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The profiling of small RNAs by high-throughput sequencing (smRNA-Seq) has revealed the complexity of the
RNA world. Here, we describe a computational scheme for dissecting the plant smRNAome by integrating
smRNA-Seq datasets in Arabidopsis thaliana. Our analytical approach first defines ab initio the genomic loci
that produce smRNAs as basic units, then utilizes principal component analysis (PCA) to predict novel
miRNAs. Secondary structure prediction of candidates' putative precursors discovered a group of long hairpin
double-stranded RNAs (Ih-dsRNAs) formed by inverted duplications of decayed coding genes. These gene
remnants produce miRNA-like small RNAs which are predominantly 21- and 22-nt long, dependent of DCL1
but independent of RDR2 and DCL2/3/4, and associated with AGO1. Additionally, we found two classes of
transcription start site associated (TSSa) RNAs located at sense (+) and antisense (—) approximately 100-

200 bp downstream of TSSs, but are differentially incorporated into AGO1 and AGO4, respectively.

Published by Elsevier Inc.

1. Introduction

Plant genomes produce a variety of small RNA (smRNA) families to
mediate either post-transcriptional or transcriptional gene silencing
(PTGS or TGS). In Arabidopsis, three known classes of small RNAs
functioning in PTGS comprise microRNAs (miRNAs), trans-acting
siRNAs (tasiRNAs) and natural antisense transcript-derived siRNAs
(natsiRNAs) that guide the cleavage of mRNAs [1-4]. The fourth class
of endogenous siRNAs acting in TGS arises from the transposable
elements (TEs) to mediate the epigenetic silencing of cognate TEs [5-
8]. Those small RNAs are recently uniformly defined as cis-acting
siRNAs (casiRNAs) [9]. Functional categorization of those small RNAs
is based on their distinct mechanisms of biogenesis by a combination
of different members of RNAi components encoded in Arabidopsis
genome, which include four Dicer-like endonuleases (DCL1-4) [10],
Pol Il and other two plant-specific DNA-dependent RNA polymerases,
Pol IV and Pol V [11,12], six RNA-dependent RNA polymerases (RDR1-
6) and ten Argonautes (AGO1-10) [13].

Transcription of a miRNA gene (MIR) is dependent on Pol II. The
primary transcript of a MIR gene is a long single-stranded RNA called
pri-miRNA that contains an imperfect inverted repeat and is further
cleaved into precursor miRNA (pre-miRNA) with a stem-loop
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structure. In plants, the two steps of processing from the pri-miRNAs
to pre-miRNAs, and to mature miRNA duplexes are catalyzed by DCL1
[14]. While the guide strands of the miRNA duplexes are incorporated
into AGO1 of the RNA-induced silencing complex (RISC), the
passenger strands called miRNA star (miRNA*) are mostly degraded.
Plant miRNAs are typically 21-nt long, preferentially started with a
uracil at 5’ end. Unlike the animal miRNAs that target mRNA's 3’ UTR
by the “seed regions (the 2nd to 8th nucleotide from a miRNA's 5’
end)”, plant miRNAs are usually complementary to their targets'
coding regions with near-perfect match to induce the cleavage [14].

In plants, tasiRNAs are discovered to have the similar function with
miRNAs to regulate the gene silencing at posttranscriptional level, but
in a manner of imperfect matching with their targets [15]. The
genomic loci encoding tasiRNAs are known as TAS genes transcribed
by Pol I, and the mature tasiRNA products are uniformly 21-nt long
started with a U at 5’ ends. The third class of siRNAs in PTGS is
natsiRNA whose long dsRNA precursors are formed by the hybridiza-
tion of overlapping sense and antisense RNA transcripts caused by
convergently transcribed genes or TEs [16].

In plants, casiRNAs are the most predominant class of small RNAs
and are prevailingly produced from transposable elements, hetero-
chromatic regions or other repetitive sequences. Therefore, casiRNAs
are previously called TE-derived siRNAs, heterochromatic siRNAs
(hcRNAs) or repeat-associated siRNAs (rasiRNAs) [4,7]. The functional
role of casiRNAs is to direct the DNA methylation on the genomic loci
where they originate from and silence the residing TEs in cis [17]. It
also has been indicated that casiRNA pathways might influence the
transcription of the neighboring protein-coding genes as they can
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modify the epigenetic states of upstream sequences [18,19]. The
casiRNAs possess two signatures, 24-nt long and preferential A at 5’
end, which can be recognized by AGO4, a component of RNA-directed
DNA methylation (RADM) complex.

The high-throughput profiling of small RNAs by sequencing
(smRNA-Seq) has revealed the complexity of the RNA population.
Those exponentially accumulating smRNA-Seq datasets have created
urgent challenges for quantitative interpretation of the results and in
silico identification of new smRNA classes and pathways. In addition
to those known miRNAs, tasiRNAs, natsiRNAs and casiRNAs, many
functionally uncharacterized small RNAs have been observed to arise
from structured genomic sites such as long inverted repeats, short
hairpin repeats, and convergent genes, whose biogenesis pathways
may differ from canonical mechanisms. Recently, several software
packages and pipelines have been developed to cope with the large-
scale analysis of smRNA-Seq datasets mainly aiming at two purposes:
first, to process raw smRNA-Seq data and annotate the small RNAs in
the genome; second, to build the expression profiles of known
miRNAs and discover the new miRNAs [20-25].

The first way to identify new miRNAs from smRNA-Seq data is
based on cross-species comparison, which is to directly align the reads
with known miRNAs in other species such as adopted by miRExpress
and DSAP [20,21]. The other way is to find new miRNAs according to
the miRNA biogenesis pattern which is the features of how miRNA
mature products are processed from pre-miRNA hairpin precursors.
The original algorithm was developed by Friedldnder et al. and was
implemented as a software package called miRDeep [22]. miRDeep
first extracts putative miRNA precursors with uniquely mapped
smRNA reads and then rules out those overlapped with rRNA,
snoRNA, tRNA loci etc., as well as those that cannot fold into canonical
hairpin structures [22]. Next, miRDeep uses Bayes' theorem to
calculate the probability of a potential miRNA precursor by comparing
with background hairpins [22]. The algorithm of miRDeep was also
integrated by other smRNA-Seq analysis tools to identify the new
miRNAs such as deepBase and mirTools [23,24]. Another de novo
miRNA prediction tool, miRanalyer utilizes machine learning ap-
proach to score the new miRNAs based on a variety of features such as
read counts, stem and loop lengths, and folding energy etc. [25].

As miRNA is the predominant type of small RNAs in animals, most
available smRNA-Seq tools focus on miRNA analysis. Although the
basic concepts of miRNA prediction from smRNA-Seq are essentially
the same for animals and plants, notable differences still exist. For
example, while the animal miRNA precursors have more canonical
hairpin structures with relatively fixed size of stem and loop regions,
plants pre-miRNAs sometimes have longer hairpin stem regions and
even multiple branches. Additionally, plant genomes contain a great
number of inverted repeats formed by transposable elements that
produce miRNA-like siRNAs, which are usually the source of false
positive results from de novo miRNA prediction. Furthermore, as the
majority of plant small RNAs are various types of siRNAs, a more
comprehensive pipeline needs to be developed to annotate existing
siRNAs and discover the new species. By integrating six SmRNA-Seq
datasets in different developmental stages and RNAi pathway
mutations [26-30] (Supplementary Table 1 and Supplementary
Fig. 1), we developed an analytical framework to dissect the
Arabidopsis smRNAome and computationally discover previously
uncharacterized miRNAs and other SsmRNA classes.

2. Materials and methods

2.1. Define smRNA-deriving loci as primary transcription units (Pri-TU)
We obtained the four libraries of processed Argonaute-associated

(AGO1, AGO2, AGO4 and AGO5) smRNA-Seq dataset from Dr. Yijun

Qi's group, in which the 5 and 3’ adaptor sequences had been
trimmed off from both ends of the sequencing reads. This dataset

contains totally 2,840,770 high-quality reads that represent 599,449
unique small RNA sequences.

To determine the genomic locations of small RNA reads, we
employed Bowtie [31] to map the ~600,000 unique smRNA sequences
to Arabidopsis reference genome TAIRS8 (http://www.arabidopsis.org/
), and kept all locations that a read was perfectly aligned to. By bowtie,
599,397 of them were mapped to 2,654,309 locations without any
mismatch. Thus, each unique small RNA sequence has two layers of
information: (1) the repetitiveness, the number of the locations it was
mapped to the genome without any mismatches, and (2) the
abundance, the number of the reads for a unique small RNA being
sequenced.

We developed a tool to de novo scan the genomic mapping result of
smRNA-Seq reads to define the primary transcription units (Pri-TUs)
that give rise to small RNAs. As Fig. S2 shows, for a putative Pri-TU, it
was composed of a set of small RNAs that are overlapped or next to
each other with a small gap (Supplementary Fig. 2). The initial de novo
scanning identified 108,350 Pri-TUs with maximum 50bp gap
allowed, and at least 2 reads per Pri-TUs. Since most of the Pri-TUs
containing very few reads might be resulted from the wrong mapping
or background noise, we only used 23,516 Pri-TUs containing more
than 20 reads for the further statistics.

During the identification of Pri-TUs, we also collected following
information for each Pri-TU: (1) SeqFreq (sequencing frequency),
which is the sum of the reads that a small RNA were being sequenced,
to represent the expression abundance of a small RNA; (2) RepFreq
(repetitive frequency), which is the sum of all the locations for a small
RNA whose sequence was mapped in the genome, to represent the
repetitiveness of a small RNA; (3) UnigFreq (unique frequency), which
is the sum of the number of unique smRNA sequences within a Pri-TU,
to represent the excision mode; (4) AvgSeq is the ratio of SeqFreq/
RepFreq, which is the adjusted value of small RNA abundance by
repetitive frequency; (5) size and (6) 5’ terminal-nt is the most
prevalent length and the type of 5’ terminal nucleotides of the small
RNAs inside a Pri-TU, respectively. After the Pri-TUs were identified,
we also calculated the following features including the frequency of
the cutting sites of di-nucelotide where small RNAs were processed
from Pri-TU, the proportions of 5’A, 5'G, 5'C and 5’U, the strand-bias
that small RNA derived from plus and minus strand within a Pri-TU
(Supplementary Table S2).

2.2. Computational selection of candidate Pri-TUs for new miRNA
prediction by principal component analysis (PCA)

Computational selection of candidate Pri-TUs was based on the
facts that miRNAs tend to be sequenced more (higher SeqFreq), but
more accurately excised from pre-miRNA hairpins, and uniquely
mapped in the genome (lower RepFreq and UniqFreq). We employed
principal component analysis (PCA) on SeqFreq, RepFreq and UniqFreq
to discriminate the Pri-TUs of producing miRNAs from the ones
producing siRNAs [32]. The nature of PCA algorithm is to identify the
direction (first principal component, PC1) with the largest variation,
and the direction of the second and third principal components (PC2,
PC3) uncorrelated to PC1. The three PCs were standardized to be
centered at zero, and we used PC1>0, PC2<0 and PC3<0 to classify
the miRNA-deriving Pri-TUs and siRNA-deriving Pri-TUs. After
removing Pri-TUs associated with known miRNA genes, the rest
candidate Pri-TUs will be used for further new miRNAs prediction. We
next searched the candidate Pri-TU sequences against Arabidopsis
TAIR8 annotation to further exclude the false positive candidates
which were tasiRNAs, snRNAs, snoRNAs, tRNAs and rRNAs etc. whose
secondary structure may contain hairpins. The second round
screening narrowed the candidates down to those were absolutely
located in the intergenic regions based on TAIR8's annotation. We
then extracted the precursor sequences by extending at 35 bp on both
end of a Pri-TUs to predict their secondary structures by RNAfold.
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RNAfold calculates the Minimum Free Energy (MFE) for each
candidate Pri-TU, and those Pri-TUs whose MFEs significantly lower
than background energy were considered as new miRNA genes.

3. Results and discussion
3.1. Computational classification of plant small RNAs from RNA-Seq data

Classification of plant miRNAs and various endogenous siRNAs is
based on their distinct biogenesis pathways and regulated targets [33].
Each class has a distinct pattern of DICER excision from their double-
stranded (ds) RNA precursors (Fig. 1A). Armed with this knowledge, we
developed a computational pipeline to process the smRNA-Seq reads
mapping results of Bowtie [31] and to define a cluster of overlapped or
slightly gapped smRNA-Seq reads as a primary transcription unit (Pri-
TU) encoding an initial RNA transcript (Fig. 1B). Using Pri-TUs as basic
units allows us not only to perform normalization and comparisons
between libraries but also to classify different types of smRNAs based on
their genomic locations, sequence and structural characteristics
(Supplementary Fig. 2). When applied to a recently published deep-
sequencing dataset of the small RNAs extracted from purified AGO1,
AGO2, AGO4 and AGO5 complexes (RIP-Seq) [26] in the Arabidopsis
genome (Supplementary Fig. 3), the pipeline identified a total of
108,350 Pri-TUs. 23,516 Pri-TUs with over 20 reads were selected for
subsequent statistical analysis (Supplementary Table 2).

We studied the sequence characteristics of the smRNAs in these
Pri-TUs. The average length of the 23,516 Pri-TUs is 403 bp, whose
distribution was shown in Supplementary Fig. 4. The majority of the
Pri-TUs (83.2%) preferentially produce 24-nt smRNAs, which are
mostly cis-acting siRNAs (casiRNAs) functioning in RNA-directed DNA
methylation (RdADM) mechanism to suppress the transposable
elements (TEs) (Fig. 2A). Interestingly, analysis of AGO RIP-Seq data
indicates that AGO4 can preferentially associate with not only the
longer smRNAs of 23-27 nt, but also the shorter ones of 19 and 20 nt
(Fig. 2B). As the 5’ terminal nucleotide (5'nt) of a smRNA dictates its

preferred AGO association [26], we examined the type of preferential
5'nt in smRNAs of different sizes. While 5’A is prevalent among 23-
and 24-nt smRNAs, the shorter (19- and 20-nt) and longer (25- and
26-nt) smRNAs tend to initiate with 5’G (Fig. 2C). The difference
between casiRNAs and miRNAs is that the former class is yielded from
TEs by semi-random excisions of long dsRNAs, but the latter is from
unique MIR genes by precise excision of the stem region of a small
hairpin RNA [34]. We therefore investigated the correlations of
smRNA sizes and three frequencies of the smRNA reads within a given
Pri-TU: number of times being sequenced (SeqFreq), total number of
mapped locations (RepFreq), and the number of the unique smRNA
sequences (UnigFreq) (Fig. 2D). Surprisingly, 23-nt class Pri-TUs
demonstrated the highest RepFreq, most of which are actually
composed of ~50-nt Poly-A or Poly-T (Supplementary Table 3).
While the reads from 23- and 24-nt class Pri-TUs typically have
hundreds to thousands of mappable locations, 21- and 22-nt smRNAs
are sequenced with the highest frequencies, because most of them are
from known miRNA genes (Fig. 2D). At last, examination of the most
frequent di-nucleotide cutting sites showed that A|A and U|U has the
highest chance to be diced, as well as A|[U and U|A in the second
preference (Fig. 2E and Supplementary Fig. 5). We also developed
extension modules to align the Pri-TUs with the annotated genomic
compartments in TAIR8, such as TEs, housekeeping RNA genes,
protein-coding genes (Supplementary Figs. 6 and 7).

3.2. Computational selection of new miRNA candidates by PCA analysis

We then used the known miRNA genes as a training set to model
the characteristics of miRNAs and siRNAs in expression abundance
(SeqFreq), mapping uniqueness (RepFreq) and excision accuracy
(UnigFreq). Interestingly, the known miRNA-deriving Pri-TUs tend
to have higher SeqFreq, but lower RepFreq and UnigFreq (Fig. 3A and
B). We therefore conducted principal component analysis (PCA) [32]
on 9254 Pri-TUs with over 100 reads to discriminate Pri-TUs
harboring miRNAs from those harboring siRNAs, and select the
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miRNA Polll  individual MIR genes small hairpin precise excision mRNA (cytoplasm)
20~22 nt mmm@ = 5 3
5 3 X 10%° = DCL1 RIES
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Fig. 1. Define primary transcription units (Pri-TUs) that produce small RNAs. (A) Classification of plant small RNAs. Biogenesis pathways of micro RNAs (miRNAs), trans-acting
siRNAs (tasiRNAs), natural-antisense-transcript derived siRNAs (natsiRNAs), and cis-acting siRNAs (casiRNAs) are composed of different RNAi component genes. Their precursor
dsRNAs are either synthesized by RDRs or formed by internal palindrome sequences and are further excised by DCL1-4 in distinguishable modes’. RISC, RNA-induced silencing
complex; RdDM, RNA-directed DNA methylation. (B) An example locus of casiRNA-deriving Pri-TU inside a transposable element (AT1TE00835). Each bar represents a SmRNA-Seq
read differentially colored by the 5’ terminal nucleotide (details of ab initio identification of Pri-TUs are described in Supplementary Methods).
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Fig. 2. Sequence characteristics of the smRNAs in the Pri-TUs. (A) Pri-TUs predominantly produce 24-nt small RNAs. (B) Preferential association of small RNAs in different AGO
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candidates for the further prediction of new miRNA genes (Fig. 3C).
Initially, 632 Pri-TUs were predicted as harboring putative miRNAs,
which encompassed 113 of 118 (95.7%) known Arabidopsis miRNA
genes. We further examined the 519 candidate Pri-TUs not containing
previously annotated miRNA genes. Interestingly, we found the
tasiRNA genes were among the candidates, as they were also precisely
processed from a tasiRNA precursor in a phased mode, and many
copies of reads were sequenced (Supplementary Fig. 8). This feature
made the PCA unable to distinguish them from the miRNAs. Other
false positive candidate Pri-TUs were actually associated with tRNA,
rRNAs, snRNAs and snoRNAs etc. Those RNAs possess internal stem-
loop structure, and some of the regions have higher frequency to be

degraded. Although the non-canonical miRNAs have been repeatedly
reported that they were produced from tRNA, rRNA or snoRNAs,
however, from the distribution of the size and 5’ terminal nucleotide,
they did not resemble to canonical miRNAs or TE-derived siRNAs but
were likely to be the functionless degradation products (Supplemen-
tary Fig. 8). Filtering these Pri-TUs further narrowed down the
candidates to only 36 Pri-TUs, which are located unambiguously in the
intergenic regions. The smRNA-Seq reads from the 36 Pri-TUs possess
miRNA-like features, as 64% of them are associated with AGO1
(Fig. 3D), and the predominant class is 21 nt with 5’ terminal U
(Fig. 3E). Based on the fact that canonical miRNAs are processed from
the shRNA precursors [34], we extracted the putative precursor
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sequences (minimum 70 nt) of 36 candidates for 2nd structure sequences (size>70 and<300 nt). While the MFE of known miRNAs
prediction by RNAfold [35]. Since the minimum free energy (MFE) was significantly lower than non-candidate group, the 36 candidates
anti-correlates with the lengths of precursor RNAs, we compared the were between the two groups when the precursor size was above
MFE calculated from the 118 known miRNA precursors, the 36 200 nt (Fig. 3F). This pattern suggests that some previously un-
candidate Pri-TU, and randomly selected ~100 non-candidate Pri-TU annotated miRNAs might have longer precursors than canonical pre-
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miRNA hairpins. A selection of Pri-TUs harboring putative novel
miRNAs and their second structures are shown in Fig. 3G.

3.3. Long hairpin dsRNAs formed by gene and TE pairs produce different
types of small RNAs

The existence of long hairpin dsRNAs (lh-dsRNAs) has been
reported in both plants and animals [36,37], and its functional
significance is emphasized as an alternative pathway of smRNAs
biogenesis which is independent of the activity of RNA-DEPEDNET
RNA POLYMERASE (RDR) [38,39]. To characterize the function and
components of RDR-independent pathways, we investigated the
patterns of smRNA production in different Arabidopsis developmental
stages and mutation backgrounds. Using einverted [40], we first de
novo predicted 2674 genomic loci with potentials of forming stem-
loop structures, and then focused on 15 high scoring ones selected by
the stringent criteria: (a) stem length>500nt, (b) stem identi-
ty>90%, and (c) loop length <300 nt. Surprisingly, the lh-dsRNAs loci
are formed by various genomic elements such as TEs, centromeric
repeats, protein-coding genes or 5S rRNAs, which produced smRNAs
of different sizes (Supplementary Fig. 9). Our attention was attracted
to two lh-dsRNAs formed by distinct sources, a pair of TEs
(AT2TE23505/AT2TE23510) and a pair of protein-coding genes
(AT3G44570/AT3G44580) (Fig. 4A and B). The TE pair located in
chromosome 2 centromere predominantly produced 24-nt siRNAs in
association with AGO4, and exhibited strong strand-bias (Fig. 4C). In
addition, smRNA production from this TE pair was partially indepen-
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dent of RDR2, and very sensitive to the triple mutation of dcl2/3/4, but
not to the mutation of dcll. In contrast, the gene pair showed a
scenario of miRNA-like biogenesis: first, the prevalent size classes of
smRNAs were 21 and 22 nt yielded from both strands of the h-dsRNA,
mostly in association with AGO1; secondly, production of smRNAs
was independent of DCL2/3/4 and RDR2, but extremely sensitive to
dcll mutant. What is more, these two distinct lh-dsRNAs demon-
strated different patterns in DNA methylation status [41], tissue-
specific productions, and responses to metl, ddc, rdd mutation
backgrounds (Fig. 4C and D).

Our analysis suggests that Ih-dsRNA formed by the TE pair entered
the siRNA biogenesis pathway, whereas the one by gene pair entered
a pathway resembling miRNA biogenesis. We hypothesize that the
fundamental differences between TE-formed and gene-formed Ih-
dsRNAs may initially arise from their transcription by different plant
polymerases, Pol IV/V and Pol II, respectively. As a matter of fact, both
AT3G44570 and AT3G44580 are annotated as “hypothetical protein”
without known functions, and no expression signals were detected in
any developmental stage (Supplementary Figs. 10A and B) [42] More
interestingly, a detailed analysis of AT3G44570 identified a TE
insertion domain in it, which interrupted the ORFs and was the
probable cause of the decay of this gene (Supplementary Fig. 10C). A
recent model proposed that the inverted gene duplication may be the
evolutionary origin of a modern MIR gene, and its fate into DCL3/AGO4
or DCL1/AGO1 pathways was adaptively selected by the bugles in the
dsRNA stem-loop acquired from mutations [1,43]. We hypothesized
that the Ih-dsRNA formed by decayed AT3G44570/AT3G44580 pair is
a vivid prototype of an evolving miRNA gene.
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Fig. 4. Distinct patterns of small RNA biogenesis from two long hairpin dsRNAs formed by inverted duplications of TEs and protein-coding genes. (A) Two centromeric TEs,
AT2TE23505 and AT2TE23510, form a long hairpin dsRNA with hypomethylation in wild type. Green and orange bars represent the stem regions, and the white part is the loop
region. (B) Two non-TE genes, AT3G44570 and AT3G44580, form a long hairpin dsRNA with hypermethylation in wild type. Blue and pink bars represent the stem regions, and the
white part is the loop region. (C) Small RNA production of the studied TE pair in different developmental stages, mutation backgrounds and in association with AGO complexes.
(D) Small RNA production of the studied gene pair in different developmental stages, mutation backgrounds and in association with AGO complexes.
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Fig. 5. Sense and antisense TSSa-RNAs are produced from siRNA biogenesis pathways. (A), (B) and (C) Developmental change in proportion of sense and antisense TSSa-RNAs peaked

from 100 to 200 bp downstream TSSs (SmRNA-Seq data in wild type from A: GSM277608,

B: GSM280228, and C: GSM154336). (D), (E) and (F) Biogenesis of TSSa-RNAs is sensitive

to dcl2/3/4 triple mutant, but not dcl1 mutant (D: GSM366868, E: GSM366869, and F: GSM366870). (G) Sense and antisense TSSa-RNAs are differentially associated with AGO1 and
AGO4, respectively (GSE10036). See Supplementary Table 1 for detailed description of the plant materials. (H) The antisense promoter-associated small RNAs (PASRs) are located
from 100- to 200-bp upstream TSSs, and shorter than antisense TSSa-RNAs (GSM277608).

3.4. Biogenesis pathways of small RNAs involved in transcription
initiation

Short RNAs associated with transcription start sites (TSSa-RNAs)
have been recently reported in animals, which were found positively
correlated with gene transcription initiation (or named tiRNAs)
[44,45]. In addition, promoter-associated short RNAs (PASRs),
especially for those occurring on the antisense strand of the
promoters, may establish and maintain the long-term transcriptional
silencing of the nearby genes in human cells [46,47]. We were curious
about the existence of these two types of small RNAs in plants, even
though it has been reported absent in plants [45]. We explored their
potential function and pathways in different Arabidopsis tissues and

mutation backgrounds. To exclude the potential influences from
pseudogenes, we focused this analysis on the ~17,000 non-TE genes
with definitive functional descriptions. We first mapped the three sets
of smRNA-Seq reads to the selected genes within the range between
upstream 100 bp and downstream 500 bp from the TSSs, and
calculated the average density of smRNA reads in a sliding 50 bp
window. To reduce the potential bias caused by reads derived from
repetitive regions, we then averaged the read density in the 50 bp
window by dividing the number of genomic locations the reads were
mapped to.

Surprisingly, the three studied datasets demonstrated distinct
patterns of smRNA abundance within the downstream 100 to 200 bp
region from the aligned TSSs (Fig. 5). While the smRNAs in the first
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and third dataset exhibited solitary antisense and sense peaks (Fig. 5A
and C), respectively, the second dataset showed both peaks (Fig. 5B).
The cause of the discrepancy might be that three smRNA-Seq were
conducted in different flower developmental stages. These observa-
tions suggest that two types of TSSa-RNAs might play regulatory roles
in transcription initiation, namely the sense (+) TSSa-RNAs and the
antisense (—) TSSa-RNAs.

To identify the genes regulating the biogenesis of TSSa(+/—)-
RNAs, we compared the TSSa-RNAs abundances on the same 17,000
genes in wild type, dcll mutant and dcl2/3/4 triple mutant plants
(Fig. 5). We observed the coexistence of sense and antisense peaks of
TSSa-RNAs in wild type (Fig. 5D), slight decrease of the sense peak but
unchanged antisense peak in dcl1 mutant (Fig. 5E), and the complete
abolishment of TSSa-RNA peaks in dcl2/3/4 triple mutant (Fig. 5F).
This result indicates that the siRNA biogenesis pathways instead of the
miRNA ones are responsible for producing the TSSa-RNAs. It was
further evidenced by the examination of the association of TSSa(+/—)
a-RNAs with different AGO complexes (Fig. 5G). While most of TSSa
(+)-RNAs were found in AGO1, the TSSa(—)-RNAs were preferen-
tially in AGO4. AGO5 seems capable of associating with both sense and
antisense TSSa-RNA, but TSSa-RNAs are depleted of AGO2. At last, we
detected the antisense promoter-associated small RNAs by expanding
the upstream region to 200 bp from TSSs. Interestingly, antisense
PASRs were in low abundance, and shorter (18-20 nt) than antisense
TSSa-RNAs (21-24 nt) located downstream the TSSs (Fig. 5H and
Supplementary Fig. 11).

Taft et al. reported the absence of promoter- and TSS-associated
RNAs in Arabidopsis [45]. However, we indeed detected them from
multiple datasets, despite their low abundance. We reasoned that Taft
et al. [45] probably used the full set of ~30,000 genes with
considerable proportion of pseudogenes or TEs, and did not normalize
the bias from TE-derived repetitive siRNAs, which might veil the real
patterns on bona fide genes. TSSa-RNAs and PASRs have been thought
to originate from the frequent divergent transcription of pre-engaged
RNA Pol II in animals [48,49]. In plants, Pol IV and Pol V produce the
non-coding RNAs that trigger the epigenetic silencing machinery on
overlapping or neighboring genes [49]. We provided the supporting
evidences for these postulations and demonstrated that the RNAi
pathway related genes might be involved in the function and
biogenesis of TSSa-RNAs during the epigenetic regulation of tran-
scription initiation.

Supplementary materials related to this article can be found online
at doi:10.1016/j.ygeno.2011.01.006.
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