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Summary. Chromatin-immunoprecipitation microarrays (ChIP–chip) that enable researchers to identify
regions of a given genome that are bound by specific DNA-binding proteins present new challenges for sta-
tistical analysis due to the large number of probes, the high noise-to-signal ratio, and the spatial dependence
between probes. We propose a method called BAC (Bayesian analysis of ChIP–chip) to detect transcription
factor bound regions, which incorporate the dependence between probes while making little assumptions
about the bound regions (e.g., length). BAC is robust to probe outliers with an exchangeable prior for
the variances, which allows different variances for the probes but still shrink extreme empirical variances.
Parameter estimation is carried out using Markov chain Monte Carlo and inference is based on the joint
distribution of the parameters. Bound regions are detected using posterior probabilities computed from
the joint posterior distribution of neighboring probes. We show that these posterior probabilities are well
calibrated and can be used to obtain an estimate of the false discovery rate. The method is illustrated using
two publicly available ChIP–chip data sets containing 18 experimentally validated regions. We compare
our method to four other baseline and commonly used techniques, namely, the Wilcoxon’s rank sum test,
TileMap, HGMM, and MAT. We found BAC and HGMM to perform best at detecting validated regions.
However, HGMM appears to be very sensitive to probe outliers compared to BAC. In addition, we present
a simulation study, which shows that BAC is more powerful than the other four techniques under various
simulation scenarios while being robust to model misspecification.
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1. Introduction
The advent of microarray technology (Lockhart et al., 1996)
has enabled biomedical researchers to monitor changes in
the expression levels of thousands of genes. Until recently,
however, the mechanisms driving these changes have been
harder to study in a similarly high-throughput level. A re-
cent technological innovation, chromatin immunoprecipita-
tion (ChIP) coupled with microarray (chip) analysis, hence
the name ChIP–chip (Lee et al., 2002; Cawley et al., 2004),
now makes it possible for researchers to identify regions of a
given genome that are bound by specific DNA-binding pro-
teins (transcription factors TF). Affymetrix developed the
high-density oligonucleotide arrays that tile all nonrepeti-
tive sequences of the human genome (Krapanov et al., 2002).
These arrays coupled with ChIP permits the unbiased map-
ping of in vivo TF-binding sequences. Annotation of the
TF-binding sites in a given genome is essential for building
genome-wide regulatory networks, which can then be used in
health research to better understand diseases and identify new
targets for drugs, etc. However, the large amount of data (in
the order of one million measurements for one chromosome)
and the small number of replicates available is very challeng-
ing for any statistical analysis.

Similar to oligonucleotide gene expression arrays (Lockhart
et al., 1996), Affymetrixtiling arrays (Affymetrix, Inc., Santa
Clara) query each sequence of interest with a perfect match
(PM) and a mismatch (MM) probe, where the MM probe is
complementary to the sequence of interest except at the cen-
tral base, which is replaced with its complementary base. The
difference is that the probes used on tiling arrays do not neces-
sarily belong to genes. This platform coupled with ChIP per-
mits the unbiased mapping of in vivo TF-binding sequences
(Cawley et al., 2004; Carroll et al., 2005). The experimental
protocol using tiling arrays is described in Figure 1.This pro-
cedure generates an immunoprecipitation (IP)-enriched DNA
fragment population and measures the enrichment of each
PM and MM in this population. In general, a control sam-
ple is also generated and there are various ways of obtaining
control populations and we refer the reader to Buck and Lieb
(2004) for an overview. Currently available Affymetrix tiling
arrays contain oligonucleotides of average length of 25 base
pairs (bps) spanning the nonrepetitive regions of the human
genome at an average resolution of 35 bps. Because the orig-
inal genomic DNA is sheared into segments of length 1 kbps
(Figure 1 (2)), one would expect a bound region to be of aver-
age length 20–30 probes with intensities forming a peak-like
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Figure 1. Details of a ChIP–chip experiment on tiling arrays. A transcription factor is cross-linked to its genomic DNA
targets in vivo and the chromatin (a complex of DNA and protein) is isolated (1). The DNA with the bound TFs is sheared by
sonication into small fragments of average length, 1 kbs (2). DNA fragments cross-linked to the protein of interest are enriched
by immunoprecipitation with a protein-specific antibody (3–4). After the immunoprecipitation step, the DNA is separated
from the protein (5) and the resulting solution (IP-enriched DNA) is amplified with polymerase chain reaction (PCR) and
fragmented further into segments of size 50–100 bps (6). Then, IP-enriched DNA is fluorescently labeled and hybridized to
a chip (7). After hybridization, scanning, and image processing, an intensity measurement is obtained for each PM and MM
measurement (8).

structure, where the center of the peaks corresponds to probes
closest to the binding site. However, empirical studies suggest
that bound regions can be of variable length (Cawley et al.,
2004; Keles, 2007). The analysis of ChIP–chip data consists of
two steps: (a) identifying bound regions that are about 1kbps
long, and (b) sequence analysis of bound regions to identify
the actual binding sites and locations. Here we only deal with
(a) and our ultimate goal is to identify bound regions, which
can be seen as collections of adjacent probes with intensity
significantly higher than the background.

A small number of approaches are available for analyzing
ChIP–chip data. A common approach is to test a hypothe-
sis for each probe and then try to correct for multiple test-
ing (Keles, Van der Laan, and Cawley, 2004; Buck, Nobel,
and Lieb, 2005). Most of the statistics used are variants of
t-statistics computed for each probe using a sliding window.
Keles et al. (2004) used a scan statistic, which is an average
of t-statistics across a certain number of probes and Cawley
et al. (2004) used Wilcoxon’s rank sum (WRS) test within
a certain genomic distance sliding window. A difficulty with
sliding window approaches is that the resulting p-values (or
t-statistics) are not independent due to the fact that each
test uses information from neighboring probes, and it is chal-
lenging to devise powerful multiple adjustment procedures.
Another problem with sliding window approaches is that the
window size is fixed and has to be determined in advance.

Li, Meyer, and Liu (2005) used a hidden Markov model
(HMM) for the identification of bound regions where the
model parameters are estimated in an ad hoc way using pre-

vious results on Affymetrix SNPs arrays. Ji and Wong (2005)
proposed a two-stage approach to detect bound regions. In the
first step, a test statistic is computed for each statistic based
on a hierarchical empirical Bayes model. In the second step,
neighboring probes are combined through a moving average
method (MA) or HMM.

Bayesian hierarchical models have become increasingly
popular in the analysis of gene expression data (Newton et al.,
2001; Lönnstedt and Speed, 2002; Parmigiani et al., 2002;
Gottardo et al., 2006); they can make the best of available
prior information while borrowing strength from the data
when estimating the quantities of interest. Using such mod-
els, inference is usually based on the posterior distribution of
the parameters. To date, there has been only one (empirical)
Bayesian treatment of ChIP–chip data (Keles, 2007). The au-
thor uses a hierarchical gamma–gamma (GG) model, which is
an extension of the model used in Newton et al. (2001). Even
though the model is appealing by modeling the spatial struc-
ture using peaks of variable length and borrowing strength
from all the probes, it has several limitations. It uses a GG
hierarchical model with constant coefficient of variation, and
this can have an undesired effect in the presence of probe
outliers. Finally, in order to use this approach one needs to
divide the data into genomic regions containing at most one
peak (bound region) but such information is, in general, not
available.

In this article, we introduce a flexible hierarchical Bayesian
model that overcomes these limitations. Our model is built on
previous approaches used in gene expression analysis (Newton
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et al., 2001; Parmigiani et al., 2002) and uses mixtures to
identify probes that have an intensity that is significantly
different from the background. However, we take into ac-
count the spatial dependence between probes by allowing the
weights of the mixture to be correlated for neighboring probes
on a chromosome. A similar approach was taken in the context
of array comparative genomic hybridization (CGH) (Broet
and Richardson, 2006).Our model also includes an exchange-
able prior for the variances, allowing each probe to have a
different variance while still achieving some shrinkage. This
allows us to regularize empirical variance estimates, which can
be very noisy due to the small number of replicates. Finally, as
we know that bound regions are made of several consecutive
probes, we use the joint posterior distribution of neighboring
probes to detect such regions. This, combined to the fact that
each probe has its own variance, makes Bayesian analysis of
ChIP–chip (BAC) very robust to probe outliers.

The article is organized as follows. Section 2 introduces
the data structure and the notation. In Section 3, we present
the Bayesian hierarchical model and show how we use it to
detect bound regions. In Section 4, we apply our method to
experimental data and compare it to four other techniques.
Section 5 presents the results of a simulation study comparing
our approach to the same four techniques. Finally, in Section
6 we discuss our results and possible extensions.

2. Data
We use two publicly available data sets that have already
been analyzed by several research groups. Cawley et al. (2004)
mapped the binding sites of three human TF, Sp1, cMyc, and
p53 on chromosomes 21–22; here we focus on the p53-FL ex-
periment. Similarly, Carroll et al. (2005) mapped the associ-
ation of the estrogen receptor (ER) on chromosomes 21–22.
These data contain two conditions (control and IP enriched)
with three replicates each. Several binding sites have already
been identified and experimentally validated, and we will use
this information to compare the different methods used in this
article. Both Cawley et al. (2004) and Carroll et al. (2005)
used three tiling arrays, named A, B, and C, to tile all of
chromosomes 21 and 22. Here we only use chip A, which rep-
resents 2/3 of chromosome 21 and contains 2 and 16 validated
regions for the p53 and the ER data, respectively.

Following the idea that MM intensities are poor mea-
sures of nonspecific hybridization (Irizarry et al., 2003; Keles
et al., 2004; Keles, 2007), we only used the PM intensity. The
PM measurements were normalized using MAT (model-based
analysis of tiling arrays) developed by Johnson et al. (2006).
MAT uses the probe sequence information and copy num-
ber on each array to perform background adjustment and
normalization. Such normalization is necessary to diminish
probe sequence biases and to allow us to model the residual
background as normal random effects. We refer the reader
to Johnson et al. (2006) for further details about MAT. Af-
ter normalization, the data take the form ycpr , c = 1, 2; p =
1, . . . ,P ; r = 1, . . . ,Rc, where ycpr is the preprocessed inten-
sity of probe p in condition c from replicate r.

3. Hierarchical Bayesian Modeling
In this section, we introduce the Bayesian hierarchical model
used to detect bound regions. From now on, Ga(a, b) denotes a

gamma distribution with mean a/b and variance a/b2, N (a, b)
a Gaussian distribution with mean a and variance b, TN (a, b)
a truncated Gaussian distribution at zero with parameters a
and b, and (x|y) means the conditional distribution of x given
y.

3.1 Model and Priors
We model probe measurements as follows:

y1pr = µp + ε1pr and y2pr = µp + γp + ε2pr,

εcpr ∼ N
(
0, λ−1

cp

)
, (1)

where c = 1, 2 denotes the treatment label equal to 1 for
control and 2 for IP enriched. In (1), µp is the probe back-
ground intensity, and γp is the probe enrichment effect, which
we expect to be large if probe p is part of a bound region.
We model the background as a random effect with Gaussian
distribution N (0, ψ−1), where the variance ψ−1 is constant
across probes. Even though we have used MAT to normalize
the probe intensities for sequence-specific effects, we believe
that it is still necessary to include probe-specific effects for two
main reasons: (1) the MAT sequence normalization model is
not perfect and some unexplained residual effects are likely to
remain, and (2) some of the probe-to-probe variation might
be due to other (nonsequence specific) factors.

To model the fact that enrichment effects can be exactly
zero, we use the following prior:

γp ∼ (1 − wp)δ0 + wpTN(ξ, τ−1), (2)

which is a mixture of a point mass at zero and a Gaussian
distribution with mean ξ and variance τ−1 truncated at zero,
where wp is the mixing weight representing the a priori prob-
ability that probe p has positive enrichment effect. Such mix-
ture priors have been widely used in the analysis of gene ex-
pression data (Lönnstedt and Speed, 2002; Gottardo et al.,
2003, 2006). Here we use a truncated normal at zero as en-
richment effects should be positive. Note also that we allow
the mixing weights to be probe specific and to spatially vary
with the genomic location. Similar to Broet and Richardson
(2006) in the context of CGH arrays, we model the probe
dependence and borrow strength from neighboring probes by
relating the weights, the wp’s, to a latent Markov random
field prior θ = {θp, 1 ≤ p ≤ P}’s, by a logistic transformation
wp = exp (θp)/(1 + exp (θp)). We use a Gaussian intrinsic
autoregression model (Besag and Kooperberg, 1995) for θ as
follows:

(θp | θ∂p) ∼ N




∑
p′∈∂p

θp′

np
,
n

npκ


 , (3)

where ∂p corresponds to the probes p′ immediately adjacent
to p, n is the number of neighboring probes used, np ≤ n is the
cardinality of ∂p, and κ is a smoothing parameter. Basically,
np is n for all probes except the ones at the two extremities
for which np will vary between n/2 and n. The conditional
distributions given by (3) correspond to a valid, but improper
joint distribution, given by
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π(θ1, . . . , θP ) ∝ exp


− κ

2n

∑
p

∑
p′∈∂p,p′>p

(θp − θp′)2


 , (4)

see Besag and Kooperberg (1995) for details. Intuitively, this
joint distribution is improper as the overall level is not fixed;
adding a constant to all of the θp’s does not change (4). A
common solution is to impose an identifiability constraint,
for example,

∑
p
θp = 0 or fix one of the θp’s, such that the

resulting (P − 1)-dimensional density becomes proper. In the
context of ChIP–chip and tiling arrays, the very first probe
of a given chromosome should not be enriched and a rea-
sonable solution would be to fix the corresponding θ to a
small value such that the corresponding weight is virtually
zero. Here we chose θ1 = −5, which leads to a value of w1

less than 0.001. Given the large number of probes, the exact
value has little influence on the posterior. We have also tried
the constraint

∑
p
θp = 0 and obtained essentially the same

results. However, we prefer to fix one of the θp ’s as it leads to a
simpler, unconstrained, Markov chain Monte Carlo (MCMC)
algorithm (see Web Appendix A).

The prior given by (3) will induce similar mixing weights
across neighboring probes, thus encouraging neighboring
probes to be of the same class (enriched or not enriched).
In our application we use n = 10, based on empirical stud-
ies suggesting that bound regions can contain as few as 10
probes; however, the exact value is not crucial. We have ex-
perimented with values from 2 to 20 and observed little dif-
ference in the estimated parameters. Formulations (2) and
(3) were chosen both for their flexibility and computational
convenience; they should be seen as an approximation to the
true biological/experimental process inducing enrichment in
probe intensities. This said, we will see later that our model
provides good results when applied to both experimental and
synthetic data.

We regularize noisy variance estimates by borrowing
strength from all the probes with an exchangeable prior
for the probe precisions (Parmigiani et al., 2002; Gottardo
et al., 2006; Lewin et al., 2006), defined by (λcp |αc, βc) ∼
Ga(α2

c/βc, αc/βc), that is, a gamma distribution with mean
αc and variance βc.

Finally, we use the following priors for the hyperparame-
ters: αc and βc are taken uniform over [0,1000], τ ,ψ, and κ
are assumed to come from an exponential distribution with
mean 1000, and ξ is taken to be uniform between 0 and 15.
All these priors are vague but proper and will not have much
influence in the posterior because the parameters are shared
across probes, and so there is plenty of information in the
data.

3.2 Parameter Estimation
Realizations were generated from the posterior distribution
via MCMC algorithms (Gelfand and Smith, 1990); see Web
Appendix A for details. We used four parallel chains started
from different values, each run for 10,000 iterations after
discarding the first 1000. This allowed us to check for con-
vergence issues and obtain more stable estimates by com-
bining the four chains. Trace and autocorrelation plots did
not reveal any convergence problems; see Web Figure 1 in
supplementary material. An R software package called BAC

implementing the method is available from Bioconductor at
www.bioconductor.org.

3.3 Inference and Detection of Bound Regions
Our ultimate goal is to identify bound regions, and this can be
done using parameter estimates from our model. Let us define
zp ≡ 1(γp > 0), that is, zp is equal to 1 if the associated en-
richment effect is strictly positive. By definition of (2) it is
straightforward to compute estimates of the marginal pos-
terior probabilities of enrichment, defined as �p(y) ≡ Pr(zp =
1 | y), from the MCMC output. Here, we expect bound regions
to be constituted of several consecutive probes with positive
enrichment effects. Thus, to detect bound regions we propose
to look at the joint distribution of neighboring probes, in par-
ticular the joint distributions of the zp’s. This is similar to
the joint modeling approach of Keles (2007). We call a probe
p part of a bound region if, in a window of size 2w + 1 probes
centered at p, at least m probes have positive enrichment ef-
fects. We define the associated joint posterior probabilities
as

vp(w,m, y) ≡ Pr

(
p+w∑
k=p−w

zk ≥ m

∣∣∣∣∣ y
)
, (5)

where w is the predetermined window size and m is the min-
imum number of probes with positive enrichment effect tol-
erated in the window. The rationale is that for a fixed (large
enough) window size, if only few isolated (noisy) probes have
large enrichment effects, the corresponding joint probability
would still be small. Similarly, if within a bound region, a
few isolated probes have small enrichment effects, the over-
all joint probability would still be large. We found the values
w = 5 and m = 6 to work well in practice. The value of w
is consistent with the value of n = 10 used in (3) and the
window size used by Keles (2007), whereas m = 6 was cho-
sen for robustness to outlying probes and to account for the
fact that probes at the extremities of a bound region only
have half of their neighboring probes with positive enrich-
ment effect due to the peak-like structure. As we will see, this
would allow for more accurate identification of a bound re-
gion’s endpoints. Note that the estimation of vp(w,m, y) is
trivial using MCMC because one obtains samples from the
full posterior distribution. Probes belonging to bound regions
can be selected by applying a joint posterior probability cut-
off. Here, we investigate two such cutoffs: a 0.5 cutoff, cor-
responding to the usual 0–1 loss and a false discovery rate
(FDR) cutoff. The FDR cutoff can be selected using a direct
posterior probability calculation as described in Newton et al.
(2004). Finally, we follow the approach taken by Cawley et al.
(2004) and merge resulting regions separated by 500 bps or
less.

In order to look for groups of probes with large enrichment
effects, one could be tempted to average the marginal poste-
rior probabilities over a sliding window of size 2w + 1, which
can be related to the expected number of enriched probes,
np(w, y), within the same window, via

np(w, y) ≡ E

[
p+w∑
k=p−w

zk

∣∣∣∣∣ y
]

=

p+w∑
k=p−w

�p(y). (6)
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Figure 2. Marginal posterior probabilities of enrichment versus genomic positions for the p53 data (top) and the ER data
(bottom). All validated regions (shown with red plus signs in the electronic version of this article) contain probes with
probabilities close to 1. Many isolated probes have posterior probabilities close to 1.

However, the information contained in vp(w,m, y) is much
greater than the information contained in np(w, y). In fact
the two can be related via Markov’s inequality,

vp(w,m, y) = Pr

(
p+w∑
k=p−w

zk ≥ m

∣∣∣∣∣ y
)

≤

E

[
p+w∑
k=p−w

zk

∣∣∣∣∣ y
]

m
=
np(w, y)

m
, (7)

and if vp(w,m, y) is large then [np(w, y) ≥ m] will be likely to
be true, but the converse is not true! This shows that using
a sliding window approach based on the marginal posterior

probabilities would be suboptimal. Of course, the posterior
probabilities (both marginal and joint) described here depend
on model assumptions and provide only an approximation of
the reality. However, as we will see in the next section with
experimental data, the joint posterior probabilities can lead
to good detection of validated regions.

4. Application to Experimental Data
4.1 Illustration of BAC on the p53 and ER Data
We have applied BAC to both the p53 and ER data. Fig-
ure 2 shows the marginal posterior probabilities of enrich-
ment versus genomic positions for both data sets. Overall the
p53 data exhibit more activity than the ER data in which
more probes have posterior probabilities close to 1. As ex-
pected, most of the probes have small posterior probabilities
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Figure 3. Posterior means of the mixing weights, the wp’s, and corresponding smoothing parameters, the θ’s, versus genomic
positions for the ER data. For clarity, only part of the data are shown. Validated regions are shown with gray marks along
the axis w = 0. As expected, validated regions have large mixing weights.

and probes part of validated regions have, for the most part,
large probabilities. In order to demonstrate the smoothing ef-
fect of the Markov random field on the estimated weights, we
have plotted the posterior means of the wp’s as a function of
the genomic positions for part of the ER data (Figure 3). The
smoothing clearly helps to estimate probe-specific weights by
borrowing strength across neighboring probes while allowing
enriched regions to get larger probabilities.

Figure 2 also shows that many isolated probes have large
marginal posterior probabilities, and averaging the marginal
posterior probabilities over windows of size 11 does not help
(Web Figure 2 in supplementary material). However, as we
have said earlier, we are interested in groups of probes with
positive enrichment effects. Figure 4 shows that the joint pos-
terior probabilities, vp(5, 6, y), seem to be better calibrated
and allow for much better separation of the validated regions
from the noise.

Some of the validated regions used here were initially de-
tected using MA methods with fixed width (Cawley et al.,
2004; Johnson et al., 2006); thus some probes could belong
to “validated” regions even though they might not be within
the true bound regions. Web Figure 3 in supplementary ma-
terial shows that BAC get better resolutions of bound regions
than MA approaches with fixed width, which could signifi-
cantly improve further detection of binding sites by sequence
analysis.

4.2 Comparisons
We now compare BAC to WRS (Cawley et al., 2004), TileMap
(Ji and Wong, 2005), MAT (Johnson et al., 2006), and hi-
rarchical gamma minture model (HGMM; Keles, 2007) on
both the p53 and ER data. We briefly review the different
approaches:

WRS: Cawley et al. (2004) used a WRS with a ±500
bps sliding window approach to detect bound regions. Ge-
nomic positions belonging to transcription factor binding site

(TFBS) were defined by applying a p-value cutoff of 10−5, re-
sultant positions separated by 500 bps are merged to form a
predicted TFBS.

TileMap: Ji and Wong (2005) described an approach where
neighboring probes are combined through an MA method or
an HMM. Unbalanced mixture subtraction is proposed to pro-
vide estimates of local false discovery rate for MA and model
parameters for HMM.

MAT: MAT can also detect bound regions using a sliding
window approach based on a trimmed mean statistic com-
bined to an FDR estimation procedure (Johnson et al., 2006).

HGMM: Keles (2007) proposed a hierarchical gamma mix-
ture model of binding intensities while incorporating inher-
ent spatial structure of data. Parameters are estimated by
maximizing the marginal likelihood using the EM algorithm.
Inference is based on the posterior probabilities.

To ease comparison, we applied all methods (except
HGMM) on the MAT-normalized data. HGMM could not
be applied to the MAT-normalized data because it uses a
gamma model and requires the measurements to be positive.
Therefore HGMM was used on the quantile–quantile normal-
ized log-transformed PM measurements as suggested by Ke-
les (2007). For each method, we used the default cutoff values
and (if needed) a few others that are comparable to the cut-
offs used in BAC. For the MA method of TileMap, we used
a local FDR of 0.5 whereas for the HMM model we used a
cutoff of 0.5 for the posterior probabilities; by definition of
the FDR these two cutoffs are comparable (Efron, 2004). For
WRS we used the p-value cutoff of 10−5 used in Cawley et al.
(2004) as well as another cutoff to control the FDR at 0.1 us-
ing the method proposed by Benjamini and Hochberg (1995).
When detecting regions with MAT, we fixed the FDR at 0.1.
For both BAC and HGMM, we used a 0.5 posterior probabil-
ity cutoff and an FDR cutoff of 0.1 using a direct posterior
probability approach (Newton et al., 2004). The results are
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Figure 4. Joint posterior probabilities versus genomic positions for the p53 data (top) and the ER data (bottom). All
validated regions (shown with red plus signs in the electronic version of this paper) contain probes with probabilities close
to 1. The joint posterior probabilities reflect the knowledge that bound regions are made of consecutive probes with positive
enrichment, and no isolated probes have such large probabilities.

summarized in Table 1. Both HGMM and BAC detect all
validated regions and seem to perform better than TileMap,
WRS, and MAT, which fail to detect validated regions at fixed
FDR or at posterior probability thresholds. In order to give a
better comparison in terms of ranking performance, we have
also looked at how many of the qPCR-validated regions were
detected in the top 50, top 20, and top 10 for all methods.
The results, summarized in Table 1, show that TileMap MA,
MAT, and BAC always find the most validated regions possi-
ble in each of the top 10, 20, or 50 regions. In comparison, all
others fail to detect some of the validated regions even when
increasing the number of regions to 50.

Note that the two p53-validated regions, not detected here,
were originally found with WRS by pooling two different sam-
ples to overcome the small sample size; see Cawley et al.
(2004) for more details. Overall, HGMM detects more regions
than BAC but a visual inspection of the observed intensities
for the regions detected by HGMM but not by BAC shows
that many of them contain probe outliers; see Web Figure 4 in
supplementary material. This is due to the fact that HGMM
assumes a constant coefficient of variation. Similar observa-
tions have been made with the original GG model used by
Newton et al. (2001) in the context of differential gene ex-
pression; see Gottardo et al. (2006).
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Table 1
Number of regions (total and validated) detected by each method on the p53 and ER data. Only

HGMM and BAC detect all of the validated regions at fixed FDR/posterior probability thresholds.
Best results in terms of detection of validated regions are highlighted in bold.

p-53 ER

qPCR qPCR
Method Cutoff validated (2) Total validated (16) Total

WRS 10−5 1 4 5 5
0.1 FDR 1 6 7 10
Top 50 2 50 13 50
Top 20 2 20 8 20
Top 10 1 10 7 10

TileMap HMM 0.5 pp 2 82 9 9
Top 50 2 50 14 50
Top 20 2 20 13 20
Top 10 2 10 10 10

TileMap MA 0.5 fdr 2 10 0 0
Top 50 2 50 16 50
Top 20 2 20 16 20
Top 10 2 10 10 10

MAT 0.1 FDR 1 3 16 26
Top 50 2 50 16 50
Top 20 2 20 16 20
Top 10 2 10 10 10

HGMM 0.5 2 242 16 38
0.1 FDR 2 132 16 42
Top 50 1 50 16 50
Top 20 1 20 14 20
Top 10 1 10 9 10

BAC 0.5 pp 2 209 16 24
0.1 FDR 2 116 16 27
Top 50 2 50 16 50
Top 20 2 20 16 20
Top 10 2 10 10 10

Finally, we have also compared various simplifications of
our model to see which aspects of it are important. We have
looked at the following simplifications: (i) Set the probe-
specific background effects to 0 (µp ≡ 0), (ii) Assume that
the mixing weights are constant across probes (wp ≡ w),
and (iii) Assume that the variance is constant across probes
(λcp ≡ λc). Web Table 1 in supplementary material shows
that all three features are important and that removing them
significantly affects the detection of the validated regions.

5. Simulation Studies
We now use a series of simulations to study the performance of
BAC under various model specifications compared to the four
methods described previously. In order to do so, we generated
data sets both from a Gaussian hierarchical model satisfying
(1) and from the hierarchical GG model of Keles (2007). In
each case, we generated 100 data sets with 50,000 probes and
three replicates in both control and treatment conditions. In
order to form enriched regions, we also need probe-genomic
coordinates, and we used the first 50,000 genomic positions
of chromosome 21 for that.

For the Gaussian hierarchical model, enriched regions were
assumed to describe a peak with intensity function given by
A exp{−4(xp − C)2/B2}, where A is the amplitude of the
peak, B controls the width of the peak, C represents the cen-
ter of the peak, and xp is the genomic position of probe p.
Under this parameterization, the peak intensity is approxi-
mately zero as soon as xp is B/2 bps away from C. For each
data set, we fixed the number of enriched regions to 50, whose
centers (the C ’s) were randomly generated across the set of
possible coordinates while imposing a separation of at least
3 kbps between peaks. The width of the peaks (B parame-
ters) were generated from a uniform distribution between 600
bps and 1 kbps. Similarly, the amplitude of the peaks was ran-
domly generated from a uniform distribution between 0.5 and
4. Probe enrichment effects, the γp’s in (1), were set to their
corresponding values given by A exp{−4(xp − C)2/B2} if the
probes were within B/2 of a peak center and zero otherwise.
Finally, the probe-specific backgrounds (µp’s) were generated
from a Gaussian distribution with mean 0 and variance ψ−1,
whereas the probe-specific precisions in each condition were
generated from a Gamma distribution with mean αc and vari-
ance βc. The parameters ψ,αc, and βc were set to the BAC



476 Biometrics, June 2008

posterior mean estimates from the ER data. In order to assess
model robustness, we have also tried variants of this where we
fixed all probe backgrounds to zero and constrained the pre-
cision (and thus the variance) to be constant across probes,
which we set to αc (the mean of the precision distribution).
In summary, we have four combinations: [probe-specific back-
ground (PB) or no background (NB)] × [probe-specific vari-
ance (PV) or constant variance (CV)].

For the hierarchical GG model, data were generated as de-
scribed in Keles (2007) with the setting described in Section 4
and the unknown parameters fixed to the values estimated by
HGMM on the ER data.

Data generated from the Gaussian model were first expo-
nentiated before using HGMM, as measurements need to be
positive. Similarly, data generated from the GG model were
log transformed before using TileMap, BAC, WRS, and MAT
to make the data more normally distributed. In each case, we
summarized the results using two plots: a receiving operat-
ing characteristic (ROC) curve, which shows the number of
true positive regions against the number of false positive re-
gions found (averaged across the 100 data sets) when varying
the cutoff for each method, and a plot of the nominal FDR
against the true FDR (averaged across the 100 data sets).
For the latter, we only show the methods that can control the
FDR, namely, HGMM, WRS, MAT, and BAC.

Let us first look at the results from the hierarchical Gaus-
sian model (Figure 5). In terms of ROC curves, most meth-
ods perform better when the variance is constant, whereas
the addition of probe-specific background does not affect the
result much. The latter is not surprising as all methods either
work on the difference between the IP and control conditions
(thus removing the background) or account for probe-specific
signals (HGMM and BAC). The fact that all methods (in-
cluding BAC) perform better when the variance is constant is
mainly due to the gamma prior for the probe precisions, which
tend to generate noisier data when the variance is indeed not
constant. Overall, BAC performs very well on all variants of
the Gaussian hierarchical model with the best ROC curves.
TileMap performs second best overall and slightly better than
TileMap HMM, especially when the variance is not constant.
In comparison, MAT and WRS are not as good, this is par-
ticularly true of MAT. MAT uses a trimmed mean, which
probably removes some of the true signal (e.g., highest values
of the peak). HGMM performs the worst with an extremely
large false positive rate, which is why the curve cannot be
seen in Figure 5 (a–d).In terms of FDR, BAC has the clos-
est curve to the expected line y = x, whereas other methods
tend to underestimate the true FDR. Again, HGMM per-
forms the worst with a nominal FDR way below the true
FDR.

Looking at the results from the hierarchical GG model,
HGMM performs the best with the highest ROC curve and
an FDR curve almost perfectly aligned with the line y = x.
TileMap MA has good performance again. BAC still performs
relatively well and third best after HGMM and TileMap MA,
whereas the performance of MAT and WRS clearly deterio-
rated. In addition, BAC still gives an FDR curve that is not
too far from the actual line y = x, at least for values between
0 and 0.3, which contains the range of FDR values used in
practice.

6. Conclusion
We have developed a framework, named BAC, for detecting
bound regions with ChIP–chip experiments in a way that is
robust to outlying measurements and is powerful even with
a small number of replicates. In two ChIP–chip experiments
on Affymetrix tiling arrays, we compared BAC to four other
baseline and commonly used methods, and it performed bet-
ter, at least in terms of the number of validated regions de-
tected and robustness to probe outliers. In addition, we have
performed a simulation study, which showed that BAC is
robust to model misspecification and can outperform other
methods in a wide variety of settings. Our model requires
more computing (roughly 10 hours for a data set with 300,000
probes on a personal computer) than some other methods
because it involves MCMC, and users would need to decide
whether the improved results are worth the additional com-
puting time.

In this article, we considered a homogeneous spatial struc-
ture to induce smoothing in the weights of the mixtures. For
areas of the genome where there are few binding sites, one
might fear that this could lead to oversmoothing. However,
as seen with the two data sets used here, bound regions are
wide enough and this is not a problem. Based on the assump-
tion that probes are roughly equally spaced, we have opted
for a Markov random field prior that did not explicitly use
the genomic distance between them. However, if needed, a
spatial prior that uses the genomic distance could easily be
used instead (Ripley, 2004).

We assumed that normalization was done as a preprocess-
ing step using MAT (Johnson et al., 2006); we found this nor-
malization step to be necessary in order for the background
effect to be approximately normal. Although one could in-
corporate the normalization and background correction into
our model, this would severely increase the complexity of the
model and does not seem worthwhile.

In order to compare our method with others, we identified
bound regions if the joint posterior probability was greater
than a given threshold. In practice, though, we would often
not use a cutoff, but instead would report the posterior prob-
abilities themselves. A biologist could then choose to do fur-
ther research on a number of the most likely regions, taking
account of resource constraints, or to study regions whose
posterior probability exceeds a prespecified threshold (e.g.,
FDR).

In this article, we have compared our model with four al-
ternatives, but there are other methods for detecting bound
regions with ChIP–chip data. We chose these four because
they are either obvious baseline methods or widely used; they
are also representative of other methods. For example, there
are several other sliding window approaches that we could
have used (Keles et al., 2004; Buck et al., 2005).

Given the complexity of our hierarchical model it is not pos-
sible to use standard diagnostic tools to check model assump-
tions. However, it is possible to look at posterior quantities
from our model to check some assumptions; see Web Figure 5–
7 in supplementary material. Finally, we would like to say
that even though our model was illustrated with Affymetrix
arrays, it could easily be used with other oligonucleotide type
of arrays, such as Nimblegen or Agilent. Though, the model
may need to be modified slightly.
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Figure 5. Receiving operating characteristics (a–e) and FDR curves (f–l) for all methods applied to data generated from
variants of the Gaussian hierarchical model (a–d; f–k) and the hierarchical gamma–gamma model of Keles (e; l). Variants of the
Gaussian hierarchical models considered are the four possible combinations of probe-specific background (PB), no background
(NB), probe-specific variance (PV), and constant variance (CV). For the FDR plots the solid gray line corresponds to the
expected line “nominal FDR = true FDR.”
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7. Supplementary Material
Web Appendices, Tables, and Figures referenced in Sections
3, 4, and 6 are available under the Paper Information link at
the Biometrics website http://www.biometrics.tibs.org.
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