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Abstract

We propose a statistical algorithm MethylPurify that uses regions with bisulfite reads showing discordant
methylation levels to infer tumor purity from tumor samples alone. MethylPurify can identify differentially
methylated regions (DMRs) from individual tumor methylome samples, without genomic variation information or
prior knowledge from other datasets. In simulations with mixed bisulfite reads from cancer and normal cell lines,
MethylPurify correctly inferred tumor purity and identified over 96% of the DMRs. From patient data, MethylPurify
gave satisfactory DMR calls from tumor methylome samples alone, and revealed potential missed DMRs by tumor
to normal comparison due to tumor heterogeneity.
Background
DNA methylation is an important epigenetic mark con-
trolling gene expression, thus playing pivotal roles in
many cellular processes including embryonic development
[1], genomic imprinting [2,3], X-chromosome inactivation
[4], transposable element repression [5], and preservation
of chromosome stability [6]. Aberrant DNA methylations
are known to be associated with human diseases such
as cancers, lupus, muscular dystrophy, and imprinting-
related birth defects [7-14]. Whole genome bisulfite se-
quencing (WGBS) and reduced representation bisulfite
sequencing (RRBS) [15-18] are popular techniques to pro-
file genome-wide methylation at a nucleotide resolution
[19]. The sodium bisulfite treatment in these techniques
converts the unmethylated cytosines to uracils, while leav-
ing the methylated cytosines unchanged. Mapping the
bisulfite-treated DNA sequences to the genome not only
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gives precise location but also the quantitative levels of
DNA methylation. In recent years, WGBS and RRBS have
been increasingly used to profile the DNA methylation
patterns between tumors and their normal counterparts,
where differential methylated regions not only serve as
important cancer biomarkers and therapeutic targets, but
also provide insights to the mechanism of tumorigenesis
and progression [20-22].
Despite the popularity of WGBS and RRBS, these

techniques suffer from the following practical limitations
in cancer research. First, differential methylation analysis
is conducted as cancer to normal comparisons, requiring
additional resources to collect, process, sequence and
analyze the normal tissues adjacent to the cancer tissues.
Second, in most cases, tumor tissues are not pure but
contain unknown quantities of normal cells [23]. As a
result, the contamination of normal cells in the tumor
sample complicates the differential methylation calling
between tumor and normal. Some pioneering works esti-
mated tumor purity based on gene expression or SNP
array data [23-27], but to the best of our knowledge,
there have been no reported algorithms estimating
tumor purity from WGBS or RRBS data. One approach
used in previous expression-based studies is to train the
algorithm on a large number of datasets from tumor or
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normal cells [28] or on expression signatures generated
from such large data cohorts [29]. However, the expres-
sion observed from the cohorts may not best recapitulate
a specific tumor sample, thus could give biased estimates.
Another approach is to see whether regions with known
germline variants or somatic mutations have differential
expression or methylation on the different alleles [30].
This approach is limited in the number of regions it can
investigate, thus could not identify or resolve differential
regions that do not contain sequence variations [9,31-33].
We propose a statistical approach called ‘MethylPurify’ to

estimate tumor purity and identify differentially methylated
regions from DNA methylome data on tumor samples
alone, without any prior knowledge from other datasets.
MethylPurify assumes that, in pure cell populations, methy-
lation levels of bisulfite-sequencing reads are consistent
within short genomic intervals except in a small number
of regions with allele-specific methylation (ASM). This
phenomenon has been reported in several studies by
examining the co-methylation states of adjacent CpGs
within a region especially for CpG Islands [34-36]. Incon-
sistent methylation on the CpGs within a single read
might be due to incomplete conversion of bisulfite treat-
ment. Even though tumors are often heterogeneous, most
tumors follow clonality [37-40], meaning the initiation
and continued growth of a tumor is usually dependent on
a single population of tumor cells. The small population
of heterogeneous tumor cells often does not interfere with
differential methylation detection, and this assumption
has also been used for differential methylation studies by
paired tumor to normal comparison. In samples with two
cell population components such as tumor and normal,
there will be a large number of regions differentially meth-
ylated between the two components where bisulfite reads
show discordant methylation levels. Since most tumor
samples have normal contamination, MethylPurify exam-
ines all the regions in the genome with reads showing
discordant methylation levels and estimates the mixing ra-
tio of the two components. With the mixing ratio estimate,
MethylPurify examines each such regions, assigns reads
to the two components, and infers the methylation level
of each component. We evaluated the performance of
MethylPurify on simulations mixing bisulfite reads from
two human breast cell lines at different ratios and on real
lung adenocarcinoma tissues where the data from adjacent
normal tissue were available but withheld from the algo-
rithm. In each case, MethylPurify gave satisfactory per-
formance in estimating the tumor purity and in identifying
differential methylation regions between the components.

Results and discussion
Computational framework
The conceptual framework of MethylPurify is shown in
Figure 1. Under the assumption that tumor tissues often
contain two major components of cells, that is, tumor
and normal, MethylPurify only takes WGBS or RRBS
data from a tumor tissue as input, and tries to infer the
unknown fraction of normal cells within. After removing
duplicated reads and mapping them with BS-map [41],
MethylPurify divides the reference genome into small
300 bp bins and assigns reads mapped to each bin. The
true methylation levels in most bins are similar between
the two components and thus not informative to tumor
purity inference or differential methylation analysis. In-
stead, MethylPurify aims to find informative bins that
have differential methylation between normal and tumor
cells, and use them to help infer the tumor purity and
the methylation level of each component. It relies on the
following characteristics of the DNA methylome data:
(1) all CpG cytosines within a short genomic interval
(approximately 300 bp) in a pure cell population share
similar methylation levels which are either mostly meth-
ylated or mostly unmethylated [36]; (2) the number of
bisulfite reads mapped to each genomic interval to
tumor and normal cells are in accordance with their
relative compositions in the mixture, subject to standard
sampling noise.
MethylPurify uses the following mixture model to esti-

mate the two components in the tumor methylome data.
Given a mixture of bisulfite reads from two components,
the relative compositions of the minor and major com-
ponents can be represented as α1 and 1 - α1, and the
methylation levels of the two components within each
300 bp bin can be represented as m1 and m2, respect-
ively. Given initial parameter values of α1, m1, and m2,
each read in a bin can be assigned to its most likely
component; given the read assignment in a bin, param-
eter values of α1, m1, and m2 can be re-estimated to
maximize the probability of seeing the specified read as-
signment. For each 300 bp bin across the genome,
MethylPurify uses expectation maximization (EM) to it-
eratively estimate parameters and assign reads until con-
vergence (see Methods section for details).
Due to the sampling noise and other confounding

biases, α1 estimates from individual bins will be distrib-
uted around the true value. To reach a more reliable
mixing ratio from all α1 estimates, MethylPurify uses the
following bootstrapping approach to prioritize the inform-
ative bins. First, it selects only bins with over 10 CpGs,
10-fold read coverage (termed qualifying bins thereafter),
then samples equal number of reads as the actual number
of reads in each bin with replacement 50 times to get 50
sets of EM converged α1, m1, and m2 parameters. To avoid
complications of copy number aberrations (CNA) in can-
cer at this step, MethylPurify filters bins in regions with
frequent copy number alterations as well as their 1,000 bp
flanking regions, and only selects one qualifying bin within
each CpG island. Then MethylPurify finds the 500 bins



Figure 1 Overview of MethylPurify. (a) A differentially methylated region (DMR) between tumor and normal cells. Solid and hollow red circles
represent methylated and unmethylated cytosines, respectively. (b) Short reads from two cell populations after bisulfite treatment and sonication.
(c) A library of bisulfite reads in a mixture of two cell populations. (d) EM algorithm iteratively estimates three parameters: the minor composition
(α1) and the methylation level of each population (m1, m2) in M step, and assigns reads to each population in E step. (e) Among all 300 bp bins,
the parameters estimated from informative bins converge on a final mixing ratio estimate. (f) Top, density plot of predicted minor component
from selected informative bins. Bottom, separated methylation level of tumor and normal cells based on the predicted mixing ratio, and DMRs
are detected as consecutive differentially methylated bins (DMBs).
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with the smallest parameter variance in the 50 sampling
and uses the mode of their α1 estimate as the α1 for the
whole tumor sample (Figure 1e,f). With the sample α1, a
few EM iterations in each bin could quickly converge on
the m1 and m2 estimates and read assignment across the
genome. To avoid local maxima of EM, MethylPurify
starts from two distinct initial values of m1 and m2 in
each bin, representing α1 component being hyper- and
hypo-methylated, and the convergence point with higher
likelihood is selected as the final prediction (see Methods
section for details).
The output of MethylPurify will report the mixing

ratio of the two components (α1: 1 - α1) in the whole
sample and the methylation level of each component
(m1 and m2) in each qualifying bin across the genome.
MethylPurify could also detect differentially methylated
regions (DMRs) as consecutive differentially methylated
bins (DMBs).

Inference of mixing ratio from simulated mixture of
bisulfite reads from tumor and normal cell lines
To validate MethylPurify in estimating the mixing ratio, we
used simulated mixture of whole genome bisulfite sequen-
cing data from two separate breast cell lines [22]. HCC1954
cell line (thereafter refer to as HCC) is derived from an es-
trogen receptor (ER)/progesterone receptor (PR) negative
and ERBB2 positive breast tumor, and human mammary
epithelial cell line (HMEC) is immortalized from normal
breast epithelial cells. Bisulfite sequencing for the two cell
lines have slightly different read lengths (approximately 70
to 100 bp) and sequencing coverage (27-fold and 20-fold,
respectively). We randomly sampled bisulfite reads from
the two cell lines at 20-fold total coverage with varying
mixing ratios from 0:1 (all HMEC) to 1:0 (all HCC) with a
step of 0.05.
We first examined how the parameter estimation varies

with changing inputs. At different mixing ratios, the aver-
age variance (of all qualifying bins by bootstrapping) of
the minor component percentage α1 is very small and
stable (Figure 2a). The variance of α1 initially increases
with the mean of α1, but is suppressed as α1 approaches
0.5 since α1 is designated as the minor component to be
always ≤0.5 in our model. In contrast, the estimated
methylation level of the minor component m1 is the most
variable. This is reasonable because at low α1 (close to 0),
the minor component has very little read coverage; at high
α1 (close to 0.5), it is sometimes difficult to determine
which component is minor so m1 could fluctuate depend-
ing on whether MethylPurify assigns the methylated or
unmethylated reads to the minor component.
Since m1 is the most variable among the three parame-

ters and dominates the sum of the variances, MethylPur-
ify later only uses the standard deviation (stdev) of m1

from bootstrapping to rank all qualifying bins. Indeed,



Figure 2 Parameter estimation and properties of informative bins. (a) Averaged standard deviations of three free parameters at different
mixing ratios by bootstrap sampling of HCC (breast cancer) and HMEC (normal mammary epithelial) cell lines for all qualifying bins. (b) Predicted
mixing ratios at different standard derivation cutoffs of the minor composition. (c, d) Some properties of informative bins compared with
genome-wide background. (c) The number of CpG counts in informative bins vs. the rest bins with over 10 fold read coverage. (d) Distribution
of predicted methylation levels of informative bins in each cell line.
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the informative bins, defined as qualifying bins with m1

stdev <0.1 (after filtering CNA regions and selecting one
bin with smallest stdev from each CpG island), in gen-
eral give very stable α1 estimates at different mixing ra-
tios (Figure 2b). A closer examination of the informative
bins found that they often contain significantly more
CpGs (Figure 2c), and have a strong dichotomy of reads
being either mostly methylated (1) or mostly unmethy-
lated (0) (Figure 2d). So in the remaining text, the top
500 informative bins with the smallest parameter vari-
ance by bootstrap were used to vote for the mixing ratio
for the whole sample.
We then evaluated whether MethylPurify could cor-

rectly infer the mixing ratio of the two components.
When given a pure cell line without mixing, MethylPur-
ify correctly reported a warning for insufficient number
(66 and 322 for HMEC and HCC cell lines, respectively)
of informative bins. Further examination of such bins in
HCC cell line suggested that they have significant over-
lap with ASM regions [22] (P = 0.0086 by Fisher’s exact
test). For all samples with real mixing, MethylPurify
identified sufficient number of informative bins across
the genome (see Additional file 1: Figure S1 as an ex-
ample), and their respective α1 estimates are often cen-
tered around the true α1 (Figure 3a). Over 20 repeated
simulations at each mixing ratio, MethylPurify gives pre-
dicted α1 that tightly surrounds the true α1 with two in-
teresting twists (Figure 3b,c). The first is that since
MethylPurify dictates α1 to represent the minor compo-
nent, α1 estimates tend to be slightly lower when the
mixing is close to 0.5:0.5. The second is that MethylPur-
ify tends to slightly under estimate the cancer compo-
nent. This might be because even as cell lines, the
cancer HCC is more heterogeneous than the normal



Figure 3 Prediction performance on simulated data. (a) Histogram of the predicted mixing ratio from selected informative bins insimulation
results when bisulfite reads of HCC and HMEC cell lines are mixed at different ratios. Dotted blue lines highlight the true minor components.
Black line is the density of the predicted mixing ratio. (b, c) Predicted minor compositions (α1) at different mixing ratios where the composition
of tumor cell line is above 50% (b) or below 50% (c). Error bars represent standard derivations derived from 20 mixing simulations.
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HMEC, as supported by the larger number of inform-
ative bins in HCC than HMEC alone, causing the EM
algorithm to assign a small portion of the HCC reads to
the HMEC component. This implies that in tumor sam-
ples, MethylPurify might also tend to slightly underesti-
mate the tumor percentage due to tumor heterogeneity.

Detection of differentially methylated bins in the
simulated mixture
We next evaluated whether MethylPurify could correctly
predict the methylation level of each component in the
mixture and identify the differentially methylated regions
between the two components. At HCC and HMEC mix-
ing ratio of 0.7:0.3, we analyzed all 90,748 qualifying bins
(300 bp with over 10 CpGs and over 10-fold coverage)
to evaluate the performance. Under the gold standard of
methylation difference >0.5 between the two pure cell
lines, we found that MethylPurify could predict differen-
tially methylated bins at 96.5% sensitivity and 88.0%
specificity (Figure 4a). At coverage range from 10-fold
to 40-fold, the performance of MethylPurify decreases
only slightly with decreased coverage, although the num-
ber of qualifying bins with enough coverage decreases
(Additional file 2: Figure S2).
Detailed examinations revealed that in the true posi-

tive predicted regions HMEC is often fully unmethylated
(0) while HCC is fully methylated (1). This is consistent
with many studies showing that cancer samples often
have global hypomethylation and CpG promoter hyper-
methylation [42-45]. In contrast, in the false positive
bins, the methylation levels in the individual cell lines
are often at intermediate levels (Additional file 3: Figure S3).
These might represent the methylation variability re-
gions previously reported in tumor DNA methylation



Figure 4 Predicted DMBs (DMBs predicted to have methylation difference over 0.5 from mixture reads by MethyIPurify) are compared
with true DMBs (DMBs inferred from BS-seq reads in two separate cell lines) in HCC and HMEC cell lines. (a) Overlap between predicted
(from mixture, red) and true (blue) DMBs in the mixture of HCC1954 (70%) and HMEC (30%). (b, c) Correlations of predicted and true methylation
levels in normal (b) and tumor cell line (c) for qualifying bins. (d) An example of differentially methylated region between HCC and HMEC cell
lines. Each point represents one qualifying bin of length 300 bp. HMEC.t and HCC.t are true methylation profiles in this region, while HMEC.p and
HCC.p are predicted methylation profiles from mixture reads. (e) Correlation of predicted and true methylation differences. (f) DMB prediction
sensitivity and correlation of methylation between predicted and true differential methylation at different mixing ratio of the two cell lines.
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studies [14,46,47], and might cause reads to be assigned
to the wrong component. For example, a tumor sample
has 1/3 normal and 2/3 cancer, and in one region the
methylation level of the normal and cancer components
are 0% and 50%, respectively. Assume MethylPurify cor-
rectly estimated the minor component α1 to be 1/3, it
would naturally assign the 1/3 methylated reads to the
minor normal component, and 2/3 unmethylated reads
to the major cancer component. In this case, although
MethylPurify incorrectly called the cancer component
as hypomethylated, it nonetheless correctly identified
this region as differentially methylated, whereas a stand-
ard cancer/normal differential call might miss it.
To reduce the above effect of tumor heterogeneity,

we removed bins that show strong read methylation vari-
ability (var >0.1) in the HCC (Additional file 4: Figure S4).
We then examined whether DNA methylation levels of
the two components can be correctly estimated in the
remaining qualifying bins. The correlation between
the true and predicted methylation level is at 0.89 for
the minor normal component and 0.98 for the major
tumor component, respectively (Figure 4b,c). Figure 4d
is an example showing the true and predicted methyla-
tion levels from each cell line in the mixture. The
predicted methylation difference from the cell line mix-
ture is highly correlated with the estimated methylation
difference by directly comparing the two individual
cell lines (Figure 4e). Further examination of bins that
were called in the wrong directions found many to have
lower sequence coverage. This suggests that the mixture
sampling might introduce biases, i.e. the mixing at spe-
cific bins could be off from the genome-wide ratio of
0.7:0.3. In fact, if we examine only bins with >15-fold
coverage, the correlation of methylation difference esti-
mated from individual cell lines vs. mixture increased
from 0.71 to 0.75.
We then tested the performance of MethylPurify when

the normal (HMEC) component of the mixture varies from
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0.1 to 0.5. When the mixing ratio is close to 0.5:0.5, deter-
mining which component is hypo- or hyper-methylated
becomes an unidentifiable problem, so the correlation be-
tween the true and predicted methylation difference in the
two components drops. Nonetheless, our ability to cor-
rectly call regions of differential methylation increases with
the minor component percentage, from 89.4% at 0.1:0.9
mixing to 98.4% at 0.5:0.5 mixing, because there is enough
coverage on each component to confidently identify bins
with discordant methylation reads (Figure 4f).

Application of MethylPurify to lung cancer tissues
With the success of MethylPurify on cell line mixing sim-
ulations, we next tested MethylPurify on real tumors. We
conducted reduced representation bisulfite sequencing
on five primary lung adenocarcinoma samples as well
as their respective adjacent normal tissues, and obtained
approximately 15 to 40 million 90 bp reads for each sam-
ple. MethylPurify was able to process each tumor sample
Figure 5 Application of MethylPurify to the lung adenocarcinoma sam
components of five primary lung adenocarcinoma samples. (b) The numbe
predicted DMB by MethylPurify from only tumor tissue (red) and DMB infe
distributions of CpG counts (c), read counts (d), tumor/normal methylation
adenocarcinoma samples with copy number alteration in TCGA (g) for fals
(TN) bins.
within 1 h on a single core, and estimated the normal
component in the tumors to be between 18% and 33%
(Figure 5a). In these samples, the true normal percentage
in each tumor sample is unknown. In addition, methyla-
tion differences have been reported to well precede
pathological differences, which have been used to predict
cancer risk [48]. Therefore, we instead focused on evalu-
ating differentially methylated regions called by Methyl-
Purify from tumor samples alone, using the tumor to
normal comparison as the gold standard. In this stand-
ard, a 300 bp bin is defined as differentially methylated
if the average methylation difference between cancer and
normal in the region exceeds 0.5. We also tried other cut-
offs to call differential methylation and got similar results
(data not shown).
For each sample, we divided the genome into 300 bp

bins and only considered qualifying bins with >10 CpG
and ≥10-fold read coverage. Due to different sequencing
depth on the different samples, the number of qualifying
ples. (a) Distribution of informative bins and the calculated minor
rs of DMBs inferred from normal-tumor comparison (blue, true DMB),
rred from TCGA (green) for each sample. (c-g) Violin plots show the
differences (e), tumor methylation levels (f), and numbers of lung
e negative (FN), true positive (TP), false positive (FP), and true negative
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bins in different samples varies. We then examined the
Cancer Genome Atlas (TCGA) lung adenocarcinoma
methylation data [49] and used the differential methylated
regions in TCGA that overlap with the qualifying bins
in each sample to determine the number of differential
DNA methylated bins to call in each sample. Differentially
methylated bins called either from tumor samples alone
or from the tumor to normal comparisons are both
ranked by their absolute differential methylation levels,
respectively. Using the tumor to normal comparison as
gold standard, MethylPurify calls in the tumor samples
alone could achieve sensitivity of over 57% and specificity
of over 91% in the five samples tested (Figure 5b).
We then examined the false negatives and false posi-

tive predictions MethylPurify made on the tumor sam-
ples alone. Using sample 137B as an example since it
has the best sequencing coverage, we found that the re-
gions with false negative predictions often have fewer
CpG count (P <2.2e-16, t-test, Figure 5c), lower coverage
(P = 0.0037, Figure 5d), and smaller methylation differ-
ences (P <2.2e-16, Figure 5e) between tumor and nor-
mal. In contrast, the false positive bins are more similar
to true positive ones in CpG count (P = 0.73) and read
coverage (P = 0.83). Interestingly, their absolute DNA
methylation in the tumor samples show more intermedi-
ate levels instead of the dichotomy of 0 for unmethylated
or 1 for methylated (Figure 5f ), and they often contain
many reads with discordant methylation levels. They sug-
gest that such regions are indeed differentially methylated,
but were not detected in the normal cancer comparison
because tumor heterogeneity reduced the observed nor-
mal to tumor methylation difference (Figure 5e). Indeed,
among the false positive bins MethylPurify called from
tumor alone, 25% to 32% have differential methylation
support in TCGA lung adenocarcinoma data (Figure 5b).
This suggests that these ‘false positives’ should have been
correct calls, but were missed by the tumor/normal com-
parison potentially due to tumor heterogeneity. This per-
centage is similar to the 24% to 29% true negative calls
with TCGA support, implying that the differential methy-
lation called by MethylPurify from the tumor samples
alone is as good as the tumor/normal comparison.

Conclusion
Tumor impurity has been a challenging technical issue
in most cancer molecular profiling projects. Here we
present MethylPurify, a statistical method to automatic-
ally estimate the purity of tumor samples and to call
methylation levels in genome-wide scale for each com-
ponent based on bisulfite sequencing data. This is the
first method of its kinds without the need to train the
parameters on many normal, tumor, or cell line data, or
can only detect methylation differences at regions with
sequence variations from a single sample. In contrast,
MethylPurify finds regions with significant number of
reads with discordant methylation levels, which are rare
in pure cell populations but far more prevalent in tu-
mors with impurities. MethylPurify is able to identify
differentially methylated regions from tumor samples
alone, thus saving the time and efforts for normal sam-
ple processing. The method is especially useful for stud-
ies such as glioblastoma, where the normal brain tissues
are hard to obtain.
Despite the aforementioned advantages, MethylPurify

has some technical limitations. First, MethylPurify de-
pends on having sufficient bisulfite sequencing coverage,
preferably at 20-fold or higher, although it will still work
at lower coverage if the minority component is reasonably
abundant. MethylPurify also relies on short regions con-
taining mostly methylated and mostly unmethylated reads,
thus the regions with higher CpG density are more likely
to be informative in the estimation of mixing ratio and
in identifying differentially methylated regions. In order
to detect differentially methylated regions in low CpG
regions, MethylPurify requires higher bisulfite sequencing
depth. We hope our future work can improve Methyl
Purify to overcome these limitations.
MethylPurify currently only works for the mixture of

two components, and contaminations that consist less
than 5% of the sample usually do not interfere with the
algorithm prediction. When the sample is very pure such
as a cell line, although there might not be enough in-
formative bins, MethylPurify could instead predict ASM.
In fact, detecting ASM in pure cell population is a
simplified form of MethylPurify. In tumors with impur-
ities, these ASM regions might slightly bias the mixing
inference, which was demonstrated in Additional file 5:
Figure S5. This sample has 40% normal and 60% tumor,
and a region with ASM in normal and loss of ASM and
fully methylated in tumor will look like a normal: tumor
mixing ratio of 1:4 (Additional file 5: Figure S5b,c).
However, since the number of DMRs in tumors are
often much larger than the number of ASM regions, this
small bias would not affect the mixing ratio inference.
The mixture model of MethylPurify can be extended to
handle samples with more components. For such cases,
deeper sequencing depth and a more sophisticated algo-
rithm are required to automatically determine the num-
ber of components in the mixture.
In tumor samples, the normal contamination could be

either the minor or major component. Since MethylPur-
ify only infers the ratio of the minor component, the
user will need to use pathology information to check
whether this is the tumor or normal. Alternatively,
examination of a few well-known differentially expressed
genes or differentially methylated regions between nor-
mal and cancer can also resolve the problem. When the
mixing ratio is close to 0.5:0.5, MethylPurify can still
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identify differentially methylated regions, but will lose
the genome-wide phasing and fail to determine whether
the regions are hypermethylated or hypomethylated in
tumor. This can be improved by examining multiple
tumor samples of the same cancer type, which are likely
to have different mixing ratios and share many differen-
tially methylated regions.
For metastasized tumors, the normal contamination is

from the metastasized site rather than the origin tissue
of the tumor, which might result in different differential
methylation calls. However, obtaining both metastasized
tumor as well as the normal tissue of the tumor origin
in practice is quite difficult, so obtaining DMR informa-
tion directly from the metastasized tumor is still attract-
ive, despite being imperfect. In fact, our test on the lung
cancer samples metastasized to the brain (Additional file
6: Figure S6) still identified many of the correct DMRs.
Differentially methylated alleles in SNP regions in

the genome have been effectively used to infer ASM.
MethylPurify does not rely on genetic variation informa-
tion, so could detect more ASM or differentially methyl-
ated regions that lack genome variations. Since genome
variations provide additional layers of information for
methylation level and mixing ratio inference [50], it is
a good feature to be incorporated in future versions
of MethylPurify. In addition to point mutations, somatic
copy number aberration (CNA) is also common in
cancers, and this also affect tumor/normal methylome
comparisons. In fact, some of the false positive (P = 0.023)
and false negative (P= 1.1e-05) predictions from Methyl
Purify might be due to potential copy number amplifications
in the tumors (Figure 5g). However, for bisulfite-sequencing
data with sufficient coverage, large regions of CNA
might be directly identified from sequence coverage.
Therefore, future versions of MethylPurify could esti-
mate their effect in the model to eliminate false posi-
tives or false negatives.

Methods
Notation and model construction
Suppose a tumor tissue consists of tumor and normal
cells. Since the composition of each cell type is unknown,
we use the terms ‘major component’ and ‘minor compo-
nent’ to represent the respective cell types that make up
the majority and minority of the cell population in the
tumor. In most cases, the tumor cells are the major com-
ponent. Denote the proportion of minor and major com-
ponents in a tumor mixture as α1 and α2, and their
corresponding CpG methylation ratio in a given genomic
interval I as m1 and m2, respectively. The methylation pat-
tern in this interval could be modeled by three free pa-
rameters Θ = (m1, m2, α1) since α1 + α2 = 1. We focus only
on methylation patterns at the CpG dinucleotide, since
non-CpG tri-nucleotide methylation patterns (mCHG and
mCHH, where H =A, C, or T) are shown to be different
from CpG methylation [51,52]. Let X be a set of bisulfite
reads mapped into I and x be a sequence from X. If x in-
cludes lx CpG cytosines, then x could be represented as a
binary sequence ¼ x1x2⋯xlx :

xi ¼ 1; if the ith CpG in x is methylated;
0; otherwise;

�

where i = 1, 2, …, lx. Denote Mx ¼
Xlx
i¼1

xi as the number

of methylated CpG cytosines in x, and Ux ¼
Xlx
i¼1

1−xið Þ
the number of unmethylated CpG cytosines in x.
The sequence x may come from either normal or can-

cer cells, so the probability of observing x is:

p xð Þ ¼ α1px;1 þ α2px;2

where px,j is the probability that sequence x is gener-
ated from the j-th component, j = 1,2. We assume that
the methylation status of each cytosine in a genomic
interval is independent, and px,j can be represented as

px;j ¼
Ylx
i¼1

mjxi þ 1−mj
� �

1−xið Þ� � ¼ mj
Mx ⋅ 1−mj
� �Ux

So the probability of observing the whole sequence set
X from I is

l Xð Þ ¼ p Xð Þ ¼
Y
x∈X

p xð Þ

Given a set of bisulfite reads mapped to a genomic
interval, the values of m1, m2, and α1 can be estimated
by maximizing the log likelihood function

~Θ ¼ arg max
Θ

l Xð Þ ¼ arg max
Θ

Y
x∈X

p xð Þ

¼ arg max
Θ

X
x∈X

logp xð Þ

The optimization problem can be solved by the typical
Expectation-Maximization (EM) algorithm by introdu-
cing a latent random variable zx indicating the member-
ship of sequence x:

zx ¼ 1; if x ∈ minor component;
2; if x ∈ major component:

�

Let Qx(j) be the probability of zx= j, then the log-likelihood
function can be rewritten as

l Xð Þ ¼
X
x∈X

logp xð Þ ¼
X
x∈X

log
X2
j¼1

Qx jð Þ αjpx;j
Qx jð Þ
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According to the EM algorithm, if Qx(j) is estimated
by the posterior probability of zx given x and a pre-
defined parameter setting Θ, that is,

Qx jð Þ ¼ p zx ¼ j x;ΘÞ ¼ αjpx;j
α1px;1 þ α2px;2

�����
 

Then by Jensen’s inequality, the above log-likelihood
function can be estimated by

l Xð Þ ¼
X
x∈X

logp xð Þ ¼
X
x∈X

log
X2
j¼1

Qx jð Þ αjpx;j
Qx jð Þ

≥
X
x∈X

X2
j¼1

Qx jð Þ log αjpx;j
Qx jð Þ≜J X;Qð Þ

So,

J X;Qð Þ ¼
X
x∈X

X
j¼1;2

Qx jð Þ logαj þ logpx;j− logQx jð Þ
� �

¼
X
x∈X

X
j¼1;2

Qx jð Þ Mx logmj þ Ux log 1−mj
� �� �

þ
X
x∈X

X
j¼1;2

Qx jð Þ logαj− logQx jð Þ� �

Setting ∂J X;Qð Þ
∂mj

¼ 0 and ∂J X;Qð Þ
∂α1

¼ 0, we have

X
x∈X

Qx jð Þ Mx

mj
−

Ux

1−mj
� �

 !
¼ 0

X
x∈X

Qx jð Þ Mx−lxmj

mj 1−mj
� � ¼ 0

mj ¼
X

x∈X
Qx jð ÞMxX

x∈X
Qx jð Þlx

and

X
x∈X

Qx 1ð Þ 1
α1

−
X
x∈X

Qx 2ð Þ 1
1−α1

¼ 0

X
x∈X

Qx 1ð Þ−α1Qx 1ð Þ−α1Qx 2ð Þ
α1 1−α1ð Þ ¼ 0

X
x∈X

Qx 1ð Þ−α1
α1 1−α1ð Þ ¼ 0

α1 ¼
X

x
Qx 1ð Þ
Xj j

So the final EM algorithm can be formulated as
(E-step): for each x

Qx jð Þ :¼ p zx ¼ j x;Θ

!
¼ αjpx;j

α1px;1 þ α2px;2

�����
 

(M-step):

mj ¼
X

x∈X
Qx jð ÞMxX

x∈X
Qx jð Þlx

; j ¼ 1; 2

α1 ¼
X

x
Qx 1ð Þ
Xj j

8>>>><
>>>>:

Intuitively, the EM algorithm starts with a random
guess of the model parameters Θ = (m1, m2, α1). In the E
step, the algorithm computes the membership probabil-
ity Qx(j) for each binary sequence given the current esti-
mation of Θ. In the M step, Θ is re-estimated based on
the membership probabilities Qx(j). By repeating the E
steps and M steps recursively, the EM algorithm is
proven to converge to a local maximum of log likelihood
function [53].

Determination of the mixing ratio
For most genomic bins, their methylation levels in
tumor and its normal cells are roughly consistent. These
bins are considered to be ‘non-informative’ in our esti-
mation because any choice of α1 would lead to the same
value of the likelihood function. Even if the bin is ‘in-
formative’ (or has different methylation levels between
normal and tumor cells), it is difficult to estimate the
real mixing ratio precisely just from one bin due to the
random noise and the insufficient read coverage. Known
that all informative bins share approximately the same
mixing ratio, we use the following strategy: we identify
the informative bins through a bootstrap strategy, esti-
mate the mixing ratio of each informative bin individu-
ally, and ‘vote’ for the real mixing ratio by combining the
results from all those bins.
A bin is informative to determine the mixing ratio if it

has enough read coverage and all reads in this bin are
homozygous (that is, all the CpG dinucleotides in one
read are methylated or non-methylated). So it is ex-
pected to get very reliable estimation even from partial
data. We adopt the following strategies to search inform-
ative bins. First, we constrain our informative bin search
on the CpG islands and nearby regions because these re-
gions have high CpG density and highly variable methy-
lation level compared to the normal cells [14]. Second,
if a bin has no methylation difference between normal
and tumor cells, the predicted mixing ratio will be ran-
domly distributed between 0 and 1 due to the random
initialization of parameters. As a result, we further select
bins based on the variation of the parameter estimations
from random sampling. We sampled all reads from a bin
with replacement 50 times, and optimize the parameters
based on the selected reads using the EM algorithm. We
calculate the standard deviations of the three parameters
across sampling, and bins whose parameters have lower
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standard derivations are selected. According to the
simulation results, we found that the standard deviation
of m1 is significantly higher than the other two parame-
ters, and thus is adopted to rank all bins.
Copy number variations (CNVs) are frequently detected

in tumor cells and may confound the results of estimating
the mixing ratio. Theoretically, the amplified bins are
more prone to be selected as informative bins due to their
deeper read coverage compared to the normal bins, and
the estimation results from these bins may be inaccurate
due to the elevated read counts from the tumor compo-
nent. So we collected genomic regions that confer fre-
quent amplification or deletion at different types of cancer
from TCGA [54,55] and discard informative bins located
in these regions. In addition, in order to alleviate the prob-
lem of novel CNVs for a specific sample or new cancer
types not covered by TCGA, we only keep up to one in-
formative bin for each GpG Island.
After selecting informative bins and removing the effect

of CNVs, for each sliding bin of length 300, we computed
the informative divergence based on all reads mapped to
it, and ranked all bins by the value of informative diver-
gence. Bins with the smallest informative divergence are
selected to determine the predicted mixing ratio. The in-
formative divergence cutoff to determine the number of
informative bins needs to be small enough to ensure the
stability and large enough to include a sufficient number
of informative bins for a reliable estimation. In our model,
we selected the top 500 bins with standard deviation of
m1 less than 0.1. However, if we could not get enough in-
formative bins (less than 500) because the sequence depth
and read length is not enough, or the normal cell contam-
ination is less than 5%, then our program (MethylPurify)
will stop and report an error.

Finding differentially methylated regions
With the predicted mixing ratio in mind, we next esti-
mate the other two free parameters in our EM algorithm
for each sliding bin across the genome. The computation
is very similar as the previous three-parameter estima-
tion model, except for a known α1, we thus omit the de-
tail deduction in this part. A bin is called ‘differentially
methylated’ if the predicted methylation ratios between
normal and tumor cells are larger than a given threshold
(0.5 in our simulation experiments). Finally, adjacent
differentially methylated bins are merged together to get
the differentially methylated regions.
The likelihood function may not be unimodal and may

contain up to two local maxima (see Additional file 7:
Figure S7 as an example). To handle this situation, our
algorithm starts with two different initial values of
m1 and m2 (that is, m1 = 0.8, m2 = 0.2 and m1 = 0.2, m2 =
0.8), and the convergence point with higher likelihood
probability is selected as the final prediction.
Data access
The BS-seq data used in this manuscript have been de-
posited in the NCBI Gene Expression Omnibus (GEO)
under accession number GSE56712.
Availability
MethylPurify is available open source at https://pypi.
python.org/pypi/MethylPurify.
Additional files

Additional file 1: Figure S1. Distribution of informative bins over
chromosomes. Each red bar shows an informative bin inferred from the
cell line mixture of HCC (0.7) and HMEC (0.3). Informative bins are
defined as the top 500 qualifying bins (300 bp in length with > =10X
coverage and > =10 CpG) that with smallest parameter variance by EM
bootstrap.

Additional file 2: Figure S2. DMB prediction at different read coverage.
Bisulfite reads from two cell lines are randomly sampled to make sure the
mixing ratio of HCC and HMEC (HCC:0.7, HMEC:0.3) at different read
coverage (from 10-fold to 40-fold). Sensitivity and specificity are obtained
by the direct comparison between the two cell lines as benchmark.
Covered bins are qualifying bins in the genome with enough read
coverage and CpG counts.

Additional file 3: Figure S3. Distribution of Methylation levels of true
positive (a) and false positive bins (b) in HMEC and HCC cell lines. The
DMBs called by direct comparison between tumor and normal cell lines
(difference >0.5) were treated as benchmark to evaluate the predicted
DMBs identified by MethylPurify. In each subfigure, the white dot shows
the median, the thick black bar represents the interquartile range, and
the thin black bar represents 95% confidence intervals.

Additional file 4: Figure S4. Overlap between predicted DMBs and
true DMBs after removing the inconsistent bins in HCC. True DMBs (blue)
are derived by the direct comparison between the two cell lines
(difference >0.5); Predicted DMBs (red) are differentially methylated bins
(difference > 0.5) identified by MethylPurify only from the simulated cell
mixture (HCC:0.7, HMEC:0.3). The inconsistent bins were defined as bins
that contain inconsistent reads (SD of observed reads methylation
level >0.1) and were considered as heterogeneous regions.

Additional file 5: Figure S5. Impact of allele-specific methylation
(ASM) to mixing ratio prediction. (a) Suppose the mixing ratio of a tumor
tissue is 0.4 (normal): 0.6 (tumor), and within a region the normal part is
allele-specific methylated while the tumor part not. (b) MethylPurify is
inclined towards separating reads into fully methylated and fully
unmethylated populations, thus (c) predicting the mixing ratio to be 0.2
(unmethylated): 0.8 (methylated).

Additional file 6: Figure S6. Mixing ratios and DMB prediction for two
metastatic lung cancer samples. (a) Distribution of informative bins and
the calculated minor components of two metastatic lung cancer samples.
(b) DMBs in blue were inferred directly by comparing normal and tumor
tissues, DMBs in red were predicted by MethlPurify from only tumor
tissues, and DMBs in green were summarized from TCGA (bins that
frequently show altered DNA methylation in lung cancers).

Additional file 7: Figure S7. Contour plot of log likelihood function for
a typical DMB. The log likelihood function of a bin is summed from all
reads mapped to this bin by varying two free parameters m1 and m2

from 0 to 1. The red triangle shows a local maxima, while the red star is
the global optimum.
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