

malignant factors or mitogens, allowing them to migrate from the

vessel basement membrane into the stroma (Banerjee et al, 2006;

Louis & Zahradka, 2010). This is further supported by in vitro studies

showing that breast cancer derived PDGFs can induce the recruit-

ment and migration of vSMCs (Banerjee et al, 2006). As perivascular

cells play an important part during angiogenesis and blood vessel

stability, it is also possible that their displacement in tumours is stim-

ulated by, or a driver of, dysregulated angiogenesis or hypoxia.

Although it is yet to be studied in the context of perivascular cells,

studies have reported that the imPVL marker CD36 is enriched in

normal tissue regions and is associated with good survival outcome

in breast cancer (DeFilippis et al, 2012). However, the origin and

functional role of PVL subpopulations remain to be defined by future

studies. The staining of CD146 exclusively associated with blood

vessels of normal breast tissue suggests that detached PVL cells are a

distinct feature of breast cancers.

Importantly, our findings suggest that previous studies character-

ising CAFs with a small number of markers have likely also studied

PVL cells. For example, subsets discriminated by CD146 have been

characterised in endocrine-resistant breast cancers (Brechbuhl et al,

2017). Patients with a CD146+ stroma demonstrated good responses

to tamoxifen therapy through the maintenance of oestrogen receptor

(ER)-dependent proliferation in cancer cells. Our findings suggest

that PVL cells rather than CAFs are a biomarker for ER-directed

therapeutic response in ER-positive breast cancers (Brechbuhl et al,

2017), a prediction that requires more detailed validation. Another

elegant study reported a subset of chemoresistance-promoting CAFs,

marked by ⍺-SMA+, GPR77+ and CD10+ expression (Su et al,

2018). Due to the shared expression of ⍺-SMA between myCAFs

and PVL cells, our findings also raise the question whether PVL cells

could also contribute to chemoresistance in a subset of patients (Su

et al, 2018). Although we did not find an enrichment of GPR77+

CD10+ ⍺-SMA+ cells in any CAF subclasses, this may be explained

by the treatment status of our samples.

Lastly, we found a strong enrichment of immunomodulatory

pathways in the predicted signalling between stromal cells and

immune cells. We identified an array of important candidates in

patient tissue for future experimental studies for functional rele-

vance. It is important to acknowledge; however, that transcript

signalling predictions are not always concordant with protein expres-

sion. Although no CAF subsets in previous mouse studies were

distinguishable by immunomodulatory properties (Bartoschek et al,

2018), there are several reports of predicted CAF-immune interac-

tions in human tissue. We found that iCAFs expressed an array of

immunomodulatory molecules to cognate receptors on T cells. In

other studies, CAFs have been implicated in the recruitment and

activity of T-Regs through the regulatory molecules CXCL12, CD40,

B7H3, DPP4 and CD73 (Costa et al, 2018). In addition, iCAFs also

expressed several molecules known to regulate myeloid cells, includ-

ing complement C5, IL6 and TGFb (Markiewski et al, 2008; Li et al,

2012). Myeloid cells, including tumour-associated macrophages and

myeloid derived suppressor cells, are well characterised in contribut-

ing to an immunosuppressive TME. Most importantly, gene signa-

tures generated from iCAFs were strongly associated with CTL

dysfunction in TNBC patient cohorts. We also report a novel dPVL

stromal subset strongly associated with CTL exclusion. We identified

an enrichment of dysfunctional/exhausted T cells which correlated

with their respective stromal profiles, though we acknowledge that

our study consists of small patient numbers. In patients with the

highest dPVL profile, we found consistently low TIL and CD8 counts

in matched pathology. Considering the proposed origin of detached

PVL cells from the vascular structure, we hypothesise that this may

be related to reduced lymphocyte extravasation from dysregulated

tumour blood vessels. In support of this, previous studies restoring

vascular integrity in tumours through vessel normalisation and

increased perivascular coverage find an influx of CD8+ T cells in

tumour tissue (Hamzah et al, 2008; Johansson-Percival et al, 2015).

In addition, signalling between CD4+ T cells and pericytes have also

been reported to play a reciprocal role in tumour vessel normalisa-

tion (Tian et al, 2017). It is possible that the association between

dPVL cells and CTL exclusion in patient cohorts reflect tumours with

low vascular integrity and may act as a biomarker for patients suit-

able for vessel normalisation therapeutic strategies.

While our findings point to the targeting of stromal cells, future

work investigating the transcriptional changes in stromal cells

between healthy breast tissue and cancer is required to understand

the stromal states that are cancer-specific vs. reactivated resident

cell types. In support of the latter possibility, a recent study showed

that there are minimal proteomic differences between normal

fibroblasts and CAFs in prostate cancer models (Nguyen et al,

2019). We find that iCAF- and myCAF-like fibroblasts exist in

cancer-free normal breast tissue. It is important to note that
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desmoplasia is often observed in cancer-free tissues, particularly in

high risk women with high mammographic density (Li et al, 2005).

This can be influenced by several physiological factors such as

weight, pregnancy and menopausal status, highlighting important

factors that need to be considered in future projects examining the

normal breast tissue microenvironment such as the human cell atlas

project (Li et al, 2005). These differences may exist from distinct

epigenetic states between CAFs and normal fibroblasts, indicating

another layer of complexity that remains to be explored in the four

breast cancer stromal subsets identified in our study (Pidsley et al,

2018). The integration of future assays combining scRNA-Seq with

chromatin states will be important in elucidating the epigenetic

regulation of cancer-associated stromal cells. Identifying specific

activation markers in comparison to healthy tissue is also an impor-

tant prerequisite for the development of precise cancer therapeutic

strategies with low toxicities. Future in vitro and in vivo studies will

be important in understanding how stromal cells are dynamically

reprogrammed and how the subclasses described here restrain or

promote tumour growth and invasion.

Clinical trials for mainstream immune checkpoint therapies

including anti-PDL1 have shown limited efficacy in the treatment

of advanced TNBC. This hints at alternate mechanisms of immune

evasion and novel therapeutic strategies are desperately needed to

improve immunotherapy for TNBC. Our findings suggest that co-

targeting stromal subpopulations could elicit a more effective

immune response in a subset of patients through inhibiting CTL

dysfunction and exclusion. This remains to be experimentally

tested. In conclusion, we have comprehensively profiled four func-

tionally distinct stromal subclasses in human TNBC, not previously

described in breast cancer, mouse models or other cancer types.

Importantly, we described subsets of CAFs and PVL cells with clin-

ical relevance, presenting as candidates to further investigate.

While our dataset captures a majority of the expected cell types

from the TME, certain cell types such as adipocytes are under-

represented due to biases from standard tissue dissociation proto-

cols. Integration of alternative methods such as single-nuclei

sequencing and spatial transcriptomics in future cancer cell atlas

studies will be crucial for a comprehensive understanding of the

TME. Our findings in only five patients also highlight the potential

of applying scRNA-Seq methods to larger scale patient cohorts for

the identification of new disease relevant cell states and their gene

expression features.

Materials and Methods

Ethics approval and consent for publication

Patient tissues used in this work were collected under protocols

x13-0133, x16-018 and x17-155. HREC approval was obtained

through the SLHD (Sydney Local Health District) Ethics Committee;

RPAH (Royal Prince Alfred Hospital) zone, and the St Vincent’s

hospital Ethics Committee. Site-specific approvals were obtained for

all additional sites. Written consent was obtained from all patients

prior to collection of tissue and clinical data stored in a de-identified

manner, following pre-approved protocols. Consent into the study

included the agreement to the use of all patient tissue and data for

publication.

Tissue dissociation

Fresh surgically resected tissue was washed with RPMI 1640

(Thermo Fisher Scientific) and minced with scissors. Samples were

enzymatically dissociated using Human Tumor Dissociation Kit

(Miltenyi Biotec) according to manufacturer’s protocol (https://

www.miltenyibiotec.com/AU-en/products/macs-sample-preparation/

tissue-dissociation-kits/tumor-dissociation-kit-human.html#gref).

Following incubation, the sample was then resuspended in RPMI

1640 and filtered through MACS� SmartStrainers (70 lM; Miltenyi

Biotec), and the resulting single-cell suspension was centrifuged at

300 × g for 5 min. Red blood cells were lysed with Lysing Buffer

(Becton Dickinson) for 5 min, and the resulting suspension was

centrifuged at 300 × g for 5 min. Viability was assessed to be

> 80% using Trypan Blue (Thermo Fisher). Viability enrichment

was performed using the EasySep Dead Cell Removal (Annexin V)

Kit (StemCell Technologies) as per manufacturers protocol. Disso-

ciated cells were resuspended in a final solution of PBS with 10%

foetal calf serum solution prior to loading on the 10× Chromium

platform. Previously reported stress pathways associated with

tissue dissociation, such as FOS/JUN and reactive oxygen species,

were not identified as a part of the candidate genes, pathways and

transcription factor networks differentiating the stromal subsets in

our study (O’Flanagan et al, 2019).

Single-cell RNA sequencing on the 10× Chromium platform

High-throughput droplet-based scRNA-Seq was performed on the

single-cell suspensions using the Chromium Single Cell 3’ v2

Library, Gel Bead and Multiplex Kit and Chip Kit (10× Genomics)

according the to manufacturer’s instructions, with a target of

5,000 cells per lane. scRNA-Seq libraries were sequenced on the

Illumina NextSeq 500 platform with pair-end sequencing and dual

indexing according to the recommended Chromium platform

protocol; 26 cycles for Read 1, 8 cycles for i7 index and 98 cycles

for Read 2.

Data processing

Sample demultiplexing, reference mapping, barcode processing

and gene counting were performed using the Cell Ranger Single

Cell Software v2.0 (10× Genomics). Reads were aligned to the

GRCh38 human reference genome. Raw count matrices were

exported and filtered using the EmptyDrops package in R (Lun

et al, 2018). EmptyDrops distinguishes “real” barcodes from

“noise” by calculating deviations of each cell against a generated

ambient background RNA profile. Filtered barcodes were then

processed using the Seurat v2.0 package in R (Satija et al, 2015).

Additional conservative cut-offs were further applied based on

the number of genes detected per cell (> 200), and the percent-

age of mitochondrial unique molecular identifier (UMI) counts

(< 10%). Individual Seurat objects were then integrated

using the canonical correlation analysis (CCA) function RunMul-

tiCCA according the developer guidelines (Butler et al, 2018).

The top 2,000 most variable genes from each sample were

combined for CCA vector identification. The first 20 CC dimen-

sions were used for the alignment of subspaces and UMAP

projection.
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Cluster annotation

Cell clusters were annotated using canonical cell type markers for

epithelial (EPCAM), myoepithelial (EPCAMLO, ACTA2, KRT5 and

KRT14), basal (KRT5 and KRT14), mature luminal (ESR1), endothe-

lial (PECAM1), immune (PTPRC), T cells (CD3D, CD8A and CD4), T-

regulatory cells (FOXP3), B cells (MS4A1), plasmablasts (JCHAIN),

myeloid cells (CD68) and stromal cells (PDGFRB and COL1A1).

Malignant epithelial cells were distinguished from entrapped normal

epithelial cells by inferring copy number variations using the

inferCNV package as previously described (Patel et al, 2014). In

addition, an area under the curve (AUC) approach using published

cell type signatures from the XCELL database was performed using

AUCell (Aibar et al, 2017; Aran et al, 2017). AUCell scores single

cells with input gene signatures and analyses its activity and distri-

bution across the entire dataset to explore the relative expression of

the gene set of interest. AUCell utilises raw gene counts and thus is

independent of normalisation bias. CAFs, PVL cells and T cells were

independently re-clustered using the Seurat v3 method. Re-clus-

tering was performed across resolutions 0.2, 0.3, 0.4 and 0.5 to iden-

tify stable clusters.

Differential gene expression and pathway enrichment

The MAST method was used to perform differential gene expression

through the FindAllMarkers function in Seurat (log fold change

threshold of 0.1, P-value threshold of 1 × 10�5 and FDR threshold of

0.05) (Finak et al, 2015). The top 250 DEGs from each cluster were

then passed on to the ClusterProfiler package for functional enrich-

ment (Yu et al, 2012). The compareCluster function was used with

the enrichGO databases CC, MF and BP sub-ontologies using the

human org.Hs.eg.db database.

Pseudotime cell trajectory analysis

The Monocle 2 method was applied to infer cell trajectories for CAFs

and PVL cells using default parameters, as recommended by devel-

opers’ (Qiu et al, 2017). CAFs from Patient-2 and PVL cells from

Patient-1 were extracted for Monocle analysis due to adequate cell

numbers and representations of each respective subset. Gene

expression matrices from each cell type were first exported from

Seurat into Monocle 2 to construct a CellDataSet. Variable genes

defined by the differentialGeneTest function (q-val cut-off < 0.001)

were used for cell ordering and dimensionality reduction with the

setOrderingFilter and reduceDimension functions, respectively.

Gene regulatory analysis using SCENIC

Investigation of gene regulatory networks using SCENIC was

performed using a faster python implementation of the tool

(pySCENIC) as described by the developers on the 1,729 stromal

cells (Aibar et al, 2017; Moerman et al, 2018). SCENIC explores

gene regulatory networks by identifying TF co-expression modules

and binding motif enrichment. The normalised expression matrix

generated from Seurat was first filtered for genes as previously

described (sum of gene expression > 3 × 0.005 × 1,729) (Lam-

brechts et al, 2018). Genes detected in at least 0.5% of cells were

kept. This resulted in 12,100 genes for pySCENIC input (Lambrechts

et al, 2018). Analysis was performed using the hg38 mc9nr motif

collection with a TSS � 10 kB (hg38__refseq-r80__10kb_up_and_-

down_tss.mc9nr) for the arboreto and RcisTarget steps. Gene regu-

lons were clustered and plotted using the pheatmap function in R.

Flow cytometry and FACS isolation of stromal cells

Cell sorting and flow cytometry experiments were performed at the

Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of

Medical Research. Flow cytometry was performed on a Becton Dick-

inson CantoII or LSRII SORP flow cytometer using BD FACSDIVA

software, and the results were analysed using FlowJo software (Tree

Star Inc.). FACS experiments were performed on a FACS AriaIII

sorter using the BD FACSorter software. All antibody details used in

this study can be found in Appendix Table S1. Cryopreserved single-

cell suspensions from Patient-4 were thawed, washed with RPMI

and incubated with an anti-CD16/CD32 antibody (1:200, BD Bios-

ciences #564220) in FACS buffer (PBS containing salts, 2% FBS) for

10 min to block nonspecific antibody binding. For the isolation of

the different stromal subpopulations for subsequent experiments,

cells were pelleted and resuspended in FACS buffer containing the

following antibodies: anti-EPCAM (1:100; BioLegend #324203), anti-

CD31 (1:100; BioLegend #303103), anti-CD45 (1:100; BioLegend

#304005), anti-PDGFRb (1:100; BioLegend #323605), anti-PDGFRa
(1:100; BioLegend #323507) and anti-CD146 (1:100; BioLegend

#342011) for 20min on ice. All epithelial, immune and endothelial

cells were excluded together on the FITC channel marking EPCAM,

CD45 and CD31. In addition, we performed positive selection using

PDGFRb. CAFs and PVL cells were discriminated using PDGFRa and

CD146, respectively. CAFs and PVL cells were isolated and cultured

into dishes (Corning� LifeSciences) coated with collagen (0.15 mg/

ml) in RPMI 1640 supplemented with 20% (v/v) FBS, 50 lg/ml genta-

mycin and 1× antibiotic/antimycotic (15-240-096, Gibco�) in a 5%

O2, 5% CO2 incubator at 37°C. Cell sorting was repeated on cultured

CAFs and PVL cells using the previously described experimental

conditions with anti-PDGFRa (1:100; BioLegend #323507), anti-CD146

(1:100; BioLegend #342011), anti-FAP (1:100; R&D Systems

#FAB3715P-025), anti-CD90 (1:100; BioLegend #328113) and anti-

CD36 (1:100; BioLegend #336221). FAPHIGH expression was used to

discriminate myCAFs from FAPLOW iCAFs, while CD36 expression

was used to identify imPVL cells from dPVL cells.

Immunofluorescence

Primary cells were grown on glass coverslips coated with collagen

in the same manner as the CDMs as described below. Media was

removed and cells were rinsed with PBS for 5 min. Cells were fixed

in 4% paraformaldehyde (ProSciTech) diluted in PBS for 15 min at

room temperature then washed three times with PBS for 5 min.

Cells were permeabilised with ice cold methanol for 10 min at

�20°C followed by three 5 min PBS washes. Cells were blocked in

blocking buffer (3% BSA + 0.1% Tween-20 in PBS) for 1 hr at room

temperature. Primary antibody was diluted in blocking buffer at the

following dilutions: anti-CD34 (1:100; Abcam #MA1-10202), anti-

FAPa (1:200; Abcam #ab53066), anti-aSMA (1:500; Abcam

#ab21027), anti-CD36 (1:100; BioLegend #336203), anti-CD146

(1:200; Abcam #ab75769) and anti-PDGFRb (1:250; Abcam

#ab32570). Coverslips were inverted and incubated on droplets of

ª 2020 The Authors The EMBO Journal e104063 | 2020 15 of 20

Sunny Z Wu et al The EMBO Journal



diluted primary antibody on parafilm in a humidified chamber over-

night at 4°C. The following day cells were washed three times for

5 min in PBS. Cells were incubated with fluorescent secondary anti-

body (Jackson ImmunoResearch) diluted 1:500 in blocking buffer

for 1 h at room temperature in a light proof container then washed

two times with PBS for 5 min. Nuclei were stained with 1 lg/ml

Hoechst 33342 (Sigma) in PBS for 5 min at room temperature

followed by two 2 min PBS rinses. Coverslips were mounted with

Prolong Diamond antifade mountant (Thermo Fisher Scientific) and

allowed to dry overnight at room temperature. Fluorescent images

were captured using a Leica DMI Sp8 confocal microscope.

Immunofluorescence was performed on 4 lm FFPE tissue

sections prepared as described below for IHC. Antigen retrieval was

performed for 20 min in a 100°C water bath in target retrieval buffer,

pH 9 (Agilent Technologies). Slides were blocked for 1 h at room

temperature in PBS containing 3% BSA and 5% goat serum. Slides

were incubated with primary antibodies diluted in blocking buffer:

anti-CD31 (1:50; Agilent Technologies #M0823) and anti-CD146

(1:600; Abcam #ab75769). Secondary antibody staining, nuclear

counterstaining and microscopy were performed as described above.

Quantitative real-time PCR analysis

RNA was extracted from sorted CAF cells using the Qiagen

miRNeasy Mini Kit (Qiagen) and was reverse transcribed using the

Transcriptor First Strand cDNA synthesis kit (Roche). TaqMan

assays (Thermo Fisher Scientific) were used to analyse mRNA

expression levels using a QuantStudio 7 Flex RT–PCR machine

(Thermo Fisher Scientific). TaqMan probes used were FAP

(Hs00990791_m1), ACTA2 (Hs00426835_g1), CXCL12 (Hs00171

022_m1), EGFR (Hs01076078_M1), PDGFRA (Hs00998018_m1),

PDGFRB (Hs01019589_m1) and ACTB (Hs99999903_M1). Relative

gene expression was calculated using the DDCt method.

Cell-derived matrices

Cell-derived matrices (CDMs) were established as previously

described (Cukierman et al, 2001). A total of 1.5 × 105 cells/well

were allowed to expand until confluent and ascorbic acid (50 mg/

ml) was added to culture medium on days 1, 3 and 5. To maintain

the structure interact of the matrix architecture, CDMs were imaged

using second harmonic generation (SHG) at day 7 with cells still

present in the matrix.

Second harmonic generation imaging

Second harmonic generation (SHG) imaging was achieved using an

inverted Leica DMS 6000 SP8 confocal microscope with a Ti-

Sapphire femtosecond laser cavity (Coherent Chameleon Ultra II)

excitation source, operating at 80 MHz and tuned to a wavelength

of 880 nm, as previously described (Timpson et al, 2011; Conway

et al, 2017; Vennin et al, 2017). SHG intensity was detected using a

440/20 nm RLD HyD detectors. For CDMs, three representative

fields of view (512 lm × 512 lm) were imaged over a 3D z-stack

(80 lm with a 2.52 lm step size, and 30 lm with a 1.51 lm step

size, respectively), with a line average of 4 at 25× magnification.

Rotation images were acquired on the z-level of maximum intensity

with a line average of 64 at 63× magnification.

Collagen fibre orientation analysis

Collagen fibre orientation analysis in SHG images from CDMs was

carried out as previously described (Mayorca-Guiliani et al, 2017;

Cazet et al, 2018). Briefly, the distribution of orientation of collagen

within images was assessed based on methodology published by

Rezakhaniha et al (2012). The local orientation and isotropic prop-

erties of individual pixels making up collagen fibres were derived

from structure tensors evaluated by computing the continuous

spatial derivatives in the x and y directions using a cubic B-spline

interpolation to obtain the local predominant orientation. Graphical

outputs show a hue–saturation–brightness (HSB) colour-coded map

indicating the angles of the oriented structures within the image.

Orientation distribution peaks were then aligned. The shape of the

distribution indicates the degree of alignment within the image,

where wide and broad shapes suggested little coherency in align-

ment, and tight peaks with small standard deviations implied

aligned structures.

Immunohistochemistry and image alignment

In-house FFPE blocks were made of patient tissues by fixing in 10%

neutral buffered formalin for 24 h and processing for paraffin

embedding. Where tissue was limited, diagnostic tumour FFPE

blocks were accessed for analysis. FFPE blocks were sectioned at

4 lm. These were used for histological analysis, using a standard

haematoxylin and eosin stain, and for immunohistochemical analy-

sis on the Leica BOND RX Autostainer. Details of antibodies and

staining conditions are described in Appendix Table S1. H&E and

IHC slides were imaged using the Aperio CS2 Digital Pathology Slide

Scanner. IHC images were imported into FIJI as a virtual stack. Each

layer was then aligned using least squared mode (linear feature

correspondences), propagating to the first and last layers for rigid

transformation. All other parameters were set to default in FIJI.

Cell signalling predictions using ligand–receptor annotation

Genes from the scRNA-Seq data were annotated based on a

published set of human ligand–receptor pairs derived from support-

ing literature (Ramilowski et al, 2015). We used this knowledge to

construct a cell-to-cell communication network between the four

stromal clusters and other epithelial, immune and endothelial clus-

ters. To investigate conserved signalling modules in TNBCs, we

applied this to the cluster averaged expression levels of all ligands

and receptors in the integrated dataset of five patients. The “interac-

tion strength,” or the weight of edges between two clusters, was

defined as the product of expression values from the ligand and its

cognate receptor. All “interaction strengths” greater than an arbi-

trary cut-off of 0.1 were considered as cell signalling candidates and

kept for subsequent analyses (Dataset EV3). The total number of

interaction pairs identified per cluster was used to generate summa-

ries of this data (Fig 5A and B). The top 100 candidates between the

four stromal subsets and each target population were clustered

using hierarchical clustering (complete and Euclidean distance) and

rescaled for visualisation in ggplot2. For the visualisation purposes

only, the ligand and receptor expression values in Fig 5C–E were

imputed using the MAGIC method to better represent the structure

of genes with low expression and dropout (van Dijk et al, 2018).
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Raw count matrices and cluster IDs identified by Seurat (as previ-

ously described) were used as input to MAGIC and run with default

parameters as recommended by the developers.

T-cell dysfunction and exclusion analysis

To investigate the immunomodulatory roles of different stromal

subsets, we performed T-cell dysfunction and exclusion analysis

using similar strategy from TIDE (Jiang et al, 2018). We first used

the average expression level of CD8A, CD8B, GZMA, GZMB and

PRF1 to estimate the cytotoxic T-lymphocyte (CTL) level in each

sample from the bulk sequencing cohort. Patients with a higher and

lower CTL level compared to the mean CTL level within the cohort

were stratified into high and low CTL groups, respectively. For CTL

dysfunction analysis, TIDE evaluates whether gene signatures from

each of the stromal subsets influences the beneficial effect of CTL

levels on patient prognosis. This is performed using the interaction

coefficient d from Cox proportional hazard (Cox-PH) model to eval-

uate how the interaction between a candidate gene and the CTL

affects the death hazard. Genes with a higher TIDE dysfunction

score suggest antagonistic interactions with regard to CTL levels,

where the survival benefit of patients with high CTL is lost, and thus

suggesting an association with CTL dysfunction. This method was

used to calculate the TIDE T-cell dysfunction score from the dif-

ferentially expressed genes across the four stromal subsets in TNBC

patients from the METARBRIC cohort (Curtis et al, 2012) and two

independent TBNC cohorts (Sabatier et al, 2011; Jezequel et al,

2015). A total of 233, 84 and 107 patients were evaluated for the

METABRIC, GSE21653 and GSE58812 cohorts, respectively.

For T-cell exclusion analysis, we examined Pearson correlations

between all CTL levels (indicated on the y axis in Fig 6E) and the

respective correlation score between the bulk tumour sample and

single-cell cluster of interest (indicated on the x axis in Fig 6E).

Here, gene signatures for the single-cell cluster of interest were

defined by the averaged gene expression of all single cells in the

cluster, divided over the averaged gene expression of all cells

detected in the dataset. This method was used to define signatures

in this section, as opposed to a DEG list in the previous CTL

dysfunction analysis. This was first performed for all stromal cells,

CD4+ and CD8+ T-cell clusters divided over all detected cells inde-

pendently, as shown in Fig 6D. We next repeated this for the

myCAF, iCAF, dPVL and imPVL clusters divided over all stromal

cells independently, as shown in Fig 6E. In each of the breast cancer

cohorts, a higher correlation suggests a positive association between

the single-cell cluster of interest and CTL levels (as observed in

CD4+ and CD8+ T cells shown in Fig 6D), while a negative correla-

tion suggest a negative association (as observed in dPVL cells

shown in Fig 6E). This correlation indicates a potential affluence of

each stromal subset on T-cell infiltration in tumours. For T-cell

exclusion analysis, we examined the three aforementioned TNBC

cohorts, as well as the TNBC cohort from The Cancer Genome Atlas

(https://www.cancer.gov/tcga) (Cancer Genome Atlas, 2012).

Statistical analysis

For the identification of significant differentially expressed genes in

scRNA-Seq, the MAST method was applied with a P-value threshold

of 1 × 10�5 and FDR threshold of 0.05 (Finak et al, 2015).

Comparisons for enriched AUCell regulon scores from the SCENIC

pipeline were made using a one-way analysis of variance (ANOVA)

with a P-value threshold of 1 × 10�5 (Aibar et al, 2017; Moerman

et al, 2018). Quantitative analysis of collagen abundance from SHG

was determined using unpaired two-tailed Student’s t-test with equal

standard deviation after normalisation of the orientation peak distri-

butions. P-values were denoted by asterisks: *P < 0.05, **P < 0.01

and ***P < 0.001. For collagen orientation, statistical significant was

determined using a Kruskal–Wallis test with Dunn’s post hoc multi-

ple comparisons test with a P-value threshold of 1 × 10�4. For TIDE

analysis of CTL dysfunction, P-value significance was determined

using the Cox proportional hazard (Cox-PH) model and was assigned

from the P(> |z|) value from the prognostic differences between CTL

high and CTL low groups. For TIDE analysis of CTL exclusion, P-

values were derived from a two-sided t-test for each correlation. The

Benjamini–Hochberg procedure was used for adjusting P-values to

correct for multiple testing. Statistical significance of CD8 IHC stain-

ing was determined using pairwise comparison of each patient

against all others (i.e., base-mean) using a Student’s t-test.

Data availability

The scRNA-Seq data from this study have been deposited in the

European Nucleotide Archive (ENA) under the accession code

PRJEB35405 (http://www.ebi.ac.uk/ena/data/view/PRJEB35405).

This depository includes the demultiplexed paired ended reads (R1

and R2), Illumina indices and bam files processed using the Cell-

ranger software. The scRNA-Seq analysis scripts can be found on

the website: https://github.com/sunnyzwu/stromal_subclasses. All

relevant data are available from the authors upon request.

Expanded View for this article is available online.
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