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Although millions of transcription factor binding sites, or cis-
tromes, have been identified across the human genome, defining
which of these sites is functional in a given condition remains
challenging. Using CRISPR/Cas9 knockout screens and gene essen-
tiality or fitness as the readout, we systematically investigated the
essentiality of over 10,000 FOXA1 and CTCF binding sites in breast
and prostate cancer cells. We found that essential FOXA1 binding
sites act as enhancers to orchestrate the expression of nearby
essential genes through the binding of lineage-specific transcrip-
tion factors. In contrast, CRISPR screens of the CTCF cistrome
revealed 2 classes of essential binding sites. The first class of
essential CTCF binding sites act like FOXA1 sites as enhancers to
regulate the expression of nearby essential genes, while a second
class of essential CTCF binding sites was identified at topologically
associated domain (TAD) boundaries and display distinct charac-
teristics. Using regression methods trained on our screening data
and public epigenetic profiles, we developed a model to predict
essential cis-elements with high accuracy. The model for FOXA1
essentiality correctly predicts noncoding variants associated with
cancer risk and progression. Taken together, CRISPR screens of cis-
regulatory elements can define the essential cistrome of a given
factor and can inform the development of predictive models of
cistrome function.
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Gene expression in mammalian systems is exquisitely regu-
lated by the combinatorial action of a set of transacting

factors and their “cistromes” or genome-wide cis-acting genomic
targets. Cistromes include many important regulatory elements
in the genome, such as promoters, enhancers, silencers, or in-
sulators. Enhancers are thought to be the most abundant, and
enhancer selectivity and activity may determine the action of a
transcription factor in a cell type-dependent manner. Enhancer
abnormalities contribute to a variety of human diseases, in-
cluding cancer (1, 2). Millions of putative enhancers have been
found in the human genome through high-throughput profiling
histone modification, transcription factor binding sites, and
chromatin accessibility (3–5). However, given the surge of cis-
trome data generation and enhancer characterization, it remains
challenging to distinguish functional binding sites or enhancers
from passive binding events or inactive enhancers. In addition,
the extent of functional redundancy of enhancers is unknown.
Recently, high-throughput CRISPR/Cas9 genetic screening utiliz-
ing single-guide RNAs (sgRNAs) or paired-guide RNAs (pgRNAs)
have been applied to characterize noncoding genomic region
functions (6–8). These studies either interrogate a genomic region
close to the gene of interest to identify enhancers that regulate the
target gene (6, 9–11), or perturb hundreds of enhancers and

test their knockout effects on cell growth (12, 13). However, to
systematically evaluate cistrome functions, these current ap-
proaches are limited since 1) most of the studies focus on the reg-
ulation of only 1 gene; 2) the number of noncoding genomic regions
is limited (only up to a few hundred); and 3) a systematic evaluation
of the screening results and associated features is lacking.
Here we interrogated the functions of over 10,000 cis-acting

elements that are bound by CTCF or FOXA1 using CRISPR
sgRNA screens and delineated binding site essentiality or fitness.
FOXA1 (forkhead box protein A1) is a pioneer factor that is
thought to open chromatin and promote gene transcription
through binding of other factors (14, 15). CTCF (CCCTC-
binding factor) is a highly conserved factor with diverse func-
tions in mammalian cells, including transcriptional activation or
repression (16, 17), imprinting (18), insulation (19), and chromatin
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organization (20). Both factors as well as their binding sites are
frequently mutated in different cancer types (21–23). We validated
top hits through a focused pgRNA screen and individual knock-
out, identified features associated with the essential sites within
the cistromes, and built machine-learning methods to predict the
essentiality of cis-acting elements.

Results
Genome-Wide CRISPR Screen Targeting the FOXA1 Cistrome. To
systematically investigate sites in the FOXA1 cistrome whose
loss affects cell viability, we designed genome-wide CRISPR/Cas9
knockout screening libraries targeting the binding sites of FOXA1.
We first performed genome-wide CRISPR gene screens in estrogen
receptor (ER) positive breast cancer T47D cells with our optimized
sgRNA library targeting ∼18,000 genes in the human genome (SI
Appendix, Methods). The quality of the screens is high based on
multiple quality control (QC) measurements (SI Appendix, Fig. S1
A–C), and the results confirmed FOXA1 as an essential gene in
T47D cells (Fig. 1A and SI Appendix, Table S1). Over 500 genes are
identified as essential with high statistical significance (false dis-
covery rate [FDR] < 0.05), including genes in the ER transcription
factor network such as ESR1, FOXA1, TRPS1, GATA3, and
SPDEF and known essential target genes and downstream signaling
molecules such as MYC, CCND1, and CDK4 (Fig. 1A and SI
Appendix, Table S1). In order to design an sgRNA library to in-
terrogate the FOXA1 cistrome, we focused on all 1,122 binding
sites within 50 kb of essential genes in T47D and chose 5,000
FOXA1 binding sites that have the strongest chromatin
immunoprecipitation-sequencing (ChIP-seq) signals (Fig. 1B, Table
1, and SI Appendix, Tables S1 and S2), identified from either our
gene screen or a public CRISPR screen of T47D cells that
employed the GeCKO v2 library (24) (SI Appendix, Fig. S1B). All of
the selected binding sites are located within the intronic or inter-
genic regions of the genome (SI Appendix, Fig. S1D). For candidate
FOXA1 binding sites, we next scanned for all possible sgRNAs
located within the FOXA1 ChIP-seq peak, removed those with low
predicted CRISPR cutting efficiency and specificity, and chose up
to 20 sgRNAs that were closest to the ChIP-seq peak summit. Also
included in the FOXA1 cistrome library are sgRNAs targeting the
exons of known essential genes as positive controls and the non-
essential AAVS1 “safe harbor” locus as a negative control. We
performed CRISPR/Cas9 screening in T47D cells under full me-
dium condition to evaluate the essentiality of the selected FOXA1
binding sites (SI Appendix, Fig. S1E). The sequences encoding the
sgRNA were PCR-amplified from the transduced cells at day 0 and
after 4 wk of culture. The abundance of sgRNAs was then quan-
tified by high-throughput sequencing, and the data analysis was
performed using MAGeCK-VISPR, a statistical algorithm that we
previously developed (25, 26).
We compared the degree of essentiality for genes or binding

sites using the “β-score” generated fromMAGeCK-VISPR, which is
a measurement of gene selection similar to the term “log fold
change” in differential expression analysis (SI Appendix, Table S3). A
positive (or negative) β-score indicates the corresponding gene/
binding site is under positive (or negative) selection in the CRISPR
screen, respectively. Overall, essential genes that serve as positive
controls were strongly negatively selected as expected (SI Appendix,
Fig. S1F). Cell type-specific copy-number variation (CNV) is a well-
known confounding factor in CRISPR knockout screens. We
employed theCNV correction procedure inMAGeCK to reduce the
effects of CNV, by adjusting the β-scores according to the CNV
status in the corresponding loci (SI Appendix, Methods). This ap-
proach reduces the effects of CNV status and allows the accurate
evaluation of the functions of binding sites within amplified regions
(SI Appendix, Fig. S1G).
Overall, 37 FOXA1 binding sites in T47D cells are essential

with statistical significance (FDR < 0.25; Fig. 1C), including 29
strong FOXA1 binding sites and 8 binding sites near essential

genes [gene FDR < 0.05 in either our screen or a public T47D
cell screen (24); SI Appendix, Fig. S1B]. Essential genes associ-
ated with essential binding sites include estrogen receptor 1
(ESR1), the master transcription factor for ER+ breast cancer
cells, and TRPS1, another transcription factor that is known to
be associated with ER+ breast cancer progression (27). In ad-
dition, binding sites near genes that are widely essential for cell
growth were also found in the screen, including for example
MRPL9, a mitochondrial large ribosomal subunit protein, and
COX4I1, a cytochrome C oxidase subunit.
As one of the top essential FOXA1 binding sites (FOXA1_P146)

in T47D cells is located within the intron of the ESR1 gene itself (SI
Appendix, Fig. S2A), we chose it for validation. Using 2 independent
sgRNAs targeting this binding site, we confirmed that they induced
a high percentage of indels at the binding site (SI Appendix, Fig. S3A
and B), and the CRISPR/Cas9–mediated mutagenesis of the
FOXA1_P146 binding site decreased cell proliferation in a com-
petitive growth assay (SI Appendix, Fig. S3C). Disruption of this
binding site by the individual sgRNA-mediated CRISPR/Cas9 tar-
geting compromises binding of FOXA1 to the site (SI Appendix,
Fig. S3D). We further examined whether FOXA1_P146 could
regulate ESR1 expression, considering the localization of this
binding site and the functional importance of ESR1 in T47D cells.
Individual targeting of FOXA1_P146 reduces ESR1 expression,
which is similar to the effect of FOXA1 loss of function by either
sgRNA-mediatedCRISPR/Cas9 knockout orRNA interference (SI
Appendix, Fig. S3E andF), suggesting that FOXA1_P146 serves as a
FOXA1-dependent enhancer of ESR1 expression.
We next studied the link between essential binding sites and

nearby genes (Fig. 1 D and E), as well as epigenetic features
associated with essential binding sites (Fig. 1F). In general, es-
sential binding sites are more likely to be close to essential genes
(compared with all binding sites in the library) and essential
genes are more likely to be located near essential binding sites
compared with all genes (Fig. 1E). Those genes near essential
FOXA1 binding sites are enriched in breast cancer-related
functions and pathways, including metaplastic/ductal carcinoma
of the breast, luminal breast cancer, hypoxia response in MCF7
cells, and targets of ESR1 (Fig. 1D). Compared with all binding
sites in the library, essential FOXA1 binding sites tend to have a
higher level of H3K27ac signal (consistent with an active en-
hancer) and DNase I hypersensitivity signals (indicating open
chromatin; Fig. 1F). However, essential binding sites have a
similar level of FOXA1 binding strength compared with non-
essential binding sites, indicating that the intensity of FOXA1
binding is not necessarily associated with essentiality.
To gain insights into essential binding sites in a different cell

lineage, we performed the same screening experiment in the
LNCaP prostate cancer cell line, where FOXA1 is also known to
be essential (SI Appendix, Fig. S4 A–C). The quality of the screen
was confirmed by evaluating the positive control genes that are
strongly negatively selected (SI Appendix, Fig. S4D). Together,
both T47D and LNCaP screens identified 72 essential binding
sites in at least 1 cell line (FDR < 0.25; Fig. 2A). Interestingly,
many of the essential binding sites are located within the introns
of a protein-coding gene (last row, Fig. 2A). The β-scores of
intronic binding sites and their associated genes are positively
correlated (SI Appendix, Fig. S4E). However, it was unclear
whether these intronic binding sites would affect gene functions
via enhancer regulation or other mechanisms (e.g., RNA stability
or splicing). To address this question, we examined the H3K27ac
levels (an enhancer mark) of intronic binding sites, as well as
their distances to the transcription start site (TSS) of genes (SI
Appendix, Fig. S4 F and G). Overall, these “intronic” essential
binding sites have similarly higher H3K27ac levels as intergenic
essential binding sites compared with all of the tested binding
sites, and binding sites closer to the gene TSS are more likely to
be essential (SI Appendix, Fig. S4 F and G). When only focusing
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on intronic sites, the essential intronic sites also have stronger
signals for enhancer-associated chromatin features including
H3K4me2, H3K27ac, DNase I sensitivity, and ER binding over
the nonessential intronic sites (SI Appendix, Fig. S4 H and I).

These results support that overall the essentiality of intronic sites
is likely the result of their function as enhancers rather than
effects on the primary transcript, though this possibility for any
individual site cannot be ruled out without further validation.
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Fig. 1. Genome-wide CRISPR screens for FOXA1 binding sites in T47D cells, an ER-positive breast cancer cell line. (A) Top essential genes in T47D cells,
identified by genome-wide CRISPR gene screens. A smaller RRA score (identified by the MAGeCK algorithm) indicates a stronger negative selection of the
corresponding gene. (B) The design of the FOXA1 screening library. FOXA1 binding sites are preselected as indicated, followed by an sgRNA scanning to
identify all possible guides within the binding sites. sgRNAs that have low predicted specificity or cleavage efficacy are then filtered. For the remaining
sgRNAs, up to 20 guides that are close to the binding site summit are then selected. (C) An overview of the functions of FOXA1 binding sites in T47D cells,
including strong intergenic binding sites (blue dots) and essential binding sites near essential genes (red dots). For each binding site, the β-score, a mea-
surement of gene selection in the screen, is calculated using the MAGeCK-VISPR algorithm that we previously developed. A positive (or negative) β-score
indicates the gene/binding site is positively (or negatively) selected, respectively. (D) The functional analysis of genes near essential FOXA1 binding sites using
the GREAT prediction tool (46). Terms related to breast cancer are highlighted in red. (E) The percentage of all (and essential) FOXA1 binding sites that are
within 100 kb of essential genes in T47D cells, and the percentage of all (and essential) genes near essential FOXA1 binding sites. Essential genes are genes
with the 10% lowest β-scores from genome-wide CRISPR gene screens in T47D cells. ***P < 0.001. (F) The epigenetic features of essential binding sites vs.
nonessential binding sites.
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We set out to systematically evaluate features associated with
FOXA1 binding site essentiality. We collected features that are
potentially associated with binding site functions (Fig. 2B), in-
cluding the locations of the FOXA1 motif, copy-number status,
distance of binding sites to nearby genes, expression of nearby

genes (through RNA-seq), essentiality of nearby genes (through
CRISPR gene screens), as well as high-quality transcription
factor and histone mark ChIP-seq data corresponding to both
cell lines from our cistrome database (28, 29). We ranked fea-
tures based on their associations with functional or non-
functional binding sites identified in both T47D and LNCaP cell
screens, using the Wilcoxon rank-sum test (Fig. 2C). Overall,
DNase I signal (representing open chromatin), nearby gene es-
sentiality, and nearby gene expression have the strongest asso-
ciations with binding site essentiality. Top essential binding sites
are significantly closer to essential genes (Fig. 1E and SI Ap-
pendix, Fig. S5A) and highly expressed genes (SI Appendix, Fig.
S5B), suggesting that these essential binding sites may function
through regulating nearby essential and often highly expressed
genes. As expected, H3K27ac and DNase I signals also separate
essential and nonessential binding sites (Fig. 1F and SI Appendix,
Fig. S5C), indicating that functional binding sites tend to be
active enhancers.

Table 1. A summary of the CTCF and FOXA1 cistrome-targeting
libraries

FOXA1 library CTCF library Total

Binding sites 6,110 5,564 11,674
sgRNAs (12 to 20 sgRNAs per

binding site)
96,962 97,002 193,964

Essential genes 146 146
Gene-targeting sgRNAs (5 sgRNAs

per gene)
730 730

AAVS1-targeting sgRNAs 267 267
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Fig. 2. Features of FOXA1 binding sites in T47D and LNCaP cells. (A) The chromatin features of selected binding sites with statistical significance coming out
of the cistrome screens. (B) Possible features that are tested for the association with binding site functions in the screens. (C) The rankings of all features
associated with the functions of FOXA1 binding sites. For each feature, we compare its signal distribution between the top 5% of essential sites vs. other sites.
The average of P values (calculated using the Mann–Whitney U test) across 2 cell lines is used to measure the relevance of each feature. (D) The β-scores of all
sites in T47D and LNCaP cells. Sites are colored by their appearances in both cell lines: Sites that only appear in T47D or appear in both cells are colored blue
and red, respectively. (E and F) The β-score distribution of the strongest FOXA1 or ESR1 sites vs. others in T47D and LNCaP cells. (G) The binding signals of the
top essential FOXA1 binding sites vs. nonessential sites in LNCaP cells.
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Consistent with our observation (Fig. 1F) that FOXA1 binding
strength is weakly associated with essentiality (Fig. 2C), binding
sites identified as being T47D-specific by virtue of strong
FOXA1 binding in T47D cells may also be essential in LNCaP
cells (Fig. 2D). This may be because FOXA1 acts as a pioneer
factor to open chromatin and allow other transcription factors to
bind the cis-regulatory region to regulate gene expression. Thus,
it may not be FOXA1 itself but other key cooperative transcription
factors that determine the function of the binding sites. Indeed, ER
or androgen receptor (AR) binding strength, rather than FOXA1
binding, is more predictive of functional binding sites in T47D (Figs.
1F and 2E) and LNCaP cells (Fig. 2 F and G), respectively. Con-
versely, essential binding sites are more likely to have stronger ER
or AR binding. We confirmed our finding by performing screens in
hormone-depleted media and hormone-depleted media supple-
mented with 17β-estradiol (E2) in T47D cells (SI Appendix, Fig.
S6A). Compared with other binding sites, binding sites with the
strongest ER binding (after E2 induction) appear to be strongly
negatively selected, whereas binding sites with the strongest FOXA1
binding (after E2 induction) only show marginal negative selection
(SI Appendix, Fig. S6 B and C).

Genome-Wide CRISPR Screen Targeting CTCF Binding Sites. We next
studied the essentiality of the binding sites of CTCF, a chromatin
structure regulator. Although CTCF was not identified as a top
essential gene in T47D or LNCaP cell lines in the gene screens
using a stringent FDR cutoff of <0.05, loss of CTCF is negatively
selected in the screens using a higher FDR (FDR = 0.32 in
LNCaP). We have validated this fitness defect (30) upon CTCF
knockout in T47D cells (SI Appendix, Fig. S7 A–C). We designed
CRISPR/Cas9 knockout screening libraries targeting 2 types of
CTCF binding sites, constitutive CTCF binding sites that are
shared across multiple cell types, as well as sites that are specific
to T47D and LNCaP cells (Fig. 3A, Table 1, and SI Appendix,
Fig. S7D). The sgRNA design and the screening procedure are
similar to FOXA1 cistrome screens, as previously described (SI
Appendix, Table S4). Overall, the screening results in both cell
lines are of high quality and the MAGeCK-VISPR copy-number
correction module reduced the effects of genomic copy-number
variations (SI Appendix, Fig. S7 E–G and Table S5). There are
150 CTCF binding sites that are essential in at least 1 cell line
with statistical significance (FDR < 0.25; Fig. 3B and SI Ap-
pendix, Fig. S8A). CTCF binding sites that are specific to T47D
or LNCaP cells tend to have lower β-scores in the corresponding
cell types (Fig. 3 B and C), indicating a putative cell type-specific
role for these binding sites. Possible features (SI Appendix, Fig.
S8B) associated with the essentiality of CTCF binding sites in-
clude open chromatin (DNase I signal), nearby gene expression
and essentiality (SI Appendix, Fig. S8C), as well as chromatin
modification and lineage-specific TF binding (H3K27ac, ER/AR
ChIP-seq signals) (Fig. 3 D and E). Interestingly, CTCF binding
strength is strongly associated with binding site essentiality (Fig.
3F), in contrast to FOXA1 binding (Figs. 1F and 2G).
CTCF may serve as a typical transcription factor to regulate

target gene expression or an insulator that defines boundaries in
chromatin structure. Similar to the transcription factor FOXA1,
essential CTCF binding sites tend to be closer to essential genes
(Fig. 3G) and have higher levels of H3K27ac (Fig. 3H) and ER/
AR signals (SI Appendix, Fig. S8D). Genes near essential CTCF
binding sites tend to be more essential (Fig. 4A), and their
functions are enriched in DNA damage response pathways (e.g.,
UVB irradiation, radiation, and cisplatin and P53/BRCA/PARP1
function; Fig. 4B). However, essential CTCF binding sites generally
have weaker H3K27ac signals compared with FOXA1 binding sites
(Figs. 2A and 3D), implying that they do not all function as ca-
nonical enhancers. We next examined CTCF binding sites in the
boundaries of topologically associated domains (TADs) or in CTCF
anchors—the contact regions of chromosome loops [extracted from

Hi-C data (31)] that contain 2 head to head-oriented CTCF motifs
(Fig. 4 C and D). Both TADs and anchors are critical to chromo-
some loop formation. We found CTCF binding sites in both regions
tend to be more essential than others (Fig. 4 C and D), confirming
the critical roles of both regions. Furthermore, essential binding
sites in CTCF anchors tend to have weaker H3K27ac signals
compared with essential binding sites not in the anchors (Fig. 4E),
indicating that these binding sites function in ways distinct from
essential enhancers. To further study the functional consequences
of disrupting this type of CTCF binding site, we chose an essential
CTCF binding site (CTCF_P348), located at the boundary between
2 TADs, for further functional validation (SI Appendix, Fig. S9A).
Individual sgRNAs induced a high percentage of indels in the
corresponding binding sites (SI Appendix, Fig. S9 C and D), and the
CRISPR/Cas9–mediated mutagenesis of the CTCF_P348 binding
site by 2 independent sgRNAs decreased the cell proliferation in
the competitive growth assay (SI Appendix, Fig. S9E). Disruption of
CTCF_P348 by the individual sgRNA-mediated CRISPR/Cas9
targeting compromises the binding of CTCF to these sites (SI Ap-
pendix, Fig. S9F).

Essential Cistrome Modeling and Validation by pgRNA and Disease
Association. To systematically evaluate both FOXA1 and CTCF
screening results and associated features, we built a support
vector machine (SVM)-based regression model to predict the
essentiality of enhancers or cistrome binding sites, based on all
associated features extracted from our results. We tested the
performance of this model with the screening data using 5-fold
cross-validations. Compared with using single features correlated
with enhancer function to predict essentiality such as DNase I
sensitivity or H3K27ac chromatin modification, our model per-
forms significantly better with an area under the curve (AUC) of
∼0.8 (Fig. 5 A and B and SI Appendix, Fig. S10 A and B). We
further investigated the binding sites for which the SVM model
made the incorrect prediction, including essential binding sites
that were predicted as nonessential (false negatives; FNs), or
nonessential binding sites that were predicted to be essential
(false positives; FPs). We found that FP binding sites tend to
have stronger DNase I sensitivity and H3K27ac marks (similar to
essential binding sites), while FN binding sites harbor lower
levels of such signals (similar to nonessential binding sites; SI
Appendix, Fig. S10C). This indicates that some nonessential
binding sites that have strong epigenetic characteristics of func-
tional enhancers may have functions that are not related to cell
growth or may be redundant with other enhancers in the same
gene. On the other hand, some essential binding sites may not
have typical epigenetic signatures, consistent with the existence
of active enhancers that do not bear active epigenetic marks (9).
We further evaluated the results of our CTCF/FOXA1 primary

screens using a pgRNA CRISPR screening technology as a vali-
dation screen (7). A focused pgRNA library was constructed by
targeting DNase I-accessible regions that are close to the essential
genes in T47D cells, as well as top binding sites in the primary
CTCF/FOXA1 screens (Table 2 and SI Appendix, Table S7). Up to
25 pgRNAs flanking the binding sites or putative enhancers were
designed (Fig. 5C). As positive controls, pgRNAs targeting the
exons or promoters of genes whose loss suppresses (or promotes)
cell growth were included. We screened T47D cells grown in full
medium with 2 biological replicates and analyzed the results using
MAGeCK-VISPR (26) (SI Appendix, Table S8). As expected, the
promoters and exons of essential genes (e.g., ESR1, FOXA1, and
RPS9) are strongly negatively selected (SI Appendix, Fig. S10 D
and E), indicating the reliability of the pgRNA screens.
There are in total 80 binding sites that are included in both

primary and secondary screens. Among them, we compared binding
sites that are selected with statistical significance (FDR < 0.25) by
both screens (SI Appendix, Fig. S10F). Of the 13 essential binding
sites that are identified as statistically significant in primary screens,
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Fig. 3. Genome-wide CRISPR screens for CTCF binding sites. (A) CTCF binding site selection procedure in screening library design. (B) The β-scores of all CTCF binding
sites in T47D and LNCaP cells. Binding sites are colored by their appearances in both cell lines: Binding sites that only appear in T47D (or LNCaP) are colored in blue (or
green), while common binding sites are colored in red, respectively. (C) The cumulative distribution of β-scores of T47D cell-specific and LNCaP cell-specific CTCF binding
sites in T47D (red) and LNCaP (blue) cells. The P values are calculated by the Kolmogorov–Smirnov test. (D) The chromatin features of selected binding sites with
statistical significance coming out of the cistrome screens. (E) The rankings of all features associated with the functions of CTCF binding sites. For each feature, we
compare its signal distribution between the top 5% essential binding sites vs. other binding sites. The average of P values (calculated using the Mann–Whitney U test)
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70% (9/13) were confirmed to be essential (with FDR < 0.25) in the
pgRNA screens, demonstrating the high specificity of the primary
screening results. There were 25 binding sites in the primary screen
with FDR >0.25 that were statistically significant hits in the vali-
dation screen, indicating that screens using the pgRNA may be
more sensitive in identifying essential binding sites. For example,
CTCF_69346 (CTCF_P346), a CTCF binding site that is 6 kb away
from CTCF_P348, was not negatively selected in the primary screen
(FDR = 1.0), but was essential in the pgRNA screen (FDR = 0.002;
SI Appendix, Fig. S10E). Overall, pgRNA screening validated the
top hits in primary screens with high accuracy, with an AUC close to
0.94 (Fig. 5D).
We further evaluated the performance of our predictive

model, using the 125 DNase-seq peaks in the pgRNA library not
in the sgRNA libraries used for the primary screens (Fig. 5E).
We predicted the essentiality of these 125 DNase-seq peaks us-
ing the model trained on FOXA1 primary screening data, and
compared them with the experimental results in the pgRNA
screen. The overall AUC approaches 0.75, demonstrating the
high performance of our prediction model (Fig. 5F).
Finally, we used our predictive model to evaluate the essen-

tiality of enhancers that overlap with disease-associated single-
nucleotide polymorphisms (SNPs) that are identified from
genome-wide association studies (GWAS). We focused only on
noncoding SNPs associated with breast cancer in T47D cells and
prostate cancer-associated SNPs in LNCaP cells. Among the 22
breast cancer-related traits, 4 are enriched in predicted essential
enhancers with statistical significance (FDR < 20%; Fig. 5 G and
H), and “breast cancer (early onset)” is the top trait, followed by
“breast cancer (survival).” Enhancers bearing these SNPs have
higher predicted essential scores compared with random DNase
I-hypersensitive sites or ER or FOXA1 binding sites (SI Ap-
pendix, Fig. S10G). These enhancers are also proximal to coding
genes that are up-regulated in luminal breast cancer (SI Ap-
pendix, Fig. S10H). Similarly, 2 out of 8 prostate cancer-associated
traits are significantly enriched in essential enhancers, and the
strongest enrichment comes from the “prostate cancer” trait itself
(Fig. 5 I and J). Therefore, our predictive model can be used to infer
the functions of GWAS-associated SNPs that affect cell fitness.

Discussion
Dissecting the functions of putative cis-regulatory elements in
mammalian cells has been challenging. We have established a
CRISPR/sgRNA–based screening approach to investigate the
essentiality of the binding sites of 2 important transcription
factors, FOXA1 and CTCF. We validated the essential roles of
top hits and the regulation of their target genes using experi-
mental approaches including CRISPR/pgRNA screening. Based
on the screening data, we further evaluated genomic and epi-
genomic features associated with essential enhancers, and built
machine-learning models that predict the functions of sites that
are not included in the screen. The model can also be used to
explain disease-associated SNPs that affect cell growth.
Our study demonstrated genome-wide cistrome screens as a

promising technology to characterize the functions of transcrip-
tion factor binding in detail. By comparing the essential FOXA1
and CTCF cistromes, we found that essential binding sites and
essential genes tend to be close to each other for both the in-
terrogated FOXA1 and CTCF cistromes. Although a minor
subset of interrogated FOXA1 binding sites (18.3%) was chosen
based on their proximity (<50 kb) to essential genes, the
remaining FOXA1 sites and all of the CTCF binding sites were
chosen independent of this proximity criterion. These results
indicate a general link between essential binding sites and the
essential coding regions nearby. We further identified distinct
features associated with the essentiality of FOXA1 and CTCF
binding sites. FOXA1 binding sites bear the hallmarks of ca-
nonical enhancers, evidenced by strong DNase I and H3K27ac
signals, and their functions can be predicted from nearby gene
expression and essentiality. In contrast, CTCF essential binding
sites fall into 2 classes: They may be either transcriptional en-
hancers or critical elements in chromosome organization. Bind-
ing sites of the first type have characteristics similar to FOXA1
binding sites, while the second class of sites are distinct. In-
terestingly, CTCF binding strength predicts the essentiality of
a binding site, while no association is found between the
strength of FOXA1 binding to a site and its essentiality. This
may be because FOXA1 works together with other transcrip-
tion factors such as ER and AR to regulate gene expression,
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and thus the binding strength of 1 single transcription factor
may not capture the important features of combinatorial
transcription factor binding. These results also highlight that
modeling the functionality of the binding sites of different
classes of transcription factors will require additional functional
screens.
Several computational methods are available to predict active

enhancers from genetic and epigenetic features (32–36) or from
the screening experiments measuring the expression of a gene (9,
11). It is still tremendously challenging to systematically assign
many enhancers to their bona fide target genes or particular
phenotypes experimentally. A recent study identified hundreds

of enhancer–gene pairs using a high-throughput CRISPR in-
activation (dCas9-KRAB) approach to perturb enhancers fol-
lowed by single-cell RNA sequencing (37). Here our approach
investigated over 10,000 putative enhancers downstream of 2
essential transacting factors and linked them to a specific cellular
function or phenotype (essentiality or fitness). We generated
genome-scale experimental data of cis-acting element perturba-
tions, and constructed a machine-learning model based on these
experimental data to predict functional binding sites. We applied
this strategy to identify the functional cis-elements that are
critical to breast and prostate cancer cell growth. In contrast,
previous computational methods cannot predict the possible
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phenotypes that each enhancer is involved with, or are based on
the data from a limited number of enhancers proximal to the target
gene. Our model may also be helpful to prioritize the functional or
important binding sites from other ChIP-seq data. In addition, our
experimental and computational framework here can be extended
to study the function of cis-regulatory elements in other contexts.
CRISPR/Cas9 screens for noncoding elements can be based

on either sgRNA (6, 10–13) or pgRNA (7, 9, 38, 39) strategies.
In our study, we performed primary sgRNA-based screening and
validated the results using a pgRNA approach. We found that
pgRNA screening not only confirmed top hits found in sgRNA-
based screening but also identified additional hits that were not
found by sgRNA screens. The combinatorial use of both sgRNA
and pgRNA approaches could be very helpful to reduce the false
positives as introduced by the potentially off-target effects of
low-specificity guides in sgRNA strategies (40).
There are potential limitations to our current studies. First,

our screening approach only selects binding sites that affect cell
growth, and does not identify enhancers that play other func-
tional roles (e.g., differentiation). Large-scale enhancer screens
for phenotypes other than cell growth (e.g., protein expression
that can be selected through FACS sorting) will enable func-
tional studies of enhancers of a variety of functions. Second,
genomic deletion of putative cis-elements may also alter other
functional elements such as long noncoding RNAs, which may
contribute to the screening outcome as well. A refined sgRNA
design based on these results may be possible to reduce overlap
with other annotated genomic features. The use of orthogonal
validation approaches may also reduce the number of false
positives. Third, systematic library bias (mainly due to differen-
tial sgRNA efficiency for each targeting element or gene for each
library) is inevitable for all current CRISPR screening studies,
which may also necessitate the use of independent approaches or
repeated studies employing a variety of libraries to fully capture
the essential cistrome. In addition, some studies have reported
the preferential binding of Cas9 to open chromatin regions (41).
To reduce the biases of Cas9 binding, we used sgRNAs targeting
strong FOXA1 binding sites as negative controls in the FOXA1
cistrome screening study. However, in the future it will be de-
sirable to further model and correct for the binding preferences
of Cas9, by designing negative controls in nonfunctional, open
chromatin regions, and by considering the effect of open chro-
matin in the analysis.
In summary, we have demonstrated the feasibility of screening

for the function of large numbers of cis-regulatory elements in a
pooled format using a CRISPR/Cas9 sgRNA and pgRNA ap-
proach. For lineage-selective enhancer-binding transcription
factors such as FOXA1, we have developed a model based on
epigenomic features that is predictive of the essential function of
a subset of the transcription factor binding sites for cell growth in
culture. Importantly, the sites predicted by this model signifi-
cantly overlap with germline variants associated with cancer risk
and progression identified by GWAS, demonstrating that the
features selected for the model by the CRISPR/Cas9 sgRNA
screening results are clinically relevant.

Materials and Methods
Detailed description of materials and methods can be found in SI
Appendix, Methods.

Cell Culture and Reagents. Breast cancer T47D cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) as the full medium condition. When stimulated with the
estrogen 17β-estradiol, T47D cells were cultured in phenol red-free DMEM
with 10% charcoal/dextran–treated FBS for at least 3 d after switching from
the full media. Prostate cancer LNCaP cells were cultured in RPMI 1640 media
supplemented with 10% FBS as the full medium condition. HEK293FT cells were
grown in DMEM with 10% FBS. The antibodies were purchased from the fol-
lowing companies: GAPDH (FL-335; Santa Cruz; sc-25778), ERα (HC-20; Santa
Cruz; sc-543), FOXA1 (Abcam; ab23738), and CTCF (EMD Millipore; 07-729).

CRISPR Library Synthesis and Construction. The pooled synthesized oligos
were PCR-amplified and then cloned into the lentiCRISPRv2-puro vector via
the BsmBI site by Gibson assembly. The ligated Gibson assembly mix was
transformed into self-prepared electrocompetent DH5α Escherichia coli by
electrotransformation to reach efficiency with at least 20× coverage repre-
sentation of each clone in the designed library. The transformed bacteria
were cultured directly in liquid LB medium for 16 to 20 h at low temperature
(16 °C) to minimize the recombination events in E. coli. The library plasmids
were then extracted with the GenElute HP Endotoxin-Free Plasmid Maxiprep
Kit (Sigma; NA0410-1KT). To confirm the designed guide RNA sequences
were successfully cloned into the plasmid library, we PCR-amplified the
guide RNA sequences, prepared sequencing libraries, and employed the
NextSeq 500 sequencing platform to validate the inserted gRNA sequences
as a stringent QC for the plasmid library. After alignment to our designed
sequences, more than 99.92% of designed gRNA sequences were present in
our plasmid libraries, indicating the high quality of the libraries.

Pooled Genome-Wide CRISPR Screen. FOXA1 and CTCF cistrome-targeting
plasmid libraries under the lentiviral lentiCRISRPv2-puro backbone were
first transfected along with pCMV8.74 and pMD2.G packaging plasmids into
HEK293FT cells using X-tremeGENE HP DNA Transfection Reagent (Roche;
6366236001) to generate a CRISPR component-expressing lentivirus. Virus-
containing media were harvested at 48 and 72 h posttransfection, and the
mediawere spun down at 1,000 rpm for 5min to remove floating cells and cell
debris. The virus supernatant was carefully collected, aliquotted, and stored
at −80 °C for further use. The virus titer and MOI (multiplicity of infection)
were tested before proceeding to the genome-wide screen.

For the full medium screen, 1 × 108 to 2 × 108 T47D or LNCaP cells were
infected with CTCF or FOXA1 cistrome-targeting lentiviral libraries with MOI
∼0.3. Two days later, the infected cells were selected with puromycin (3.5 μg/mL
for T47D cells and 1.5 μg/mL for LNCaP cells) for 3 d to get rid of any non-
infected cells before changing back to normal media. After 2 d of recovery post
puromycin selection, around a half portion of cells (at least 3 × 107 cells, ∼300×
coverage for each library) was collected as the day 0 sample and stored
at −80 °C for later genomic DNA isolation. The remaining half of cells were
continually cultured until 4 wk later before harvesting as the end-point
sample. For screens in T47D cells under vehicle and E2 condition, cells were
cultured in either vehicle (ethanol) or 10 nM E2-containing white medium
for an additional 5 wk after harvesting the day 0 sample. Genomic DNA
from day 0 and end-time point samples was extracted.

Gene screens in T47D and LNCaP cells cultured under full medium were
performed similar to the cistrome screens. The sgRNA library for gene screens
targeting ∼18,000 genes in the human genome was designed by our labo-
ratory with an up-to-date algorithm to improve the specificity and efficacy
of gRNAs and is described in our recent studies (42). Samples of day 0 and-
day 21 were used to quantify the gRNA abundance with a similar library

Table 2. A summary of the secondary paired-guide RNA screening library

Binding sites Paired-guide RNAs

Enhancers near negatively selected genes (ESR1, FOXA1, GATA3, MYC) 92 2,291 (25 pairs per binding site)
Enhancers near positively selected genes (PTEN, TSC1, RB1, CSK) 46 1,150 (25 pairs per binding site)
Selected hits in CTCF/FOXA1 screens 58 1,450 (25 pairs per binding site)
Promoters of the selected genes N.A. 259 (∼25 pairs per promoter)
Positive control (pairs targeting AAVS1 loci and the exons of essential genes) 146 genes 730 (5 pairs per gene)
Negative control (pairs targeting AAVS1 loci) N.A. 400

N.A., not applicable.

25194 | www.pnas.org/cgi/doi/10.1073/pnas.1908155116 Fei et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ja
nu

ar
y 

15
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908155116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908155116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1908155116


preparation protocol as the cistrome screens. The data were analyzed by
MAGeCK-VISPR (26).

Genetic and Epigenetic Features Associated with Screening Outcomes. We
collected a set of genetic and epigenetic features in T47D and LNCaP. The
H3K27ac and RNA-seq data were extracted from our previous studies (43).
Other ChIP-seq data were extracted from our cistrome database (cistrome.org),
and only datasets that passed the quality control measurements in the data-
base were used for downstream analysis. For each putative enhancer identified
by DNase I, the normalized ChIP-seq signals of the 150-bp window (centered
on the DNase I peak summit) were collected as features. For histone modifi-
cation ChIP-seq data, the window size was extended to 300 bp.

Predicting Enhancer Functions. For building machine-learning models to
predict enhancer functions, we use both essential and nonessential sites in
the screening as training samples. Since the number of significant sites is few,
we increased the threshold (negative rank < 300) to select more (but less
statistically significant) sites as essential sites. Nonessential sites were chosen
such that they were neither negatively nor positively selected (P > 0.5), and
their absolute log fold change was less than 0.1. In all of the datasets, es-
sential and nonessential sites were balanced (essential-to-nonessential rate
is between 0.85 and 1.1).

The SVM toolkit in the scikit-learn package (https://scikit-learn.org) was
used for training and prediction. We used a genetic algorithm combined
with SVM (GA-SVM) to select best feature combinations (44, 45). Briefly, GA-
SVM is an iterative process, where a set of feature combinations are subjected

to randomly adding/removing/changing 1 feature at each iteration. Features
that reach better prediction performance have a higher chance of going to the
next iteration. This process is repeated several times to select the best com-
bination of features. The entire dataset was split into the training and vali-
dation sets, where the training dataset was used to train the SVM, and the
area under the receiver operator characteristic value calculated on the vali-
dation set was used to evaluate feature combinations.

GWAS-associated SNPs and their traits were downloaded from the GWAS
Catalog (https://www.ebi.ac.uk/gwas/). If the location of the SNP overlaps
with a known DNase I peak in T47D or LNCaP, the corresponding DNase I
binding site serves as the SNP-bearing enhancer. If no DNase I peak overlaps
with the SNP location, we then search for possible FOXA1, ER, or GATA3
binding sites. If none of these peaks overlaps with a SNP, we then consider a
150-bp window centered on that SNP as an “enhancer” for downstream
analysis. The prediction algorithm was applied to evaluate whether these
SNP-associated enhancers are essential.
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