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B cells are a key component of adaptive immunity with diverse 
functions including antibody production1,2, antigen presenta-
tion3, and cellular cytotoxicity4. Infiltrating B cells have been 

frequently observed in multiple tumor tissues5–7, yet their reported 
effects on patient outcome have been inconsistent5,8–11. It remains 
unclear what roles B cells play in the antitumor humoral response 
and how cancer cells interact with infiltrating B cells.

The B cell immunoglobulin heavy chain (IgH) consists of a hyper-
variable complementarity-determining region 3 (CDR3), which is 
critical in antigen recognition12. After binding a foreign antigen,  
B cells undergo proliferation, class switch recombination (CSR), 
and somatic hypermutations (SHMs) and produce high-affinity 
antibodies to eliminate the antigen13,14. Therefore, characterization 
of the tumor-infiltrating B cell immunoglobulin repertoire is criti-
cal to understanding B cell immunity in tumors. Efforts have been 
made to study the B cell repertoire by using either targeted deep 
sequencing (B cell–receptor repertoire sequencing (BCR-seq))15–17 
or unselected RNA-sequencing (RNA-seq) data18,19 in both human 
and mouse models to understand the etiology of autoimmune dis-
eases20 or cancers21,22. However, a systematic investigation of tumor-
infiltrating B cell repertoires using large cohorts of diverse cancer 
types is still lacking to elucidate the functional effect of tumor B cell 
immunity and identify potential therapeutic opportunities.

Previously, we developed an ultrasensitive de novo assembler, 
TRUST, to call the T cell–receptor hypervariable CDR3 sequences 
by using bulk tumor RNA-seq data23,24. In this work, we enhanced 

TRUST to assemble the B cell IgH CDR3 sequences from bulk RNA-
seq data and applied it to study the infiltrating B cell IgH repertoire 
in The Cancer Genome Atlas (TCGA) cohorts. A subset of B cells 
with a defined signature of CSR emerged in our analysis and showed 
promising anti-tumor effects. We observed potential mechanisms 
of anti-tumor B cell responses and tumor evasion to B cell attack. 
These results help elucidate the functional effects of antibody-medi-
ated cell cytotoxicity in antitumor immune responses and reveal 
promising opportunities in developing future immunotherapies.

Results
De novo assembly of IgH hypervariable sequence. We modified 
TRUST, a computational algorithm that we previously developed to 
detect T cell–receptor hypervariable CDR3 sequences, to assemble 
the CDR3 regions of tumor-infiltrating B cell IgH from unselected 
tissue or tumor RNA-seq data (see Methods). To systematically 
evaluate the performance of TRUST, we applied in silico simulations 
to produce artificially recombined and hypermutated immuno-
globulin transcripts. The enhanced TRUST achieved high sensi-
tivity and perfect precision at very low sequence coverage (0.1×) 
(Supplementary Fig. 1a), thus suggesting its suitability for detecting 
IgH hypervariable sequences from tumor RNA-seq data. In addition, 
we performed BCR-seq on six tumors to further evaluate the BCR 
clones that TRUST assembled from RNA-seq on the same tumors. 
We found that TRUST robustly recovered expanded B cells through 
highly sensitive and precise calling of abundant BCR clones (Fig. 1a),  
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with consistent clonal frequency estimations (Supplementary 
Fig. 1b) and high specificity in calling individual-specific clones 
(Supplementary Fig. 1c). Moreover, TRUST and BCR-seq agreed 
on most of the immunoglobulin isotype annotations (Fig. 1b), thus 
allowing us to investigate CSR events in expanded B cells by using 
TCGA data. Although some of the TRUST assemblies were par-
tial CDR3 sequences, they still contained sufficient information to 
reconstruct B cell clusters (Fig. 1c).

Isotypes and SHMs of B cells in TCGA samples. TRUST assem-
bled a total of 30.8 million CDR3 sequences from 9,025 TCGA 
RNA-seq samples across 32 cancer types with variable sequencing 
depths and read lengths (Supplementary Table 1). The number of 
assemblies was highest in lung squamous cell carcinoma (median 
5,799 CDR3s per sample), a result consistent with the estimated leu-
kocyte fractions1. A total of 20.6 million assemblies were assigned 
to known immunoglobulin classes by using paired-end reads  
or assembled constant regions (Methods). Of these, IgG was the 
most abundant (60%) class, followed by IgA (35%) and IgM (4%). 
The average length of IgH hypervariable sequences was 14.7 amino 
acids, and different immunoglobulin classes had similar length 
distribution and sequence motifs (Supplementary Fig. 2a). These 
results agree with those25 from immunoglobulin sequences in the 
IMGT database26. Immunoglobulin class abundance varied across 
different cancer types (Fig. 2a), and IgG was the dominant class in 
thyroid, testicular, and skin cancers. In contrast, IgA was the larg-
est fraction in kidney, pancreatic, and colorectal cancers, a finding  

consistent with the high secretion levels of IgA in mucous mem-
brane and glands27.

We called SHMs if two CDR3 sequences differed by only one 
nucleotide. The resulting SHMs were enriched on the third codon 
position of CDR3s across different lengths, thus suggesting that our 
SHM calls were unlikely to arise from sequencing errors (Fig. 2b). 
Indeed, 85% of the 5.2 million SHM calls in the CDR3s were syn-
onymous, thus indicating strong selection pressures during affinity 
maturation (Supplementary Fig. 2b). Nearly half of the SHMs were 
transitions within pyrimidines or purines (Fig. 2c), results similar 
to previous observations on the whole BCR heavy chain28. We next 
performed 96-triplet mutation context analysis (Fig. 2e) on cases in 
which we were able to infer the mutation directions (Methods). The 
strongest mutation signature was the ACT to ATT triplet, a find-
ing consistent with the (W)RCY motif of activation-induced cyti-
dine deaminase (AICDA or AID)29. The second highest signature 
was a GC-rich motif, which is not specific to mutation types and 
might arise from different DNA repair pathways and BCR affin-
ity selection30. Furthermore, we observed the highest SHM in IgG 
antibodies (Fig. 2d), in agreement with findings reported in healthy 
individuals31,32. Finally, the SHM rate (Methods) was positively cor-
related with the expression of AID across TCGA samples (ρ = 0.2,  
P <10−40, Supplementary Fig. 2c), thus supporting the role of AID in 
introducing SHMs in tumor-infiltrating B cells33.

Detection of clonal expansion of tumor-infiltrating B cells. SHM 
and CSR are signatures of B cell clonal expansion on antigenic  
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Fig. 1 | TRuST performance on tumor samples with matched BCR-seq data. a, Evaluation of the TRUST-reported CDR3s under different cutoffs on the 
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recognition34. To detect B cell clonal expansion, we developed a 
multiple local sequence alignment approach and optimized the 
parameters (Methods) by controlling the false discovery rate (FDR) 
and maximizing the number of clusters (Supplementary Fig. 3a–c).  
For example, in the experimental validation sample FZ-97, we 
obtained seven highly similar CDR3s from BCR-seq, of which four 

were detected by TRUST with one partial CDR3 sequence (num-
ber 6 in Fig. 1c). Using this alignment approach, we detected a 
total of 434,106 B cell lineage clusters across 5,866 TCGA tumors. 
Most (54.5%) of the clusters with unique immunoglobulin annota-
tion were assigned IgG, a finding that might be related to a pre-
vious observation that tumor-infiltrating B cells generally express 
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IgG with evidence of antigen-driven expansion5. In addition, the 
complete CDR3 sequences from expanded B cell clones were sig-
nificantly longer than the nonexpanded clones (Supplementary  
Fig. 3d), thus suggesting potentially higher structural complexity of 
the expanded BCRs.

In a subset of 311,173 B cell clusters distributed among 5,328 
samples, we identified the coexistence of more than one immuno-
globulin subclass (Methods), providing evidence of CSR during B 
cell clonal expansion. The normalized number of B cell clusters had 
a much higher positive correlation with B cell and T cell activa-
tion markers than with oncogene expression in most tumor types, 
thereby suggesting that the expanded B cell clusters might recog-
nize tumor antigens (Fig. 3a). We observed coexistence of mul-
tiple immunoglobulin classes or subclasses in 296,820 clusters, a 
result suggesting subsequent CSRs following the initial CSR event. 
This finding is consistent with a previous report that B cells may 
undergo a programmed order of IgG subclass switch recombina-
tion (sCSR) in an immune response35. We examined the potential 
sCSR events for the IgA and IgG isotypes (Fig. 3b), and observed 
a total of 153,476 IgG3 to IgG1 (IgG3–1) sCSR events in which 
the same CDR3 cluster contained both IgG1 and IgG3 isotypes. 
IgG3–1 sCSR was the most abundant and enriched sCSR type in 

multiple cancers, especially in breast, kidney, endometrial, and 
colorectal cancers. The TRUST BCR results for TCGA, including 
the number of BCRs and IgG3–1 sCSR events, are summarized in 
Supplementary Table 2.

We next compared the signatures of B cell repertoires between 
tumor and adjacent normal tissues to evaluate whether clonal 
expansion and sCSR events might be enriched in tumors. B cell 
infiltration levels, as estimated from the Tumor Immune Estimation 
Resource (TIMER)36, did not show consistent differences between 
tumors and adjacent normal tissues across different cancer types. 
However, B cell diversity, as defined by the number of CDR3s per 
thousand BCR reads23, was significantly lower in tumor samples for 
most cancer types, a result indicating that B cells were more clonal 
in tumors than in adjacent normal tissues (Fig. 4). We observed 
<10% overlap of shared B cell clonotypes between matched tumor 
and normal tissue samples (Supplementary Fig. 3e). Additionally, 
in most cancer types, tumor samples were enriched for more  
B cell clusters with IgG CSRs or IgG3–1 sCSRs rather than with 
IgA CSRs. Furthermore, individuals with higher levels of B cell 
IgG3–1 switches had significantly better clinical outcomes in mela-
noma, ovarian cancer, and thyroid cancer (Supplementary Fig. 4). 
In contrast, kidney tumors with high IgG3–1 switches had poorer  
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clinical outcomes, in agreement with the intriguing finding of poor 
prognosis of patients with kidney renal cell carcinoma with high 
lymphocyte infiltration37. These results suggest that the level of 

clonally expanded B cells with IgG3–1 sCSRs, instead of the total 
B cell infiltration level, is related to the B cell-mediated antitumor 
humoral response.
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Interaction between SHMs and the IgG3–1 switch. Because SHM 
is an important marker of B cell clonal evolution and affinity matu-
ration38, we studied the relationship between SHM and the IgG3–1 
switch. B cell SHM rates were high in lung, head, neck, and skin 
cancers, and low in leukemia and brain cancers (Fig. 5a), possibly 
because of the immunoglobulin isotype composition in different can-
cer types (Fig. 2a). Because both SHM and sCSR depend on AID39, 
we expected to observe a positive relationship between the steps of 
immunoglobulin switches and SHM rate. Indeed, we observed pro-
gressively higher SHM rates in samples with later rounds of sCSR 
events (Fig. 5b), thus suggesting that B cells undergo multiple rounds 
of sCSR events and gain additional SHMs during the process.

We next investigated the clinical relevance of interactions 
between the SHM rate and CSR events. Splitting TCGA samples 
based on the median SHM rate (5.7%), we observed a significant 
benefit of high IgG3–1 switches on survival in patients with high 
SHM rates, whereas the IgG3–1 level was not associated with sur-
vival in low-SHM samples (Fig. 5c). The same trend, although less 
significant because of the smaller sample sizes, was also observed 
in liver cancer and melanoma (Supplementary Fig. 5). The survival 
benefit in patients with high SHM rates and IgG3–1 sCSR suggests 

the role of SHM in generating a BCR repertoire with high binding 
affinity to the exposed tumor antigens28.

Immune evasion of antibody-dependent cell-mediated cytotoxic-
ity (ADCC) through MHC class I–related chain molecule (MIC) 
shedding. Tumors must evade immune attacks to survive and prog-
ress40. Tumors are well understood to evade T cell attack by express-
ing checkpoint ligands such as PD-L1/L2 or by acquiring defects in 
antigen presentation41 or interferon-γ signaling pathways42. In con-
trast, how tumors evade B cell immunity remains largely uncharac-
terized. B cell IgG antibody is able to trigger downstream signaling 
that eliminates the affected cells; one of the most important ways in 
which this elimination is accomplished is through the ADCC path-
way43. ADCC involves the recruitment of additional effector cells 
expressing receptors that bind the antibody Fc ligand44. In tumors, 
the ADCC pathway commonly activates natural killer (NK) cells 
in the microenvironment45, which in turn carry out cell-medi-
ated cytotoxicity. NK cells express a potent Fcγ receptor, CD16a 
(FcγRIIIA), whose binding to IgG Fc ligand triggers the release of 
cytolytic enzymes, such as granzyme B (GZMB)46. We observed sig-
nificantly higher expression levels of GZMB and FCGR3A (which 
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Fig. 6 | Potential immune evasion of aDCC through MiC shedding. a, NK cell activity, visualized by box plots of GZMB and CD16a. Both genes were 
expressed at higher levels in tumors with a high level of isotype switches (CSR). Statistical significance was evaluated with Wilcoxon rank-sum test 
on 4,273 low-CSR samples and 4,270 high-CSR samples. The two-sided P values were 6 × 10−295 and 5 × 10−156 for GZMB and FCGR3A, respectively, 
and are labeled with four asterisks. b, Heat map showing the associations between the fractions of IgG isotypes and NK cell Fc receptor FCGR3A 
(CD16a) expression across multiple cancers. Cancer type was selected on the basis of at least 100 patient samples with no missing values (sample 
sizes in Supplementary Table 3). Each entry in the heat map represents the partial Spearman’s correlation corrected for tumor purity (Methods). FDR 
correction was performed on two-sided P values with the Benjamini–Hochberg procedure for testing on multiple cancer types. c, NK-cell inactivation 
through MIC shedding. Interaction between IgG1/3 Fc ligand and CD16a triggers NK response. MICA amplification was observed in 20% of tumors, 
and metalloproteinase overexpression may lead to the production of soluble MIC in these tumors, thus resulting in internalized NKG2D (iNKG2D) and 
inactivated NK cells. d, Interaction between MICA amplification and IgG1/3 levels, visualized by Kaplan–Meier curves for breast invasive carcinoma 
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evaluated with Cox proportional hazard regressions corrected for tumor purity and patient age.
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encodes CD16a) in tumors with more CSR events (Fig. 6a), thus 
suggesting elevated NK cytotoxicity in tumors with B cell response. 
Among the four subclasses of IgG antibodies, the strongest bind-
ing to CD16a were IgG1 and IgG3 (ref. 47). Consistently with this 
observation, we observed positive correlations between the IgG3–1 
switch level and FCGR3A expression across almost all tumor types 
(Fig. 6b). One possible explanation for these associations and the 
prevalent IgG3–1 sCSR events is that tumor-infiltrating B cells and 
NK cells work synergistically in the microenvironment to exert 
antitumor responses.

Tumors under ADCC may develop evasive mechanisms against 
NK-cell attack. An established evasion pathway is through the shed-
ding of endogenous MICA and MICB48. Metalloproteinase catalyzes 
the shedding of the MIC ectodomain, thereby producing soluble 
MIC, which binds the activation receptor NKG2D on NK cells49 and 
results in internalization of NKG2D and decreased NK-cell activ-
ity50. Therefore, MIC shedding has been established as a mecha-
nism to evade NK cell immunosurveillance50 (Fig. 6c). Interestingly, 
MICA and MICB are in the same loci, and 20% of TCGA tumors 
showed MICA and MICB amplification (Fig. 6c), a frequency signif-
icantly higher than that in the germline variances (Supplementary 
Fig. 6a). MICA-amplified tumors had significantly higher expres-
sion of ADAM17 and MMP14 (Supplementary Fig. 6b), two 
metalloproteinases known to catalyze MIC shedding48,51, as well as 
higher IgG1/3 B cell levels (Supplementary Fig. 6c). Furthermore, 
whereas MICA amplification was generally associated with poorer 
outcomes in cancer patients (Supplementary Fig. 6d–f), its clinical  
relevance further depended on the level of IgG1/3 B cells. Specifically, 
in tumors with MICA amplification, the presence of high levels 
of IgG1/3 B cells was associated with significantly better survival 
in breast cancer and melanoma (FDR <0.1, Fig. 6d). In contrast,  
the IgG1/3 level did not influence survival for tumors without 
MICA amplification. These results suggest complex interactions 
between B cell-mediated immune response and tumor ADCC-
pathway defects52.

Discussion
High levels of tumor-infiltrating B cells have been observed in many 
human cancers6. However, the functional effects of infiltrating  
B cells have been inconsistent in previous studies5. Future develop-
ment of B cell-based therapies requires an improved understanding 
of tumor interactions with infiltrating B cells. In this study, we ana-
lyzed large cohorts of TCGA tumor RNA-seq data across 32 can-
cer types and generated a large data set of tumor-infiltrating B cell 
IgH hypervariable sequences. Using SHMs as lineage markers, we 
identified widespread B cell clonal expansions and immunoglobulin 
subclass switches. The prevalent IgG3–1 sCSR may reflect the selec-
tive pressure of B cells involved in ADCC.

Spontaneous antibody-dependent cell-mediated cytotoxicity in 
tumors is poorly characterized because of the challenge in detecting 
ADCC in vivo. In this study, we observed frequent MICA and MICB 
amplifications coupled with increased expression of metallopro-
teinases, thus suggesting the existence of soluble MIC in the tumor 
microenvironment. Together with MICA amplification’s negative 
clinical effects and its notable co-occurrence with IgG1 and IgG3 
B cells, we made orthogonal observations that NK-cell-mediated 
ADCC might be functional in the antitumor response. Complex 
interactions were observed between MICA amplification and the 
IgG-subclass switch (Fig. 6d). It is possible that the presence of the 
IgG subclass switch in MICA-amplified tumors is an indicator of 
effective B cell–mediated immune attack. Tumors with high B cell 
activity but an intact ADCC pathway might have compromised B 
cell function or might have developed other evasive mechanisms. 
An alternative explanation is that MICA amplification and MIC 
shedding in tumors induces the clonal expansion of B cells pro-
ducing the anti-MICA IgG autoantibodies53. In this scenario, the 

anti-MICA IgG autoantibodies might prevent NKG2D internaliza-
tion caused by MIC shedding, thus allowing antitumor ADCC and 
leading to survival benefits. Autoantibodies with similar functions 
have recently been reported in specific tumor types. Some patients 
with breast cancer can produce autoantibodies against the overex-
pressed oncogene HER2 and gain survival benefits54. In gastric can-
cer, tumor-infiltrating B cells produce antibodies targeting sulfated  
glycosaminoglycans on the cellular surface22. Therefore, it is  
possible that overexpression of some of the membrane  
proteins, abnormal glycosylation, or lipoproteins are potential 
autoantibody targets. Future work is needed to elucidate the role 
of tumor-infiltrating IgG1-G3-expressing B cells in the context  
of immunotherapy.

In summary, we performed comprehensive pancancer analyses 
on tumor-infiltrating B cell repertoires. Our study gained statistical 
power by using large human cancer cohorts but is still limited by the 
heterogeneous treatments that different cancer patients received. 
Our observation regarding SHM rate might indicate B cell–recep-
tor affinity maturation during tumor development, but this result 
awaits future experimental validation. Another limitation of this 
work is that, because of the use of bulk tissue data, it was impossible 
to distinguish different subtypes of infiltrating B cells, although this 
limitation did not affect our detection of B cell clonal expansion 
and subclass switches. The immune evasive mechanisms reported 
in our study may advance understanding of the complex interac-
tions between tumor and infiltrating B cells. As the cost of tumor 
RNA-seq continues to decrease, our approach could be adopted to 
examine the ever-growing volume of tumor RNA-seq data to dis-
cover and refine hypotheses on tumor humoral immunity. The find-
ings from this work have potential clinical utility in B cell–related 
cancer immunotherapies.

URLs. Cancer Genomics Hub, https://cghub.ucsc.edu/; TCGA 
data portal, https://portal.gdc.cancer.gov/legacy-archive/; GDAC 
Firehose, https://gdac.broadinstitute.org/; simNGS, http://www.ebi.
ac.uk/goldman-srv/simNGS/.
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Methods
TRUST-method modification and performance evaluation. The TCR CDR3  
de novo assembly workflows using single- or paired-end unselected RNA-seq data 
have been previously described24. In that work, we used a predefined list of motifs 
to search for the TCR variable or joining gene conserved regions. To allow TRUST 
to analyze the B cell IgH CDR3 region, we made the following modifications: (i) we 
downloaded IgH variable and joining DNA and amino acid reference sequences in 
fasta format from the International Immunogenetics Information System26; (ii) we 
included genomics locations (hg19) of 124 IGHV genes, 9 IGHJ genes, and 9 IGH 
constant genes in the TRUST search space to extract the mapped reads from these 
loci; (iii) we included an annotation step for the possible V, J, and C gene segments 
in the assembled CDR3 sequences; (iv) we added -B option in the source code to 
instruct TRUST to analyze BCR CDR3 regions.

We systematically evaluated the performance of modified TRUST by using 
in silico simulations. Specifically, 5,000 random full-length IgH sequences were 
generated by following the biological processes of VDJ recombination as previously 
described24. Throughout the IgH DNA sequence, we randomly added single-
nucleotide changes at a rate of 0.05 per base to mimic SHMs. We then applied 
simNGS to construct in silico DNA fragment libraries and sample paired-end short 
reads with statistical-error models matching the Illumina sequencers. We fixed the 
read length to be 50 nt (from 200-nt fragments) and simulated libraries at different 
coverages, including 0.1×, 0.5×, and 1×. According to our previous estimation23, 
0.1× coverage corresponds to an RNA-seq data library size of 500 million reads, 
with 1% B cell infiltration in the tumor tissue. Therefore, a library size higher than 
1× is unrealistically high at the current sequencing cost.

For each parameter setting, we repeated 20 simulations and aligned the fastq 
reads to the hg19 reference genome by using Tophat255, merging aligned reads and 
unmapped reads into one BAM file. Modified TRUST was then applied to each 
BAM file to assemble the CDR3 sequences. The results were then compared with 
the original 5,000 reference sequences to estimate precision and sensitivity. Partial 
CDR3 sequences shorter than 15 nt were excluded from downstream analysis. 
Because simNGS introduces sequencing errors, for each CDR3 assembly, we 
allowed one mismatch in its DNA sequence to the simulated truth.

We also performed RNA-seq and BCR-seq on tumor samples from six patients 
with early lung cancer to validate TRUST performance. Tumor samples were 
collected from Shanghai Pulmonary Hospital and procedures for this study were 
approved by the Ethics Committee of Shanghai Pulmonary Hospital. All patients 
provided written informed consent for sample collection and data analyses. 
For paired RNA-seq and BCR-seq data, we allowed one mismatch in CDR3s to 
validate TRUST-assembled clones. In both in silico simulation and experimental 
validation, precision was defined as the fraction of TRUST-called CDR3s validated 
by BCR-seq, and sensitivity was defined as the fraction of BCR-seq CDR3s called 
by TRUST. The above criteria were also applied in our previous analysis to evaluate 
the performance of TRUST on calling T cell receptor CDR3 regions24. We also 
evaluated the TRUST-reported immunoglobulin isotypes by using BCR-seq for 
matched CDR3s. To evaluate immunoglobulin isotype inference, we focused on the 
CDR3s called by both BCR-seq and TRUST from RNA-seq, then defined precision 
as the fraction of TRUST-called isotypes validated by BCR-seq and sensitivity as 
the fraction of BCR-seq isotypes called by TRUST.

Data preparation and preprocessing. RNA-seq data of 10,818 samples in BAM 
format were downloaded from the Cancer Genomics Hub in May 2016. The 
RNA-seq reads were previously aligned to the hg19 human reference genome with 
MapSplice56. RSEM gene expression data, GISTIC annotations of copy number 
alterations, level 3 somatic mutation profiles, and clinical annotations were 
downloaded from GDAC Firehose. The GISTIC2.0 (ref. 57) annotation of CNAs 
had been previously binned into −2, −1, 0, 1, and 2, representing total copy loss, 
hemizygous deletion, euploidy, copy number gain, and high fold amplification. 
In the analysis of somatic copy number alterations (SCNAs), we grouped the −2 
and −1 segments together and referred to them as deletions, and grouped 1 and 2 
together and referred to them as amplifications. Tumor purity of 9,849 samples was 
obtained from our previous work36.

Modified TRUST was applied to all of the RNA-seq samples with the following 
command:

python TRUST.py -f sample_name.bam -a -B

Samples with zero assemblies were excluded from downstream analysis, and 
9,025 samples remained. For each sample, we parsed the fasta file information 
lines reported from TRUST analysis, keeping the following fields: TCGA identifier, 
disease abbreviation, tissue type, CDR3 amino acid sequence, estimated sample 
library size, CDR3 DNA sequence, and assigned immunoglobulin constant genes. 
Disease abbreviations followed TCGA naming conventions. Tissue type includes 
primary tumor (TP), adjacent normal (NT), metastatic tumor (TM), and recurrent 
tumor (TR). The IgH CDR3 region was defined as the region within the last C 
in the variable gene sequence and the W in the joining gene motif WGXG, with 
both C and W excluded. TRUST reports variable, joining, and constant genes on 
the basis of mapped reads linked to the CDR3 assembly and the similarity to the 
germline genes24, but only CDR3 DNA sequences were used to uniquely define a 

B cell clone to avoid the complication of mapping to unknown variable or joining 
gene alleles.

Identification of B cell clusters and CSR. In this work, we developed a 
computationally efficient approach to identify B cell CDR3 clusters on the basis 
of local sequence alignment. For each sample, we first extracted all of the unique 
complete CDR3 sequences according to the co-occurrence of the variable gene 
motif YYC and joining gene motif WGXG. For samples that did not contain any 
complete sequence, no cluster was reported. For each complete CDR3 sequence, we 
extracted an octamer starting from the first position in the CDR3 as a motif. For 
each unique motif, we collected all of the CDR3 amino acid sequences, both partial 
and complete, containing the motif. When searching for matches, we allowed a 
one-letter mismatch. For example, motif RDMWRVGW was considered the same 
as RDMWIVGW. This approach provided the flexibility of detecting amino acid 
changes incurred from nonsilent mutations yet maintained low computational 
complexity. The motif-containing sequences constituted a B cell cluster. Clusters 
with fewer than three sequences were discarded.

We chose the octamer and starting position 1 on the basis of a systematic 
search of a wide range of parameters. The goal of the clustering optimization was 
to identify more clusters while minimizing the number of incorrectly clustered 
pairs. To estimate these two metrics, we randomly selected two samples from 
different patients 500 times, and, in each run, we clustered all of the CDR3s 
and computed FDR and the number of clusters. FDR is the fraction of clustered 
CDR3 pairs from two different patients over all of the pairs in clusters, because 
the possibility of having the same CDR3 in unrelated individuals is extremely low 
(10−3–10−5)58. The cluster ratio is the number of clusters normalized by the median 
value of tested cases. After testing k-mer sizes from 6 to 15 and start positions from 
1 to 9, we visualized the median value of FDR and the cluster ratio in heat maps 
(Supplementary Fig. 3a,b). To balance the contribution of FDR and the number 
of clusters, we computed the harmonic average of 1-FDR and cluster ratio as the 
final score for selecting the parameters (Supplementary Fig. 3c). The best solution 
was clustering octamers starting from the first position in the CDR3 region, thus 
yielding an FDR of 0.007.

For each cluster, we performed multiple local sequence alignment with 
ClustalW59 implemented in the R package msa60. Aligned sequences had the same 
length, with gaps filled by the character ‘-’. To study the relationship between 
different sequences in a cluster, we calculated the number of mismatches between 
each pair of sequences and used this number as a distance measure. A mismatch 
was counted when neither sequence was ‘-’, and the two sequences differed at this 
base. The pairwise distance matrix was then used to plot the neighbor-joining tree 
in Fig. 1c, which was implemented in the R package ape61.

In the isotype analysis, we took advantage of paired-end sequencing data and 
assigned different IgH isotypes according to the mapping locations. For example, 
if one mate from a read pair was unmapped and contained CDR3 sequence, 
whereas the other mate was properly mapped to the IgM region, then the CDR3 
assembly was assigned the IgM isotype. If the mate read was not mapped to a 
known constant region, we tried to infer the isotype from the sequence after the 
CDR3 region. If we were still unable to recover the isotype, the CDR3 assembly 
was assigned as an unknown isotype and excluded from the class-switch analysis. 
Sequence assembly errors can sometimes join reads from different transcripts 
into one CDR3 assembly and result in more than one immunoglobulin isotype 
assignment for a single CDR3 call. We excluded these sequences in our evaluation 
of class-switch events to decrease false-positive calls. Each CSR event identified in 
this work was supported by at least two CDR3 assemblies unambiguously assigned 
to different immunoglobulin isotypes. We normalized the number of CSR events 
by dividing the number of unique CDR3s, and samples with less than ten unique 
CDR3s were excluded from the analyses.

Analysis of SHMs. SHMs were defined as mismatches in B cell clusters. We 
used the BayesNMF function in the SignatureAnalyzer package to decompose 
the mutation count matrix62. We considered each mutation triplet, for example 
ACT to ATT, corresponding to one type of SHM in which the middle base was 
mutated from C to T. To infer the mutation direction, we used only CDR3 pairs 
with different immunoglobulin isotypes, in which we considered the CDR3 with 
a closer constant region on the genome to be the original sequence. Although 
this assumption would be violated if both CDR3s were mutated from a common 
ancestor along different paths, we did observe an enrichment in the correct 
direction after aggregating the SHMs. We counted the number of SHMs for each 
96-triplet and for each immunoglobulin isotype of the original CDR3 to construct 
the mutation count matrix. We decomposed the matrix into two dimensions and 
selected the mutation signature matrix with the highest likelihood out of 1,000 
separate optimizations.

To avoid overestimation of the SHM rate as a result of the aggregated mutations 
during B cell clonal expansion, we counted only mutations for two sequences with 
only one nucleotide mismatch. Then SHM rate per sample was the SHM count 
divided by the total number of assembled CDR3 bases, thereby avoiding the bias 
of unknown mutations outside partial CDR3 assembles. The high-SHM group was 
defined as samples with SHM rate greater than or equal to the median SHM rate, 
and the remaining samples were assigned to the low-SHM group.
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The effect of sequencing errors on the SHM estimation should be low. 
Approximately 96% of the TCGA RNA-seq BAM files in this study had an average 
quality score greater than 30. According to the manufacturer’s definition, a quality 
score of 30 corresponds to a 0.1% error rate, which is a magnitude lower than the 
~5% SHM rate that we observed in B cell CDR3s.

Statistical analysis. Partial Spearman’s rank correlation was used to verify the 
associations between gene expression and B cell features, including SHM rate and 
the number of B cell clusters normalized by the total number of unique CDR3s. 
Correlation coefficients and FDR-adjusted P values of compared values, controlling 
for the tumor purity, are shown in heat maps for tumor types with at least 100 
samples (Figs. 3a and 6b). The fold changes between tumor and adjacent normal 
tissues (Fig. 4) were calculated by the average values in two groups and tested with 
Student’s t test. We excluded the tumor types with <100 tumor samples or <10 
normal samples. Survival analyses were visualized with Kaplan–Meier curves, and 
the statistical significance was estimated with Cox proportional hazard regression 
corrected for patient age and tumor purity. Survival analyses, including those 
shown in Figs. 5c and 6c, were conducted by using all of the samples with BCR 
sequence, tumor purity, and clinical annotation data available. Per-cancer-type 
survival analyses were performed only for cancer types with at least ten patients 
in all compared groups. Key findings of interactions between immune evasive 
SCNAs and B cell sCSRs were confirmed with Cox regression, corrected for age 
at diagnosis and tumor purity on samples. All survival analyses were truncated at 
5,000 d, to exclude potential nonrelevant long-term survival or death incidence. 
Other sample comparisons, including metalloproteinase expression between 
MICA-amplified and unamplified tumors, and IgG1/3 levels between tumors 
with evasive SCNAs and those without, were performed with Wilcoxon rank-sum 
tests. We reported two-sided P values for Student’s t tests and Wilcoxon rank-sum 
tests. Multiple hypothesis correction is performed, and P values adjusted through 
the Benjamini–Hochberg procedure are reported. All statistical tests and survival 
curves were implemented with R statistical programming language63.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
Modified TRUST applicable to BCR IgH CDR3 assemblies and supporting files are 
available at https://bitbucket.org/liulab/trust/. Code for performance evaluation has 
been deposited at https://bitbucket.org/liulab/ng-bcr-validate/.

Data availability
The data sets generated during the study are available from FireCloud and with 
dbGap permission to retrieve restricted TCGA data. The RNA-seq data set 
generated for validating TRUST performance is available in the SRA repository 
(PRJNA492301), and the matched iRepertoire data are available at  
https://bitbucket.org/liulab/ng-bcr-validate/src/master/iRep/.
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