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ABSTRACT  

Model-based Analysis of Regulation of Gene Expression (MARGE) is a framework for 

interpreting the relationship between the H3K27ac chromatin environment and differentially 

expressed gene sets. The framework has three main functions: MARGE-potential, MARGE-

express, and MARGE-cistrome. MARGE-potential defines a regulatory potential (RP) for each 

gene as the sum of H3K27ac ChIP-seq signals weighted by a function of genomic distance from 

the transcription start site. The MARGE framework includes a compendium of RPs derived from 

365 human and 267 mouse H3K27ac ChIP-seq datasets. Relative RPs, scaled using this 

compendium, are superior to super-enhancers in predicting BET (bromodomain and extra-

terminal domain) -inhibitor repressed genes. MARGE-express, which uses logistic regression to 

retrieve relevant H3K27ac profiles from the compendium to accurately model a query set of 

differentially expressed genes, was tested on 671 diverse gene sets from MSigDB. MARGE-

cistrome adopts a novel semi-supervised learning approach to identify cis-regulatory elements 

regulating a gene set. MARGE-cistrome exploits information from H3K27ac signal at DNase I 

hypersensitive sites identified from published human and mouse DNase-seq data derived from 

diverse cell types. We tested the framework on newly generated RNA-seq and H3K27ac ChIP-

seq profiles upon siRNA silencing of multiple transcriptional and epigenetic regulators in a 

prostate cancer cell line, LNCaP-abl. MARGE-cistrome can predict the binding sites of silenced 

transcription factors without matched H3K27ac ChIP-seq data. Even when the matching 

H3K27ac ChIP-seq profiles are available, MARGE leverages public H3K27ac profiles to 

enhance this data. This study demonstrates the advantage of integrating a large compendium of 

historical epigenetic data for genomic studies of transcriptional regulation. 

 

INTRODUCTION 

Cis-regulation of gene expression is an essential aspect of molecular biology that underlies 

developmental processes and disease etiology. Several genomic techniques, including ChIP-seq 

(Barski et al. 2007; Johnson et al. 2007; Mikkelsen et al. 2007), DNase-seq (Boyle et al. 2011; 

Hesselberth et al. 2009; He et al. 2014; Crawford et al. 2006) and ATAC-seq (Buenrostro et al. 

2013) have been developed to experimentally identify cis-regulatory regions genome-wide. 

Attempts to use these data to understand gene expression have, however, been impeded by the 

following factors: data for only a small subset of transcription factors (TFs) participating in any 
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system can be generated in practice (Gerstein et al. 2012); not all TF binding sites necessarily 

play roles in gene regulation; mapping between enhancers and genes is still an open question; the 

regulatory environment that controls a gene may depend on a complex interaction of many 

factors at the promoter and enhancers that may act cooperatively or antagonistically (Montavon 

et al. 2011; Spitz and Furlong 2012); technical biases in chromatin profiling data may obscure 

biologically relevant signal (Meyer and Liu 2014). Most importantly, chromatin profiling 

capabilities are available to a limited number of pioneering laboratories on select tissue samples 

and only a minority of gene expression studies are interpreted in this perspective. Therefore 

investigations into the cis-regulation of gene expression have been carried out only by a limited 

number of groups in well-characterized systems. 

Nevertheless, several developments in genomics suggest that information about gene regulation 

may be revealed using a combination of surrogate data and machine learning techniques. First, 

the transcription factor binding sites discovered in most ChIP-seq experiments tend to fall within 

a set of genomic regions that are DNase I hypersensitive (Hesselberth et al. 2009; Neph et al. 

2012b; He et al. 2014; Thurman et al. 2012). The union of DNase-seq (UDHS) peaks across a 

broad array of human cell types can therefore be used to define a superset of transcription factor 

binding loci in most cell types. Second, chromatin exists in several “states” (Hoffman et al. 2013; 

Ernst et al. 2011; Ernst and Kellis 2010; Barski et al. 2007; Heintzman et al. 2007) with a 

spectrum of functional properties that may be identified using ChIP-seq histone modifications. In 

particular, transcription factor binding is associated with DNase I hypersensitivity and can be 

further characterized using the H3K27ac mark as “poised” or “active”.  The active state has high 

levels of H3K27ac and is more strongly associated with gene expression than the poised one 

(Rada-Iglesias et al. 2011; Creyghton et al. 2010). Third, although specific long-range 

interactions between enhancers and promoters are important in the regulation of some genes, 3-

dimensional chromatin conformation maps show that the main quantitative trend in the 

frequency of chromatin interactions is decreased interaction as a function of genomic distance, as 

well as the existence of large topologically associating domains (TADs) that are conserved over 

cell lineages and even species (Lieberman-Aiden et al. 2009; Dixon et al. 2012). Finally, the 

accumulation of a large number of ChIP-seq profiles provides extensive information about the 
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way in which chromatin environments vary across diverse cell types (Roadmap Epigenomics 

Consortium 2015).  

In this study we base our analysis on the H3K27ac modification as several studies have found it 

to be amongst the most highly informative about gene regulation (Creyghton et al. 2010; Karlić 

et al. 2010; Rada-Iglesias et al. 2011) and there is a large and rapidly increasing number of 

published H3K27ac ChIP-seq profiles in diverse cell types. One way in which H3K27ac is 

understood to mediate RNA transcription rates is through its interaction with the bromodomain 

and extraterminal domain (BET) protein BRD4 (Dey et al. 2003). BRD4 facilitates 

transcriptional elongation by interacting with the positive transcription elongation factor b (p-

TEFb), which phosphorylates the C-terminal domain of RNA polymerase II (Pol II) releasing it 

from negative elongation factors (Jang et al. 2005; Price 2000). Experiments in a variety of cell 

lines have shown that although the BET inhibitor JQ1 represses a large number of genes (Lovén 

et al. 2013; Ott et al. 2012; Chapuy et al. 2013), it does not inhibit all of them, and even activates 

some. Previous work has suggested that this incomplete inhibitory effect results from the 

preferential influence of BET inhibitors on super-enhancers, genomic intervals with 

exceptionally high levels of H3K27ac, BRD4 or MED1 enrichment (Chapuy et al. 2013; Lovén 

et al. 2013). This idea is used in the ROSE method that identifies super-enhancers and assigns 

them to genes using a distance threshold (Whyte et al. 2013; Lovén et al. 2013). ROSE, however, 

frequently fails to identify BET inhibitor suppressed genes, including some with high H3K27ac 

activities (Supp. Fig. S1).   

Without a clear understanding of gene regulatory mechanisms, different rules have been used to 

identify transcription factor target genes. One common approach is to map each TF ChIP-seq 

peak to the nearest TSS and to use a genomic distance threshold to decide whether or not that 

gene is a target of TF binding. Other methods consider the contribution of multiple binding sites 

weighted by the distance between the binding site and the TSS (Ouyang et al. 2009; Tang et al. 

2011; Jiang et al. 2015; Wang et al. 2013).  These approaches are motivated by the assumption 

that most genes are regulated through the integrated activity of multiple cis-regulatory elements 

(Ahn et al. 2014; Meyer et al. 2015; Canver et al. 2015; Hong et al. 2008; Frankel et al. 2010; 

Perry et al. 2011; Montavon et al. 2011; Bender et al. 2015). The large number of TF binding 

sites that are typically detected in mammalian cells (Gerstein et al. 2012) and the tendency of 
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these sites to occur in clusters in the genome (Ji et al. 2006) suggest that integrated cis-element 

activity is likely to be a general regulatory principle. The above-mentioned methods do not take 

advantage of the large quantities of public ChIP-seq data derived from various cell types into 

consideration in their predictions. ChromImpute (Ernst and Kellis 2015), an imputation method 

that does make use of compendia of chromatin profiling data, does not make predictions about 

the regulation of differentially expressed genes. 

 

To build a system that predicts the cis-regulation of differential gene expression, we explore the 

systematic use of H3K27ac ChIP-seq data in MARGE (Model-based Analysis of Regulation of 

Gene Expression), a statistical modeling and machine learning framework for gene regulation 

studies. We use a compendium of human (Supp. Table S1) and mouse (Supp. Table S2) 

H3K27ac ChIP-seq profiles and DNase I hypersensitive regions to make inferences about the 

cis-regulation of gene expression. MARGE defines regulatory potentials based on H3K27ac 

ChIP-seq data that serve as measures of the integrated cis-regulatory activities that impact gene 

expression. MARGE demonstrates how public H3K27ac ChIP-seq profiles can be used to infer 

differential gene expression and transcription factor binding in a variety of systems, not limited 

to those for which ChIP-seq data is available.  

 

RESULTS 

Method overview 

The MARGE framework includes three main functions: MARGE-potential, MARGE-express, 

and MARGE-cistrome. The first function, MARGE-potential, computes the regulatory potential 

(RP), a measurement of the cis-regulatory environment surrounding the transcription start site of 

a gene. Comparison of regulatory potentials from user-provided H3K27ac ChIP-seq samples 

with this compendium can identify genes that have unusually high regulatory potentials in these 

samples. The second MARGE function, MARGE-express, uses regression to link gene 

expression perturbations with regulatory potentials derived from a small subset of H3K27ac 

ChIP-seq data from the full compendium. In this way MARGE determines changes in regulatory 

potentials that are predictive of gene expression changes. The H3K27ac patterns identified by 

MARGE-express are used in a third function, MARGE-cistrome, to predict cistromes, the 

genome-wide binding sites of trans-acting factors that regulate given gene sets. MARGE-

 Cold Spring Harbor Laboratory Press on September 6, 2016 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 7 

cistrome identifies patterns of perturbations in the cis-elements that are consistent with 

perturbations in the H3K27ac regulatory potentials identified by MARGE-express. Investigators 

who wish to understand how particular genes in their gene set are regulated can use MARGE-

cistrome to identify candidate cis-regulatory elements, even when chromatin profiling data is not 

available in their system.    

 

H3K27ac defined regulatory potentials identify genes suppressed by BET-inhibitors 

We first demonstrate with MARGE-potential how H3K27ac ChIP-seq profiles, summarized as a 

regulatory potential for each gene, can be a useful predictor of gene expression changes. In this 

analysis we focus on systems in which gene expression changes are induced through treatment 

with BET-inhibitors. It has been proposed that the genes perturbed by these drugs are primarily 

those associated with super-enhancers (Lovén et al. 2013; Hnisz et al. 2013; Chapuy et al. 2013). 

We assess this regulatory potential metric relative to the ROSE super-enhancer based method 

(Lovén et al. 2013; Hnisz et al. 2013; Chapuy et al. 2013). 

 

ChIP-seq of H3K27ac reveals a complex profile comprised of a mixture of broad domains and 

narrow peaks that are likely the result of multiple distinct biological processes (Fig. 1A). 

Regardless of the fine-scale pattern of H3K27ac signal, we assume that H3K27ac ChIP-seq tag 

counts reflect an activating chromatin environment. Instead of calling peak regions or domains 

of enrichment we define a regulatory potential, pi, for each gene i that integrates H3K27ac signal 

within 100kb, both upstream and downstream, from the transcription start site (TSS) (Fig. 1A). 

��  is the weighted sum of H3K27ac ChIP-seq reads ��  at genomic positions k, where their 

weights decrease with distance from the TSS of gene i: �� � ∑ ����� . In this definition �� �

����������

����������� 
, and ��  is the genomic position of the TSS of gene i. Throughout this study the 

parameter �, which determines the decay rate as a function of distance from the TSS, is set so 

that a H3K27ac read 10kb from the TSS contributes ½ of that at the TSS (Fig. 1A). This 

parameter was determined empirically, based on the observed performance of predicting BET-

inhibitor repressed genes as described below (Supp. Fig. S2) and is used consistently throughout 

this paper, although MARGE has robust performance over a wide range of parameter settings.  
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To test if our definition of regulatory potential could predict BET-inhibitor repressed genes, we 

examined 5 diffuse large B-cell lymphoma (DLBCL) cell lines (Chapuy et al. 2013), one liver 

cancer cell line (HepG2) (Picaud et al. 2013) and one malignant peripheral nerve sheath tumor 

cell line (90-8TL) (De Raedt et al. 2014) in which BET-inhibitor effects were measured using 

expression microarrays and H3K27ac ChIP-seq (Chapuy et al. 2013; Picaud et al. 2013; De 

Raedt et al. 2014). Using H3K27ac ChIP-seq data in the pre-treatment condition, we predicted 

BET inhibitor repressed genes in three different ways: (1) calling H3K27ac peaks using MACS2 

(Zhang et al. 2008) and identifying super-enhancers and target genes using ROSE (Lovén et al. 

2013), (2) using H3K27ac read counts in gene promoters (1kb up- and down-stream of the TSS), 

(3) using the regulatory potential defined above. We used genes down-regulated under BET-

inhibitor treatment over control conditions (FDR ≤ 0.01, fold-change ≤ 0.5) to define the true set 

of BET inhibitor suppressed genes. All other genes were labeled as non-suppressed. The receiver 

operator characteristic (ROC) curves indicate that while ROSE is better than a random 

prediction, the regulatory potential is far more predictive of down regulated genes (Fig. 1B and C 

and Supp. Fig. S3) than both ROSE and the promoter-based prediction.  

 

We investigated whether filtering out reads that are not in MACS2 detected H3K27ac ChIP-seq 

peaks could reduce noise and improve the performance over the all-inclusive regulatory 

potential. We found, however, that the peak-calling step has no significant impact on 

performance (Supp. Fig. S4). Including information about topologically associating domains also 

does not have a significant impact on performance (Supp. Fig. S3), so was excluded from the 

current model. Although more sophisticated modeling of regulatory potentials using cell type-

specific Hi-C data might improve performance, we do not investigate this here as high resolution 

Hi-C data is available only in a small number of cell lines. The regulatory potential that we have 

defined without recourse to chromatin interaction data is a useful summary of the H3K27ac 

defined cis-regulatory environment surrounding a gene and predicts genes that are responsive to 

BET-inhibitor treatment. 

 

Baseline H3K27ac regulatory potential improves prediction of genes repressed through 

BET-inhibition 
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Although most genes are down-regulated in response to BET-inhibitor treatment, expression 

analyses show that a small number of genes are apparently up-regulated. Computing the median 

regulatory potential of 365 human H3K27ac datasets across diverse cell types, we discovered 

that BET-inhibitor up-regulated genes tend to have significantly higher regulatory potentials than 

down-regulated genes, which in turn have significantly higher regulatory potentials than non-

regulated genes (Fig. 1D).  Furthermore, the median regulatory potential of a gene across many 

cell types can distinguish between different types of response. Genes with high regulatory 

potentials over a large number of cell types are more likely to have universally essential 

functions and are less likely to be inhibited than those with cell type-specific regulatory 

potentials (Supp. Fig. S5). In fact, genes with high median regulatory potentials have a greater 

chance of being up-regulated by BET inhibitor treatment and tend to have CpG rich promoters, 

suggesting they may be controlled through an alternative regulatory mode (Fig. 1E). 

 

We investigated the prediction performance of the relative regulatory potential of gene i in 

sample j, ���
	 , defined as the ratio of the regulatory potential in sample j over the median 

regulatory potential of that gene across all H3K27ac compendium samples. Using this relative 

regulatory potential, we were able to significantly improve our prediction of BET-inhibitor 

down-regulated genes in all 7 cell types tested (Fig. 1C). A relative promoter signal, defined as 

the ratio of the promoter signal over the median promoter signal across H3K27ac samples, 

produced slight gains in performance over the absolute promoter signal (Fig. 1C) but could not 

reach the performance of the relative regulatory potential. Precision-recall analysis shows that 

the relative regulatory potential has far higher precision than super-enhancers, even at low recall 

rates (Supp. Fig. S6). Further analyses show that relative regulatory potential outperforms the 

absolute regulatory potentials mainly in the prediction of the most significantly down-regulated 

genes (Supp. Fig. S7) with the greatest fold-changes (Supp. Fig. S8). These results suggest that 

the regulatory potential across diverse cell types is a rich source of information that can be used 

broadly across cis-regulatory studies. As a genomics resource we provide tables of relative 

regulatory potentials for RefSeq genes in 365 H3K27ac human and 267 mouse datasets (Supp. 

Table S3, Supp. Table S4 and http://cistrome.org/MARGE/).  

 

Relative regulatory potential identifies cell type specific genes 
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It has been suggested that super-enhancers regulate key tissue specific genes (Hnisz et al. 2013). 

We assessed whether the relative regulatory potential, p*, could be used for similar purposes. We 

computed p* in cells derived from 14 diverse tissues and carried out Gene Ontology (GO) 

enrichment analysis based on the 500 genes in each cell type with the highest relative regulatory 

potentials. Many GO categories pertinent to the specific biological functions of these cell types 

are enriched amongst these genes with the highest p* values (Supp. Fig. S9), such as skeletal 

system development genes in skeletal muscle, blood vessel development in aorta and umbilical 

vein, and immune response in B-cells. In a comparison with the same number of ROSE super-

enhancer targets from the same data, we found that MARGE defined high relative regulatory 

potential genes showed much better tissue-specific GO enrichment (in GO categories defined by 

Hnisz et al, 2013) than ROSE super-enhancer associated genes (Fig. 2A). The GO categories that 

were more highly enriched in super-enhancer associated genes included categories that are not 

cell type specific, such as regulation of cell proliferation and regulation of transcription. 

Therefore, the relative regulatory potential appears to be a better way of identifying tissue 

specific genes than the ROSE super-enhancer based approach. 

 

We carried out a clustering analysis of regulatory potentials across 365 human H3K27ac 

samples. We computed the H3K27ac ChIP-seq defined regulatory potential for each gene in 

every sample, filtered out uninformative genes with low regulatory potentials across all samples, 

selected the 2,000 genes with the largest coefficients of variation across samples, and carried out 

hierarchical clustering on samples and k-means clustering on genes. From this clustering (Fig. 

2B) we observed the tendency for tissues of the same type to cluster together. We hypothesized 

that key regulators of a cell type could be identified accurately by determining the factors with 

the highest relative regulatory potentials across multiple samples of that type. We tested this by 

determining the transcription factors, chromatin regulators and kinases with the highest median 

of relative regulatory potentials across neuronal, lymphoblastoid and embryonic stem cell types, 

respectively (Supp. Table S5). The top neuronal factors, BRD2, POU3F3, AATYK, SALL1, 

SOX2, and SOX10 are all known key neuronal regulators. For example, BRD2 deficient neuro-

epithelial cells fail to differentiate into neurons (Tsume et al. 2012) and AATYK induces neuronal 

differentiation (Raghunath et al. 2000). ZIC3, ZIC2, SOX2, NANOG and SALL1 are the top 

embryonic stem (ES) cell factors.  ZIC2 (Luo et al. 2015) and ZIC3 (Declercq et al. 2013), for 
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example, are required to maintain ES cell pluripotency. Similar observations can be made for the 

regulators with the highest median relative regulatory potentials in lymphoblastoid cells, PAX5, 

POU2AF1, MSC, and IKZF1. The relative regulatory potential is therefore a promising way of 

determining key tissue-specific regulators from H3K27ac ChIP-seq data. 

 

Compendium of H3K27ac regulatory profiles predicts diverse gene expression responses 

H3K27ac ChIP-seq profiles are shaped by a combination of biological and technical factors 

including cell lineage and cell type specific transcription factor activity, immunoprecipitation 

efficiency and DNA sequencing biases. We hypothesized that a compendium of diverse 

H3K27ac ChIP-seq profiles could be used to model gene expression changes in a variety of 

biological contexts. If true, this compendium would provide information about gene regulation in 

studies where ChIP-seq data is unavailable. To assess the possibility of using a set of 365 

H3K27ac human ChIP-seq defined regulatory potentials to model gene expression perturbations, 

we adopted a forward step-wise regression approach to identify informative samples. Termed 

MARGE-express, it defines a logistic regression model: ��   ~  �
 � ∑ ��� ��� . Here ��  is the 

indicator of whether a gene belongs to a given gene set �� � 1) or not �� � 0), ���  is the 

transformed regulatory potential of gene i in sample j, and �  is the vector of regression 

coefficients. At each step in the step-wise regression the sample that maximizes the cross-

validation AUC performance is added to the model. In preliminary analyses we found that cross-

validation performance plateaued before 10 H3K27ac samples so we limit the maximum number 

of samples in the regression to 10 (Supp. Fig. S10). 

 

We tested MARGE-express on 671 molecular signature-based gene sets (MSigDB, Liberzon et 

al. 2011) with over 200 genes, most of which were derived from either upward or downward 

differential expression between conditions. To rule out over-fitting, for each gene set, we used 

genes in odd numbered chromosomes to train MARGE-express, then used the model to predict 

which genes on the even numbered chromosomes belongs to the gene set.  The proposed logistic 

regression model can indeed make accurate predictions for most gene sets (Fig. 3A), and in 

many cases the informative H3K27ac samples are closely related to the gene expression dataset. 

The single ChIP-seq samples with the strongest predictive power for gene sets with keywords 

associated with breast, blood, liver, lung, prostate, neuron or colon in their descriptions were 
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most frequently derived from the relevant tissue type (Fig. 3B). For example, gene sets 

associated with breast were most frequently best predicted by breast H3K27ac ChIP-seq 

samples. The publicly available H3K27ac profiles therefore are of sufficient quality and variety 

to enable gene sets to be interpreted in a wide range of experiments. After the tissue specific 

H3K27ac ChIP-seq samples that are often selected first in the step-wise regression, in later 

iterations MARGE-express frequently selects a diversity of cell lineages unrelated to the tissue 

of interest. Further work is needed to understand the signal in the MARGE-express models, for 

example whether information is derived from cell lineage or cell population, or whether some 

samples represent a generic background H3K27ac profile. 

 

MARGE-express can predict, using data from one gene-expression-profiling platform, 

differential gene expression for genes that are not represented on that platform. Many DNA 

microarray platforms, for example, do not include probes for most non-coding RNAs (ncRNAs). 

As an application of MARGE-express we tested the prediction of non-coding RNAs using DNA 

microarray data that was limited to coding genes. We obtained processed DNA microarray and 

RNA-seq data reported by two studies of keratinocyte development (Lopez-pajares et al. 2015; 

Kretz et al. 2013). One study reported a set of protein coding genes with upwards-trending 

mRNAs that are transcribed more rapidly over the time-course (Lopez-pajares et al. 2015). The 

other reported ncRNAs that are differentially expressed (Kretz et al. 2013), including sets of 

ncRNAs that increase or decrease over the time course. We used MARGE-express to identify a 

model for increasing transcription using the upwards-trend protein coding gene set and 

calculated scores for noncoding RefSeq genes based on this model. Please see Supplemental 

Methods for further details of this analysis. The MARGE-express prediction scores for the 

ncRNA set that was observed to follow an upwards-trend are higher than all ncRNAs (p-val < 

0.04) and the same prediction scores for the observed decreasing ncRNA set are much lower (p-

val < 4 � 10��) (Fig. 3C). TINCR, terminal differentiation-induced lncRNA, which plays an 

important role in this developmental process and is the focus of the Kretz et al (2013) study, is 

correctly predicted by MARGE-express to be amongst the most highly up-regulated ncRNAs in 

keratinocyte development.  
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Semi-supervised learning approach accurately infers cis-regulatory regions from genome-

wide H3K27ac profiles 

Understanding the cis-regulatory mechanisms underlying gene expression patterns is one of the 

key questions in modern biology. Although ChIP-seq, DNase-seq and other chromatin profiling 

technologies can be highly informative, scarce or low quality biological material from many 

systems is unsuitable for such experiments. To address this problem we propose to determine 

cistromes associated with perturbed gene expression patterns using a compendium of H3K27ac 

ChIP-seq data. We hypothesize that the same H3K27ac ChIP-seq data that define regulatory 

potentials (Fig. 4, circle 1) predictive of gene expression perturbations can also predict the 

cistrome of regulating cis-elements. In our conceptual model the perturbations in regulatory 

potentials that produce gene expression perturbations are in turn produced by correlated shifts in 

activity at individual cis-elements. MARGE assumes that the cis-elements are a subset of a union 

of DNase-seq peaks that serve to define the full repertoire of cis-elements in the genome (Fig. 4, 

circle 3). These sets of DNase I hypersensitive regions are derived from 458 human and 116 

mouse DNase-seq profiles. The unions of DNase I hypersensitive regions (UDHS) from these 

public DNase-seq profiles (Thurman et al. 2012; Stergachis et al. 2014; Neph et al. 2012a) 

include approximately 2.7 million and 1.5 million regions in human and mouse, respectively 

(more details can be found in the Supplemental Methods section). The H3K27ac ChIP-seq read 

counts across 1kb genomic intervals centered on each UDHS region are summarized (Fig. 4, 

circle 3). Then MARGE-cistrome (Fig. 4, circle 4) predicts cis-elements by comparing these 

H3K27ac signals at the UDHS level with H3K27ac summarized as regulatory potentials, without 

using DNA sequence information for predictions. 

  

If the relevant TF binding data were available to define the cis-elements we could directly use 

logistic regression to determine coefficients in a linear model that predicts cis-elements from 

H3K27ac ChIP-seq data. However, we are proposing to infer cis-elements without such TF 

binding data and regression cannot be used to directly estimate the coefficients. Instead, we 

assume that a linear model that optimally classifies cis-elements using H3K27ac signal in UDHS 

regions will be similar to the one determined by MARGE-express to classify a gene set using 

H3K27ac regulatory potentials. Although changes in H3K27ac levels at enhancer sites produce 

changes in H3K27ac regulatory potentials, the two are not equivalent, as regulatory potentials 
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are based on aggregates of regions of which only a fraction is likely to include enhancers with 

dynamic H3K27ac levels. In addition, the normalization of regulatory potentials is different from 

normalization at the level of individual cis-elements.  

 

To infer cis-elements, MARGE-cistrome starts with the set of informative H3K27ac ChIP-seq 

datasets identified using MARGE-express (Fig. 4, circle 2). MARGE-cistrome (Fig. 4, circle 4) 

then generates a matrix of square-root H3K27ac signals, ��, in UDHS regions. The rows in this 

matrix correspond to all UDHS genomic loci and the columns correspond to the 10 regression-

selected H3K27ac samples. Matrix �� is normalized to � by row and column centering (details 

in Supp. Methods). In a similar way MARGE-cistrome generates a matrix of transformed 

normalized regulatory potentials, �, with columns corresponding to the same samples as in �, in 

the same order. A naïve way of predicting TF binding is to transfer the parameters, �, estimated 

by logistic regression in MARGE-express (Fig. 5A, top left), directly to the TF binding inference 

problem, using � as coefficients of the H3K27ac signal at UDHS regions (Fig. 5A, top right). In 

this approach the predictive score, �̂� , for a cis-element, � , is calculated as �̂� � � · ��  where 

�� � ��
  is row �  of matrix � . Instead, MARGE-cistrome uses an alternative novel semi-

supervised learning method (Chapelle and Schölkopf 2006). This method assumes that the cis-

elements associated with the regulation of the gene expression perturbation constitute a subset of 

the overall genome-wide cis-element repertoire and exhibit correlated H3K27ac signal patterns 

across the informative samples. The dominant H3K27ac signal patterns in the cis-elements are 

identified using k-means (K=7) to cluster genomic loci by normalized H3K27ac signal, � , 

obtaining centroids ��, … , � (Fig. 5A, bottom right) for each cluster. In preliminary analysis we 

tested alternative cluster numbers and did not find the algorithm to be sensitive to this choice, so 

we set this number as 7. Since we are clustering the same small number of samples (10), we do 

not expect the number of clusters to vary broadly.  Moreover, the method does not rely on an 

optimal partitioning of UDHS sites into clusters, clustering merely serves as a guide to the 

distribution of the data.  

 

MARGE-cistrome then assesses which of these centroids is the most associated with the gene 

expression perturbation using a score ��
� � �� · ��  for each gene � and cluster �, where ��  is the 

� th row of matrix � . The AUC performance of ��  in predicting the input gene set is then 
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evaluated for each cluster � �  1, … , !" (Fig. 5A, bottom left) to determine the cluster centroid 

�	 that best predicts the gene set. The MARGE-cistrome prediction score �̃�  for cis-element � is 

calculated using this centroid: �̃� � �	 · �� .  MARGE-cistrome therefore predicts regulatory cis-

elements by combining unsupervised and supervised methods to generate linear combinations of 

normalized H3K27ac read counts in each 1kb cis-element ascribed region.  

 

We tested MARGE-cistrome on 6 systems where gene expression changes are regulated by 

known transcription factors: the estrogen receptor ESR1 (Carroll et al. 2006), the androgen 

receptor AR (Wang et al. 2007), the glucocorticoid receptor NR3C1 (Muzikar et al. 2009), the 

peroxisome proliferator-activated receptor gamma (PPARG) (Mikkelsen et al. 2010), NOTCH1 

(Wang et al. 2011) and POU5F1 (Kunarso et al. 2010).  Details of the samples selected by 

MARGE-express in each case are described in Supp. Table S6 (Table S7 for MARGE-express 

predictions). As a gold standard for TF binding sites, we used ChIP-seq peaks for the TFs 

derived from relevant cellular contexts. In these test systems we first checked the assumption 

that centroids that predicted gene expression well would also be good at predicting TF binding 

(Fig. 5B). This was indeed the case, the centroids that performed well in predicting gene sets 

(Fig. 5B AUCGX) also performed well in predicting TF binding (Fig. 5B AUCTF). We then 

compared the performance of the naive approach and the MARGE semi-supervised method to an 

estimate of the attainable best performance in TF binding inference from H3K27ac ChIP-seq. 

The attainable performance was determined by applying logistic regression directly in the UDHS 

space on TF ChIP-seq data. We found that in all 6 cases the semi-supervised approach was 

nearly as good as the attainable performance (Fig. 5C, Supp. Table S8) whereas the direct 

approach performed worse in four cases. The semi-supervised approach effectively up-weighs 

sample-specific H3K27ac signal that is associated with specific TF binding and down-weighs 

unrelated H3K27ac signal (Supp. Fig. S11). These results show that MARGE-cistrome is a 

promising approach for predicting transcription factor binding sites associated with the cis-

elements that regulate a user provided gene set.  

 

Integration of public H3K27ac data to enhance in-house data on cis-element prediction  

At times, to gain insight into cis-regulatory mechanisms, investigators conducting differential 

expression analyses augment the gene expression data with matching H3K27ac ChIP-seq 
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profiles. We next investigated whether MARGE could utilize public H3K27ac data to enhance 

the analysis of matched H3K27ac ChIP-seq data. In the prostate cancer cell line LNCaP-abl, we 

conducted siRNA silencing of the transcription factors AR, E2F1, FOXA1, and FOXM1, lncRNA 

MALAT1, chromatin modifiers EZH2, KDM1A, and UTX, and the cohesin subunit RAD21. We 

then generated RNA-seq expression profiling and H3K27ac ChIP-seq data under control and the 

9 different knockdown conditions. Using public data alone, MARGE-express can retrieve the 

relevant H3K27ac profiles to model the down-regulated genes in each of the knockdown 

conditions with ROC AUC performances between 0.65 and 0.75 (Fig. 6A). Augmenting our 10 

in-house LNCaP-abl H3K27ac data sets to the public H3K27ac ChIP-seq data we only obtained 

subtle improvements in performance (Fig. 6A, Supp. Table S10). Details of the samples selected 

in these analysis are described in Supp. Table S9. This result indicates that having H3K27ac 

ChIP-seq data for the exact conditions is helpful but may not be required for studying the cis-

regulation of gene expression in a cell system; public data alone may approach similar 

performance.  

 

We then assessed the performance of MARGE-cistrome in the prediction of functional cis-

regulatory regions in the siRNA knockdown experiments. Based on the assumption that the 

knockdown of a TF should have a direct effect on its genomic binding sites to dysregulate the 

target genes, we conducted ChIP-seq experiments to identify the binding sites of AR, E2F1, and 

FOXA1 to assess the performance of the prediction of cis-regulatory regions. We selected these 

factors as they interact directly with DNA and have high quality antibodies for ChIP. We 

compared the prediction performance of these binding sites (Fig. 6B, Supp. Table S11) using the 

following methods: absolute H3K27ac read counts in UDHS regions, the normalized difference 

of square-root scaled H3K27ac read counts, MARGE-cistrome based on public H3K27ac data 

alone, and MARGE-cistrome based on public data and in-house LNCaP-abl specific H3K27ac 

data. In the prediction of FOXA1 sites, MARGE-cistrome with public data alone has a similar 

performance as using the in-house data alone, and the integration of public and in-house data 

enabled MARGE-cistrome to improve performance from 0.70 to 0.77. In the case of AR, 

MARGE-cistrome on public data alone already outperforms the in-house data, and including the 

in-house data can further improve binding prediction. For E2F1, MARGE-cistrome with a 

combination of public and in-house data predicts E2F1 binding slightly less accurately than in-
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house H3K27ac data alone. Unlike AR and FOXA1, E2F1 tends to bind in promoter regions, 

suggesting that public data is more informative in predicting distal TF binding sites. The specific 

examples in Fig. 6C illustrate how a linear combination of H3K27ac signal tracks, with 

MARGE-cistrome defined coefficients, can help to emphasize FOXA1 binding sites relative to 

other genomic regions. MARGE can therefore greatly enhance the analysis of investigator 

generated H3K27ac ChIP-seq data by making use of a compendium of published data to improve 

the accuracy of target gene and distal cis-regulatory site prediction. 

 

DISCUSSION 

We have shown that MARGE-potential is more accurate than the ROSE super-enhancer 

approach at predicting genes that respond to BET-inhibition and in the identification of key 

tissue specific genes. While the emergence of super-enhancer-like cis-regulatory regions through 

cooperation between cis-regulatory elements may be important in gene regulation, our proposed 

statistical framework does not make “super-enhancer” calls or even peak calls. Our results 

support the idea that genes are typically regulated by multiple cis-regulatory elements. 

Quantitative modeling combined with chromatin profiling and high throughput cis-regulatory 

knockout experiments will be required to understand how TFs act synergistically to create 

phenomena such as super-enhancers. We used the H3K27ac signal within 100kb (upstream and 

downstream) of the TSS to calculate the regulatory potential. This is consistent with the average 

size of topological associating domains (TAD) in the chromatin measured by Hi-C. Explicit 

inclusion of TAD domain information does not have a significant impact on performance. Due to 

the exponential decay nature of the distance weighting factors, it makes little difference in the 

actual regulatory potential value between slightly different boundary locations. We observed that 

the relative regulatory potential is more predictive of genes down-regulated by BET-inhibition 

than the absolute regulatory potential and that genes with high median regulatory potentials tend 

to have CpG rich promoters. This is consistent with previous work that describes the tendency 

for genes with CpG rich promoters to be broadly expressed across cell types and those with CpG 

poor promoters to be more cell-type specific (Natarajan et al. 2012) and expressed at a lower 

level (Karlić et al. 2010). 

 

 Cold Spring Harbor Laboratory Press on September 6, 2016 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 18

We demonstrated the power of published H3K27ac ChIP-seq data in predicting the cis-regulation 

of gene expression. The 365 collected H3K27ac ChIP-seq datasets covered a large variety of 

human tissues and cell types, which made our predictive model comprehensive and robust. We 

found that the compendium of H3K27ac regulatory potentials could be used to define predictive 

models for the majority of 671 gene expression perturbations in MSigDB. The striking ability of 

MARGE-express to predict the response of ~20k genes using regulatory potentials from 10 out 

of 365 samples cannot be attributed to model over-specification. The existence of parsimonious 

models that explain some of these changes shows that even a limited cohort of cis-regulatory 

profiles can provide useful insights on many gene expression perturbation studies. While in 

many cases the informative H3K27ac samples are directly relevant to the gene expression 

perturbations, in some cases they are not. One explanation for the inclusion of unexpected 

H3K27ac datasets is that the samples from which the gene expression data are derived are 

composed of heterogeneous populations of cell types. The meta-data for the informative 

H3K27ac profiles determined by MARGE-express might prove useful in determining the nature 

of these cell populations. Alternatively, the inclusion of some H3K27ac samples is to 

compensate for technical sources of bias. Further work is needed to interpret the biological or 

technical nature of this predictive power.  While we have focused on H3K27ac in this study, as 

this mark has been extensively profiled and is also indicative of active enhancers, using 

appropriate methods complementary chromatin profiles might be incorporated to improve 

prediction performance. Further research will be needed to determine how other chromatin data 

types can be effectively used in combination with this mark to improve prediction performance. 

 

MARGE-cistrome makes use of the H3K27ac mark both as an indicator of the general cis-

regulatory environment influencing a gene as well as an indictor of localized histone 

acetyltransferase activity associated with the binding of specific transcription factors. To use 

information derived from the regulatory potential domain to infer transcription factor binding we 

developed a semi-supervised learning algorithm. This approach is based on the assumption that 

H3K27ac at the regulatory set of TF binding sites tends to produce a pattern across the selected 

samples that forms a cluster of UDHS regions. In this way MARGE-cistrome provides a useful 

strategy for identifying the cis-regulatory loci that regulate a differentially expressed set of 

genes. The success of this approach depends on the level at which the gene expression changes 
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occur relative to the resolution of the H3K27ac compendium in terms of samples that represent 

the treatment and control conditions in the gene expression experiment. The predictive 

performance of MARGE-express and MARGE-cistrome will continue to improve as more 

H3K27ac ChIP-seq data become available in a greater variety of cell types and conditions. 

 

METHODS 

MARGE-potential 

MARGE-potential calculates the regulatory potential of each gene: �� � ∑ ����
�
�

����
� , where 

�� � ����������

����������� 
, ��  is the genomic position of the TSS of gene i, and ��  is the MACS2 summary 

of H3K27ac ChIP signal at this position. The parameter �, which determines the decay rate as a 

function of distance from the TSS, is set so that a H3K27ac read 10kb from the TSS contributes 

½ of that at the TSS. MARGE-potential also calculates the relative regulatory potential ���
	  

defined as the ratio of the regulatory potential in sample j to the median regulatory potential for 

that gene across all samples in the H3K27ac compendium: ���
	 �

���

median����
.  

 

MARGE-express 

 MARGE-express generates a gene set prediction model from the H3K27ac ChIP-seq 

compendium. MARGE-express analyzes an input list of genes that are differentially expressed in 

a uniform direction as a result of some perturbation (e.g. gene knock-down, gene over-expression, 

differentiation, chemical or genetic perturbations). MARGE-express employs forward step-wise 

logistic regression to identify the 10 most informative samples from the H3K27ac ChIP-seq 

compendium. MARGE-express solves the regression model: ��   ~  �
 � ∑ ��� ���� , where ��  is 

the indicator of whether a gene belongs to the given gene set �� � 1) or not �� � 0) and 

���
� �  %��� & %median��-. In each step of the forward step-wise regression, the sample that 

produces the highest average ROC-AUC value in 5-fold cross-validation is selected. By default 

MARGE selects 10 H3K27ac samples from the compendium. In the examples we used in this 

paper, DHT in LNCaP, E2 in MCF7, Dex in A549, GSI in CUTLL, adipose differentiation status, 

and POU5F1 (also known as OCT4) knockdown, the gene sets were defined setting FDR ≤ 0.01 

and fold-change ≥ 2 as thresholds.  
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MARGE-cistrome 

MARGE-cistrome infers cis-regulatory regions that are indicative of a pattern of transcription 

factor binding that induces either an increase or a decrease in gene expression for all genes in a 

gene set.  The MARGE-cistrome procedure is as follows: 

1. Use MARGE-express to identify 10 H3K27ac samples that best model the gene set.  

2. Generate a matrix of square-root H3K27ac signals, ��, in UDHS regions. The rows in 

this matrix correspond to UDHS regions and the columns correspond to the 10 samples 

selected by MARGE-express.  

3. Normalize matrix ��.  For each column subtract the column median from all elements in 

this column. For each row, subtract the row mean from each row element. The 

normalized matrix is �. 

4. Generate a matrix �� of the square root of regulatory potentials where each column of �� 

is derived from the sample used to generate the corresponding column of �� and the rows 

of � correspond to all non-redundant genes. 

5. Normalize ��  using the same procedure that is used to normalize �� . Denote the 

normalized matrix �. Note that although the matrices � and � are normalized using the 

same procedure the column medians are in general not the same for both matrices. 

6. Identify the dominant H3K27ac signal patterns in the cis-element matrix � using k-means 

(K=7) to cluster genomic loci by normalized H3K27ac signal, obtaining cluster centroids 

��, … , �, (�� � ��
) for clusters 1, … , !.  

7. Assesses which of these centroids is most highly associated with the gene expression 

perturbation. Calculate a score ��
� � �� · ��  for each gene � and cluster �, where ��  is the 

�th row of matrix �.  Measure the performance of this score in predicting the input gene 

set by evaluating the AUC for each cluster � �  1, … , !".  Determine the cluster centroid 

�	 that produces the largest AUC. 

8. Calculate a prediction score �̃�  for cis-element �  using this centroid: �̃� � �	 · �� .  The 

higher �̃�  is, the more likely UDHS region i is to be bound by the factors that regulate the 

input gene set.  

The workflow engine, Snakemake (Köster and Rahmann 2012), is used to link together sub-

processes in the MARGE pipeline.    
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Gene Expression Microarray Analysis 

Affymetrix microarray gene expression data were normalized using the standard multichip 

average (RMA) package in R (Irizarry et al. 2003), differential expression analysis were 

performed with linear model for microarray (LIMMA) (Smyth 2004). Please see Supplemental 

Methods for details. 

 

Super-enhancer and super-enhancer associated gene detection  

Super-enhancer analysis was carried out using ROSE (Whyte et al. 2013; Lovén et al. 2013) 

https://bitbucket.org/young_computation/rose.git). Please see Supplemental Methods for details. 

 

Performance evaluation 

ROC and precision recall curves were generated using the R package ROCR (Sing et al. 2005).  

Figures were plotted using R (R Core Team 2016). 

 

ChIP-seq and DNase-seq analysis 

MACS2 was used for DNase-seq peak calling. Signal summarization for H3K27ac ChIP-seq and 

DNase-seq was carried out using MACS2 (Zhang et al. 2008).  Please see Supplemental Methods 

for details. 

 

DATA ACCESS 

MARGE code is available in the Supplemental Material and at http://cistrome.org/MARGE/. 

LNCaP-abl ChIP-seq and RNA-seq data from this study have been submitted to the NCBI Gene 

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession numbers 

GSE72467 and GSE72534, respectively. 
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FIGURE LEGENDS  

1. Regulatory potential is predictive of BET-inhibited differential gene expression. 

A. The H3K27ac regulatory potential of a gene (in this instance, CD48) is the sum of 

H3K27ac ChIP-seq reads weighted by a function (pink) that decreases with distance 

from the transcription start site. All H3K27ac signal is included, irrespective of 

whether the signal falls within annotated exons, introns, or promoters.  

B. Receiver-operator characteristic (ROC) curves show the H3K27ac regulatory 

potential performs better than the ROSE super-enhancer based approach in the 

identification of genes down-regulated by the BET-inhibitor JQ1 in the diffuse large 

B-cell lymphoma (DLBCL) derived cell line LY1. Areas under the ROC curves are 

shown in parentheses. The relative regulatory potential, defined as the ratio of the 

regulatory potential to the median regulatory potential across all compendium 

samples, performs consistently better than the other approaches. H3K27ac ChIP-seq 

read counts in a 2kb promoter region centered on the transcription start site performs 

better than super-enhancers but not as well as the regulatory potential based methods.  

C. The area under the ROC curve performance summaries of the regulatory potential, 

relative regulatory potential, promoter-based approach and ROSE super-enhancers in 

5 DLBCL cell lines, one liver cancer cell line (HepG2), and one malignant peripheral 

nerve sheath tumor cell line (90-8TL), are consistent with the result observed in LY1.  

D. The distribution of median regulatory potentials across all H3K27ac ChIP-seq 

samples varies between JQ1 up-, down- and, non-regulated genes. The median 

regulatory potential of JQ1 up-regulated genes is higher than the rest (Wilcoxon rank 

sum test p-value < 10���), indicating that these genes are likely to be constitutively 

expressed across a variety of cell types.  

E. The median regulatory potential is associated with the CpG/CG ratio of gene 

promoters. The high CpG genes tend to have the higher median regulatory potentials 

(Wilcoxon rank sum test p-value < 10���).  
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2. Regulatory potentials in the identification of key tissue specific genes. 

A. Gene ontology analysis of the genes with the highest relative regulatory potential 

(lower right triangles) in a variety of cell types shows functional enrichment to 

correspond with the known function of the different cell types. The pattern of 

enrichment of ROSE super-enhancer associated genes (upper left triangles) shows 

these genes to be less enriched in several tissue specific gene categories and more 

enriched in some more generic categories, for example “regulation of transcription”.  

B. The regulatory potentials in diverse cell types cluster in a way that is mostly 

consistent with cell types. Known regulators of several cell types can be clearly 

identified through regulatory potential analysis. 

 

3. MARGE-express modeling of differential expression gene sets using H3K27ac regulatory 

potentials in diverse samples. 

A. An analysis of 671 gene sets from MSigDB shows, using independent training and 

testing data, that this approach is highly predictive of most gene sets. 

B. Heatmap of the proportion, by tissue type, of H3K27ac samples that are most 

predictive of the tissue type associated gene sets.  Gene sets with descriptions that 

include the keyword liver, for example, are most often predicted by liver derived 

H3K27ac ChIP-seq samples.  In this example, the fraction of times liver derived 

H3K27ac samples are selected first in the step-wise regression analysis is represented 

in the liver associated row of this heatmap. 

C. MARGE-express prediction of differentially expressed non-coding RNAs based on 

coding RNA data. A gene set based on the upward trending protein-coding genes in a 

time-course of keratinocyte differentiation was used as input data. MARGE-express 

predicted scores for non-coding RefSeq genes. These scores are compared between 

upward and downward trending non-coding RNAs observed in a separate 

keratinocyte differentiation experiment. TINCR is a strongly up-regulated lncRNA in 

the differentiated state and is especially important to keratinocyte development. 
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4. Schematic of MARGE framework. (1) MARGE-potential computes regulatory potentials 

from a compendium of H3K27ac ChIP-seq profiles. (2) MARGE-express uses stepwise 

regression to select a subset of informative H3K27ac ChIP-seq samples for the prediction of 

a user provided input gene set. This regression selects columns (samples) from the matrix of 

normalized and centered regulatory potentials, represented as a blue-red heatmap. MARGE 

produces a prediction of regulated genes that may include information on transcripts not 

included in the original gene expression study. (3) H3K27ac read counts in 1kb regions 

centered on a list of DNase I hypersensitive sites are extracted from the selected samples and 

assembled as a matrix of normalized and centered values, represented as a blue-yellow  

heatmap. (4) MARGE-cistrome uses a semi-supervised method to infer transcription factor 

binding sites from H3K27ac read counts at DNase I hypersensitive sites (blue-yellow 

heatmap), regulatory potentials (blue-red heatmap) and the input gene set. MARGE-cistrome 

produces predictions of the cistrome of TFs that are responsible for the regulation of the gene 

set.     

 

5. MARGE-cistrome prediction of cis-regulatory regions from gene sets and H3K27ac ChIP-

seq data. 

A. Schematic of cis-regulatory region prediction through the direct transfer of MARGE-

express coefficients from the H3K27ac regulatory potential domain to the domain of 

H3K27ac signal at UDHS regions (top). In this illustration we represent a 

hypothetical case in which 2 samples are selected to predict gene sets and cis-

regulatory regions. Using a supervised classification method (top left), such as 

logistic regression, we can identify the normal (red arrow) of a hyperplane that best 

separates genes in the gene set (red dots) from the rest (grey dots). Applied to the 

union of DNase-seq peaks (top right), this normal may not be the optimal classifier to 

separate transcription factor binding sites from the remainder of the candidate 

regions. Schematic of semi-supervised learning for cis-regulatory element 

identification (bottom). Using k-means clustering (bottom right), using only 2 clusters 

for illustrative purposes, we can identify the centroids (orange and cyan arrows) of 

sets of putative cis-regulatory regions that have similar H3K27ac read count patterns 

across samples.  Using gene sets (bottom left) we determine which of the centroid-
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derived normal vectors (orange arrow) is most predictive of the gene set. The optimal 

centroid derived vector (orange arrow) is then used to classify TF binding sites 

associated with the gene set (bottom right).   

B. Applied to systems that are regulated chiefly by the respective transcription factors: 

the androgen receptor, the estrogen receptor, the glucocorticoid receptor, NOTCH, 

PPARG and POU5F1 we find the centroids of the k-means clusters (left), predict 

gene sets (AUCGX , middle) with AUC performance that is highly correlated with 

AUC performance for the prediction of transcription factor binding sites (AUCTF , 

right).  In these examples 10 selected samples, S1 … S10, were clustered into 7 

clusters, C1 … C7.  In each system, the samples with the greatest absolute positive and 

negative regression coefficients are as follows. AR: (S1) dihydrotestosterone 

stimulated LNCaP cells,  (S2) unstimulated LNCaP cells; ESR1: (S7) estradiol 

stimulated MCF-7 cells, (S8) unstimulated MCF-7 cells; GR: (S1) dexamethasone 

stimulated A549 cells, (S2) unstimulated A549 cells; NOTCH: (S1) CUTLL1 cells, 

(S2) gamma secretase inhibited CUTLL1 cells; PPARG: (S1) adipocytes, (S2) 

expanded memory T-cells, POU5F1: (S1) embryonic stem cells, (S2) embryonic stem 

cell derived foregut. 

C. In the prediction of TF binding sites from gene sets the classifiers derived through 

semi-supervised analysis perform better than those derived using the naïve direct 

coefficient transfer approach in 4 examples, and almost as well as classifiers based on 

the direct application of logistic regression to transcription factor binding data.   

 

6. MARGE-cistrome prediction of cis-regulatory regions from knockdown gene expression and 

H3K27ac ChIP-seq data 

A. Down-regulated genes in LNCaP-abl prostate cancer cells on siRNA silencing of 9 

factors can be predicted from the compendium of H3K27ac ChIP-seq profiles. 

Augmentation of public data with H3K27ac ChIP-seq generated in LNCaP-abl 

samples improves prediction performance slightly. 

B. Prediction of AR, E2F1 and FOXA1 binding sites using 4 methods: sample specific  

H3K27ac ChIP-seq read count; difference of square root H3K27ac read counts 

between wild-type and knockdown samples; MARGE-cistrome based on public 
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H3K27ac ChIP-seq data only; MARGE-cistrome based on public data augmented 

with H3K27ac ChIP-seq data in LNCaP-abl. 

C. Example of predicted cis-regulatory loci with FOXA1 binding sites. The MARGE 

reweighted track is a linear combination of H3K27ac signal tracks with coefficients 

defined by MARGE-cistrome.  
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