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Abstract

Despite growing numbers of immune checkpoint blockade (ICB) trials with available omics data, it remains
challenging to evaluate the robustness of ICB response and immune evasion mechanisms comprehensively. To
address these challenges, we integrated large-scale omics data and biomarkers on published ICB trials, non-
immunotherapy tumor profiles, and CRISPR screens on a web platform TIDE (http://tide.dfci.harvard.edu). We
processed the omics data for over 33K samples in 188 tumor cohorts from public databases, 998 tumors from 12
ICB clinical studies, and eight CRISPR screens that identified gene modulators of the anticancer immune response.
Integrating these data on the TIDE web platform with three interactive analysis modules, we demonstrate the utility
of public data reuse in hypothesis generation, biomarker optimization, and patient stratification.
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Background
Despite growing numbers of published immune check-
point blockade (ICB) trials in different cancer types with
available omics data and clinical outcomes, ICB response
prediction remains an open question. Many published
ICB response biomarkers had been trained and tested on
limited cohorts and showed variable performance in dif-
ferent cohorts. Moreover, with the limited data size in
each clinical study, it is challenging to comprehensively
evaluate the complexity of ICB response and immune
evasion mechanisms. To address these challenges, we
present a data-driven approach integrating large-scale
omics data and biomarkers on published ICB trials, non-
immunotherapy tumor profiles, and CRISPR screens on
a web platform TIDE (http://tide.dfci.harvard.edu).
Previously, we developed TIDE as a transcriptome

biomarker of ICB response by modeling tumor immune
dysfunction and exclusion [1]. The statistical model of TIDE
was trained on clinical tumor profiles without ICB treat-
ments since the immune evasion mechanisms in treatment-
naïve tumors are also likely to influence patient response to

immunotherapies. The TIDE model has been applied to
evaluate T cell dysfunction and exclusion signatures across
over 33K samples in 188 tumor cohorts from well-curated
databases, including TCGA [2], METABRIC [3], and PRE-
COG [4], as well as our in-house collections. In the current
work, we significantly expanded the scope of our previous
work by incorporating many new datasets and function
modules (Additional file 1: Table S1).

Construction and content
We processed the omics data for 998 tumors from 12 pub-
lished ICB clinical studies (listed in Additional file 2: Table
S2), and eight published CRISPR screens that identified
genes modulating lymphocyte-mediated cancer killing and
immunotherapy response [5–8]. The clinical study data
from ICB naïve cohorts includes 33K samples in 188 tumor
cohorts from well-curated databases, including TCGA [2],
METABRIC [3], and PRECOG [4]. We integrated these
data on the TIDE web platform using the MySQL database.
The web platform is based on the Django 3.0 framework.
We provided three interactive modules for hypothesis
generation, biomarker optimization, and patient stratifica-
tion (Fig. 1).
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Utility and discussion
Gene set prioritization module
The first module of the TIDE web platform can help
cancer biologists prioritize genes in their input gene set
for mechanistic follow-up experiments (Fig. 1A). Typic-
ally, a genomic experiment, often conducted on model
systems in limited sample size, will yield tens to hun-
dreds of gene hits. The large-scale omics data and clin-
ical cohorts collected in TIDE enable cancer biologists
to focus on genes with the highest clinical relevance and
consistent behavior in other similar experiments. Gener-
ally, for any gene sets, a cancer biologist can utilize this
module to evaluate each gene for its expression associa-
tions with ICB response outcome, T cell dysfunction
levels, T cell exclusion levels, and phenotypes in genetic

screens in diverse cohorts. To probe a candidate gene
further, the user can also use a single gene as query to
evaluate how the expression, copy number, somatic
mutation, and DNA methylation levels of this gene influ-
ence clinical outcome in all collected datasets. Therefore,
the prioritization module, integrating many independent
cohorts, can help identify genes with improved robust-
ness and clinical relevance.
To demonstrate an example of usage of the regulator

prioritization module, we queried 696 druggable genes
annotated by the OASIS database [9], to find potential
therapeutic targets in synergy with ICB (Fig. 2). For ex-
ample, AXL, a Tyro3/Axl/Mer family receptor tyrosine
kinase, is among the top targets ranked by this module
to render the tumor microenvironment resistant to ICB.

Fig. 1 TIDE web platform architecture. The TIDE web platform aims to facilitate the hypothesis generation, biomarker optimization, and patient
stratification in immune-oncology research through a public data reuse approach. The platform functions are based on the integration of large-
scale omics data and biomarkers on published ICB trials, non-immunotherapy tumor profiles, and CRISPR screens. The web platform takes gene
set or expression profiles as input and provides three interactive modules. A Gene prioritization for a user-input gene set. Every gene is ranked by
their clinical relevance and CRISPR screen phenotype, including four types of metrics: 1, the association between gene expression and T cell
dysfunction across cohorts, computed as the z-score in the Cox Proportional Hazard (PH) regression model; 2, the association between gene
expression and ICB response across tumors, computed as the z-score in the Cox-PH regression; 3, the log-fold change in CRISPR screens probing
the effect of gene knockout on lymphocyte-mediated tumor killing; 4, the gene expression in cell types driving T cell exclusion in tumors. Data
cohorts are grouped by their metric types on the heatmap (columns). Genes (rows) can be interactively reordered by the gene values either on a
single data set or any metric type groups. B Biomarker evaluation for a custom biomarker gene set. The predictive power of biomarkers in the
public immunotherapy cohorts is quantified by two criteria, the area under the receiver operating characteristic curve (AUC) and the z-score in
the Cox-PH regression. We visualize biomarkers’ AUC by bar plots (left panel) and Cox-PH z-scores by Kaplan-Meier curve (right panel). C
Biomarker consensus to predict ICB response from gene expression profile. Every input transcriptomic profile is evaluated by TIDE, microsatellite
instability (MSI) signature, interferon-gamma (IFNG) signature, and other biomarkers reported in the literature
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High AXL expression is associated with T cell dysfunc-
tion phenotypes in all datasets enumerated (Fig. 2 left
panel). Meanwhile, high expression of AXL is also asso-
ciated with worse ICB outcome in bladder cancer and
treatment-naïve melanoma treated with ICB (Fig. 2 sec-
ond to left panel). Among the cell types promoting T
cell exclusion, both myeloid-derived suppressor cell and

cancer-associated fibroblast have very high AXL expres-
sion level (Fig. 2 right panel). Indeed, in a recent clinical
trial NCT03184571, the combination of AXL inhibitor
and anti-PD1 has shown promising efficacy among
AXL-positive non-small cell lung cancer patients [10].
Hence, this module can prioritize genes with the best
potential for developing combination immunotherapies.

Fig. 2 Prioritization of genes with approved drugs. A total of 696 genes with launched drugs were collected from the OASIS database [9]
(Additional file 5: Table S4). Among the gene set, top 20 hits were presented. Genes (row) are ranked by their weighted average value across four
immunosuppressive indices (columns), including T cell dysfunction score, T cell exclusion score, association with ICB survival outcome, and log-fold
change (logFC) in CRISPR screens. The T dysfunction score shows how a gene interacts with cytotoxic T cells to influence patient survival outcome,
and the T cell exclusion score assesses the gene expression levels in immunosuppressive cell types that drive T cell exclusion. The association score of
(z-score in the Cox-PH regression) ICB survival outcome evaluates genes whose activities are correlated with ICB benefit. The normalized logFC in
CRISPR screens help identify regulators whose knockout can mediate the efficacy of lymphocyte-mediated tumor killing in cancer models
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Fig. 3 Comparison of biomarkers. The test biomarker is composed of genes with consistent evidence on cancer immune evasion
(Additional file 3: Table S3). The area under receiver operating characteristic curve (AUC) is applied to evaluate the prediction performance of the
test biomarker on the ICB response status
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Biomarker evaluation module
The second module allows translational scientists to
evaluate the accuracy of their biomarkers on many ICB
cohorts in comparison with other published biomarkers

(Fig. 1B). We implemented eight published ICB response
biomarkers and applied them to our collection of
published ICB trial samples. For a user-defined custom
biomarker, which can be a gene set or weighted gene

Fig. 4 Comparison of biomarkers based on their association with overall survival. The right panel shows the association of the custom biomarker
(Additional file 3: Table S3) with patients’ overall survival through Kaplan-Meier curves. In the left panel, the x-axis shows the z-score on Cox-PH
regression and the y-axis indicates its significance level (two-sided Wald test)
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score vector, this module calculates the biomarker ex-
pression level in all ICB cohorts. The module displays
the comparison between the custom biomarker and
other published biomarkers based on their predictive
power of response outcome and overall survival.
To demonstrate an example usage of the biomarker

evaluation module, we tested one biomarker containing
seven genes with previously reported association with
tumor immune evasion (Additional file 3: Table S3).
These genes were weighted by their reported direction of
mediating anticancer immune response. This example
biomarker gave an area under the receiver operating char-
acteristic curve (AUC) greater than 0.5 in 12 out of the 16
ICB sub-cohorts (Fig. 3), suggesting it to be a robust pre-
dictive biomarker. This signature also achieved significant
associations with prolonging survival in two sub-cohorts
(Fig. 4, two-sided Cox-PH p value < 0.05). In contrast,
several recently published biomarkers trained on limited
clinical cohorts have shown significant performance varia-
tions in other cohorts (Additional file 4: Figure S1), under-
scoring the importance of cross-cohort evaluation of
biomarker robustness using all available cohorts.

Biomarker consensus module
The third module of biomarker consensus aids oncolo-
gists in predicting whether a patient will respond to ICB
therapy based on multiple biomarkers (Fig. 1C). Based
on tumor pre-treatment expression profiles, oncologists
could use this TIDE module and multiple published
transcriptomic biomarkers (Additional file 4: Supple-
mentary Methods) to predict patient response and po-
tentially make informed treatment decisions. Notably, in
the second and third TIDE modules, we only focused on
evaluating transcriptomic biomarkers but not mutation
biomarkers due to the following reasons. The results of
tumor mutation analyses might be influenced by differ-
ent experimental platforms (whole genome versus cus-
tom panel), sample types (FFPE versus fresh frozen), and
computational mutation callers. Although tumor muta-
tion burden (TMB) seems to be a consistent ICB re-
sponse biomarker, the computation of TMB across
different cohorts and platforms is still an open question.
To demonstrate an example usage of the biomarker con-

sensus module, we upload the pre-treatment expression
matrix of a melanoma cohort [11] treated with anti-PD1

Table 1 Response prediction output from the biomarker consensus module. The expression profile uploaded comes from a
previous study of anti-PD1 response in melanoma [11] (“example 1” on the TIDE website). We ranked rows by ascending order of
TIDE score. Actual Responder the actual clinical outcome in the study, Predicted Responder predictions by the threshold of the TIDE
score set by a user (default is 0), TIDE TIDE prediction score [1], IFNG average expression of interferon-gamma response signature,
MSI Score microsatellite instability score predicted through gene expression (Additional file 4: Supplementary Methods), CD274 gene
expression value of PD-L1, CD8 gene expression average of CD8A and CD8B, CTL.flag flag indicator for whether the gene expression
values are all positive for five cytotoxic T lymphocyte markers, including CD8A, CD8B, GZMA, GZMB, and PRF1, Dysfunction, Exclusion,
MDSC, CAF, TAM M2 enrichment scores based on the gene expression signatures of T cell dysfunction, T cell exclusion, myeloid-
derived suppressor cell, cancer-associated fibroblast, and tumor associated macrophage M2 type [1]
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therapy (Table 1). Patients with favorable predictions from
multiple biomarkers are highly likely to be responders. For
example, patient 2 tumor has a negative TIDE score, indi-
cating a lack of tumor immune evasion phenotypes. In
addition, patient 2 tumor has positive scores of interferon-
gamma (IFNG) signature, macro-satellite instability (MSI),
and PDL1 (CD274) levels, all of which are positive bio-
markers of ICB response. With the support from multiple
markers, an oncologist could be more confident that pa-
tient 2 will respond to anti-PD1, and indeed patient 2 is a
responder in the original study [11]. In contrast, this mod-
ule also reported some patients who are unlikely to benefit
from ICB (Table 1). For example, patient 10 tumor has high
TIDE score and low IFNG, MSI, and PDL1 levels. Based on
the predictions from multiple biomarkers, an oncologist
might predict patient 10 as a non-responder and select an
alternative therapy, and indeed patient 10 failed to benefit
from anti-PD-1 [11]. TIDE also showed that patient 10
tumor has a significant enrichment of T cell exclusion sig-
nature due to high infiltration of myeloid-derived suppres-
sor cell (MDSC) and cancer-associated fibroblast (CAF).
Therefore, elimination of MDSC and CAF might be needed
for patient 10 to respond to ICB. In summary, by present-
ing the predictions from multiple biomarkers in one inte-
grated platform, the biomarker consensus module can
potentially inform oncologists on treatment decisions.

Conclusions
In conclusion, we present a TIDE web platform to infer
gene functions in modulating tumor immunity and
evaluate biomarkers to predict ICB clinical response.
Our work underlines the value of data sharing of pub-
lished trials and code sharing of published biomarkers.
Notably, several published ICB clinical studies have not
released their omics data or clinical data (Additional file 2:
Table S2), and we hope their authors could release these
data to bring invaluable resource to the whole research
community. As the immunotherapy data becomes in-
creasingly available, we foresee the TIDE web platform
with increased value and benefit to the mechanism stud-
ies in cancer immunology and the biomarker discoveries
in immune oncology.
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