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Cancer immunotherapies by immune checkpoint blockade 
(ICB) aim to help the immune system recognize and attack 
cancer cells1. The primary targets of ICB treatment are pro-

grammed death-ligand 1 (PD-L1), programmed death 1 (PD1) and 
cytotoxic T-lymphocyte-associated protein 4 (CTLA4). Compared to 
conventional therapies, ICB can induce durable responses in patients 
with metastatic cancers. However, a significant limitation of ICB is 
that only one-third of patients respond to ICB in most cancer types 
tested2. Combination ICB therapies have shown improved outcomes 
but also result in more severe side effects than single-agent therapy1. 
Multiple factors can affect ICB effectiveness2, including the degree of 
cytotoxic T cell infiltration3, mutation or neo-antigen load4, PD-L1 
level5, antigen presentation defects6, interferon signaling7, mismatch 
repair deficiency8, tumor aneuploidy9 and intestinal microbiota10. 
However, none of these factors is sufficient to achieve accurate out-
come prediction5, and identification of ICB response biomarkers 
and resistance regulators is a critical challenge in the field.

Gene expression biomarkers, such as Oncotype DX11, 
MammaPrint12 and Prosigna13, have demonstrated clinical utility in 
predicting treatment benefits in breast cancer. We hypothesize that 
transcriptome signatures could also serve as reliable ICB biomarkers. 
Ideally, a large number of tumor molecular profiles together with the 
patient clinical outcome could be used to train a reliable multi-gene 
biomarker. However, current ICB clinical trials have gene expres-
sion profiles on only a small number of pre-treatment samples, 
which are insufficient to train robust prognostic biomarkers3,14,15.  
Alternatively, there are many public tumor profiling data sets from 
human and mouse models without immunotherapy, but which are 

informative regarding tumor immune escape. For example, recent 
analyses of TCGA and PRECOG data uncovered significant effects 
of tumor-infiltrating levels of different immune cell types on patient 
overall survival16–18. Predicting tumor response to ICB requires 
an understanding of how tumors escape the immune system. 
Therefore, the public tumor molecular profiles, even without ICB 
treatment, may still be valuable resources to model immune evasion 
and derive surrogate biomarkers of ICB response.

Recent work has revealed two distinct mechanisms of tumor 
immune evasion19,20. Some tumors have a high level of infiltration by 
cytotoxic T cells, but these T cells tend to be in a dysfunctional state. 
In other tumors, immunosuppressive factors may exclude T cells 
from infiltrating tumors21. Therefore, we developed a computational 
framework, Tumor Immune Dysfunction and Exclusion (TIDE), to 
identify factors that underlie these two mechanisms of tumor immune 
escape. TIDE integrated and modeled data from 189 human can-
cer studies, comprising a total of 33,197 samples. We hypothesized 
and validated that an accurate gene signature to model the tumor 
immune escape could serve as a reliable surrogate biomarker to pre-
dict ICB response. The web application, source code and analysis  
results of TIDE are available at http://tide.dfci.harvard.edu.

Results
A statistical interaction test identifies gene signatures of T cell 
dysfunction. Previous reports showed that cytotoxic T cells could 
infiltrate a subset of tumors, although they could still fail to con-
trol tumor growth if in a dysfunctional state22. We reasoned that by 
combining transcriptome profiles of treatment-naive tumors with 
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patient survival outcome, we could identify known regulators of T 
cell dysfunction. For example, in the TCGA melanoma study, we 
used the average expression level of CD8A, CD8B, GZMA, GZMB 
and PRF1 to estimate the cytotoxic T lymphocyte (CTL) level in 
a tumor16. Among metastatic melanoma tumors, a higher CTL 
level indicates a better patient survival, but only when TGFB1 has 
a low expression level (Fig. 1a and Supplementary Fig. 1a). This 
observation corroborates the known role of the cytokine TGFβ​ 
(encoded by TGFB1) in promoting tumor immune escape and 
immunotherapy resistance2,23,24.

In statistics, two variables interact if the effect of one variable 
depends on the other variable25. In the previous examples, the effect 
of CTL on survival outcome depends on the TGFB1 level, which is a 
typical case of interaction between variables. The interaction of any 
two variables on survival outcome can be tested by a multiplication 
term in the Cox proportional hazard (Cox-PH) model26 (Fig. 1b). 
The coefficient d of the multiplication term indicates the level of 
the interaction effect, and the Wald test can evaluate its statistical 
significance26. For example, the TGFB1 expression level has a sig-
nificantly antagonistic interaction with CTL level, indicating that a 
higher TGFB1 level in tumors will decrease the beneficial associa-
tion between CTL and overall survival (Supplementary Table 1a). In 
contrast to TGFB1, another gene SOX10 expression level has a syner-
gistic interaction with CTL level on patient survival outcome, indi-
cating that a higher SOX10 level in tumors will increase the beneficial 
association between CTL and survival (Supplementary Table 1b),  
which is consistent with the known function of SOX10 to promote 
T cell-mediated tumor killing27,28.

We aim to systematically identify genes such as TGFB1 and 
SOX10 that influence the function of cytotoxic T cells on patient 
survival outcome in cancer genomics data cohorts. Using the 
Cox-PH model, TIDE tests how the interaction between a candidate 
gene V and the CTL affects death hazard (estimated from survival) 
(Fig. 1b). The resulting T cell dysfunctional signature is a genome-
wide vector, where the z score of each gene is the interaction coeffi-
cient d divided by its standard error (Supplementary Table 1). Genes 
with significant z scores are not restricted to genes expressed by  
T cells but could be expressed in cancer cells (for example, SOX1027,28) 
or different immune cells associated with T cell dysfunction. In the 
case of TGFB1, both cancer cells29 and CD4+ FOXP3+ Treg cells30 
can express the cytokine TGFβ​ to inhibit T cell function.

To compute the T cell dysfunction scores in different cancer 
data sets, we collected hundreds of data sets from the TCGA31, 
PRECOG17 and METABRIC32 databases, and focused on 73 that had 
a minimum of 50 samples with both tumor expression profiles on the 
genome scale and patient survival data (Supplementary Table 2a).  
Among the data sets, TIDE predicted different numbers of genes 
to interact with CTL with statistical significance. For example, the 
P-value distribution for genes in TCGA melanoma was skewed to 
the left, indicating many significant genes (Supplementary Fig. 1b).  
However, the peak of significant P values was absent in TCGA 
glioblastoma. This difference is likely due to differences in T cell 
infiltration, data quality or sample size. In five data sets, over 1% of 
genes have significant interaction with CTL to affect survival at a 
false discovery rate (FDR) cutoff of 0.1: melanoma, neuroblastoma, 
triple-negative breast cancer, endometrial cancer and acute myeloid 
leukemia (Supplementary Fig. 1b and Supplementary Table 2b). For 
visualization, genes with significant dysfunction scores (FDR <​ 0.1) 
in at least two cancer types are shown in Fig. 1c (Supplementary 
Table 3). Although some of the genes are known to regulate T cell-
mediated tumor immunity, such as PD-L1, others are likely to be 
co-expressed with immune-suppressive genes.

The TIDE dysfunction scores are consistent with signatures 
of tumor immune evasion. We evaluated the quality of TIDE  
T cell dysfunction scores using published studies of tumor immune  

evasion in pre-clinical models (Supplementary Table 4). One 
shRNA screen identified positive or negative hit genes whose 
knockdown in T cells enhanced or decreased T cell accumulation 
in mouse tumors, respectively33. Gene expression profiles to study  
T cell dysfunction are also publicly available, including the tran-
scriptome of exhausted CD8 T cells34, activated regulatory T cells35 
and tumors with acquired ICB resistance36. The positive or nega-
tive hits are defined as genes upregulated or downregulated in 
the process of T cell dysfunction or ICB resistance, respectively 
(Supplementary Tables 4 and 5). We examined whether the TIDE 
T cell dysfunctional signatures give significantly different scores 
between positive and negative hit genes in these published studies. 
We found that TIDE dysfunction signatures averaged from the five 
clinical cohorts assign positive hits significantly higher dysfunc-
tion scores compared to the negative hits (Fig. 2a). Using receiver 
operating characteristic (ROC) curves, we found that averaging the 
TIDE dysfunction signatures from the five cohorts gave the best 
performance (Fig. 2b,c and Supplementary Fig. 2a), suggesting the 
average profile as a more robust dysfunctional signature.

Recent studies in mouse tumor models revealed two stages of 
T cell dysfunction37,38. While anti-PD1 treatment can revive the 
early-stage dysfunctional T cells, late-stage dysfunctional T cells 
are resistant to ICB reprogramming. The average profile of TIDE 
dysfunction signatures derived from the five cancer cohorts shows 
increasing correlation with the gene expression profiles of dysfunc-
tional T cells in late stages38 (Fig. 2d). This result suggests that the 
TIDE dysfunction signatures reflect the profiles at the late stage of 
T cell dysfunction. We also applied gene set enrichment analysis to 
analyze the functional enrichment of TIDE T cell dysfunction sig-
natures. Immune pathways related to inflammatory and interferon 
response are highly enriched, while mTORC1 signaling39, protein 
secretion40 and glycolysis41 that are known to promote CD8 T cell 
activation are consistently depleted (Supplementary Fig. 2b).

Immunosuppressive cell signatures predict immune escape by  
T cell exclusion. The previous section described T cell dysfunction 
signatures in tumors with high cytotoxic T cell infiltration. Next, 
we explored gene signatures of immune evasion through T cell 
exclusion in tumors with low T cell infiltration19,20. Several molecu-
lar mechanisms might explain the lack of T cell infiltration in the 
tumor, such as impaired priming of tumor-specific T cells or sup-
pressive cells prohibiting T cell infiltration into the tumor19,20. To 
model the gene expression signature of T cell exclusion, we exam-
ined three cell types reported to restrict T cell infiltration in tumors, 
namely cancer-associated fibroblasts (CAFs), myeloid-derived sup-
pressor cells (MDSCs) and the M2 subtype of tumor-associated 
macrophages (TAMs)20. We derived a genome-wide signature of T 
cell exclusion using expression profiles of these cell types from the 
Gene Expression Omnibus database42 (Supplementary Table 4). In 
TCGA melanoma data, tumors whose expression profiles have a 
higher correlation with the MDSC, TAM or CAF signatures show a 
significantly lower level of CTLs (Fig. 3a). Moreover, using the aver-
age expression profile of MDSCs, TAMs and CAFs to model T cell 
exclusion, we observed a strong negative correlation between the 
T cell exclusion scores and the CTL levels across tumors (Fig. 3a). 
Moreover, the CTL levels and T cell exclusion scores were negatively 
correlated in all solid tumor data sets (Fig. 3b).

We further examined the associations between the gene signa-
tures of T cell exclusion and T cell dysfunction. For each tumor, 
the enrichment of a signature is computed as the Pearson correla-
tion between the tumor gene expression profile and the genome-
wide scores of T cell exclusion or dysfunction signatures. In the five 
cancer types where we can identify significant T cell dysfunction 
scores, the level of T cell exclusion in a tumor inversely correlates 
with the level of T cell dysfunction (Fig. 3c and Supplementary 
Fig. 3a). We also calculated the signature enrichment based on 
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Fig. 1 | The interaction test identifies gene signatures of T cell dysfunction. a, The association between the CTL level and overall patient survival for 
melanoma tumors with different TGFB1 levels. For each metastatic melanoma tumor in TCGA, the CTL infiltration level was estimated as the average 
expression level of CD8A, CD8B, GZMA, GZMB and PRF1. The association between the CTL level and overall survival was computed through the two-sided 
Wald test in the Cox-PH regression. Each Kaplan–Meier plot presents tumors in two groups: ‘High CTL’ (red) have above-average CTL values among all 
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panels show the remaining samples. b, The interaction test in a Cox-PH regression to identify genes associated with the T cell dysfunction. The variable 
CTL represents the level of CTLs in each tumor. The variable V represents the status of a candidate gene. The coefficient d reflects the effect of interaction 
between the CTL and V on death hazard outcome estimated from the survival data. The graphs represent the association slopes between CTL and death 
hazard. The black and gold arrows represent the association slopes before and after increasing the level of V. c, Genes with significant T cell dysfunction 
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the differential expression between tumor and normal samples 
across TCGA cancer types and observed similar negative correla-
tions between T cell exclusion and T cell dysfunction (Fig. 3d and 
Supplementary Table 6). Kidney renal cell carcinoma (KIRC) has 

the highest CTL level and the highest enrichment of the T cell dys-
function signature (Fig. 3d and Supplementary Fig. 3b), while lung 
squamous carcinoma (LUSC) has the highest T cell exclusion sig-
nature (Fig. 3d and Supplementary Fig. 3c). Our results are con-
sistent with previous reports of a high CTL level in KIRC and a 
low CTL level in LUSC16. These results suggest that the KIRC and 
LUSC tumors utilize distinct immune evasion strategies, with KIRC 
operating more through T cell dysfunction and LUSC through  
T cell exclusion. Previous studies reported paradoxical observa-
tions that in KIRC the degree of CD8 cytotoxic T cell infiltration is 
anti-correlated with survival benefits43. Our analysis revealed that 
KIRC tumors with higher CTL levels tend to have a stronger T cell 
dysfunction signature, which could impair the ability of cytotoxic  
T cells to kill cancer cells (Supplementary Fig. 3b).

TIDE signature predicts ICB response. In previous sections, we 
developed genome-wide expression signatures to measure the level 
of T cell dysfunction and T cell exclusion in tumors. We next exam-
ined whether integrating these two signatures could predict ICB 
clinical response. Among the five cancer types for which we could 
compute reliable TIDE signatures (Fig. 1c), only melanoma has 
publicly available data on tumor expression and clinical outcome 
of patients treated with anti-PD114 or anti-CTLA43, so it was the 
focus of our evaluation. We also evaluated TIDE on an anti-PD1 
data set that profiled tumor expression profiles across four cancer 
types using the NanoString assay on a few hundred genes15.

We classified the tumors as CTL-high if the expression levels of 
all CTL markers (CD8A, CD8B, GZMA, GZMB and PRF1) were 
higher than their average values in each data set and the remain-
ing tumors as CTL low. In the CTL-high tumors, TIDE correlates 
the tumor expression data with the T cell dysfunction signature and 
predicts tumors with high correlation to T cell dysfunction as non-
responders (Supplementary Fig. 4a). In CTL-low tumors, it has been 
reported that ICB can enhance the cytotoxic T cell infiltration44,45, 
so patients with low tumor CTL might still derive clinical benefits 
from immunotherapies. Therefore, TIDE correlates the expression 
data for each tumor with the T cell exclusion signature in CTL-low 
tumors and predicts those with suppressive cells inhibiting T cell 
infiltration as non-responders (Supplementary Fig. 4a). Notably, the 
correlation between tumor expression profiles and TIDE signatures 
is a single value computed across all human genes (Supplementary 
Fig. 4b), and therefore not subject to multiple-hypotheses testing 
and less sensitive to the noise from individual expression or the 
TIDE signature value. For the pre-treatment transcriptome of each 
tumor, the Pearson correlation with either T cell dysfunction (in 
CTL-high tumors) or exclusion (in CTL-low tumors) signatures 
was defined as the TIDE prediction score (Fig. 4a–c). Correlations 
with T cell dysfunction or exclusion signatures may have different 
distributions (Supplementary Fig. 4c). Thus, when merging the pre-
diction scores from two tumor CTL categories, we normalized the 
correlations by their standard deviations in the TCGA data. Finally, 
all tumors were ranked by their TIDE scores to predict their ICB 
response (Fig. 4a–c and Supplementary Fig. 4d).

To evaluate the prediction performance for ICB response, we 
used ROC to measure the true-positive rates against the false-
positive rates at various thresholds of TIDE prediction scores  
(Fig. 4d–f). Compared to widely used ICB response biomarkers, 
tumor mutation load, PD-L1 level and interferon gamma response5,7, 
the TIDE signature achieved consistently better performance for 
both anti-PD1 and anti-CTLA4 therapies using both RNA-Seq and 
NanoString data (Fig. 4d–f and Supplementary Fig. 5a). We also 
compared TIDE with other ICB response signatures reported in the 
literature (Supplementary Table 7). Among all candidate biomark-
ers, we found the TIDE signature to be the best predictor for both 
anti-PD1 and anti-CTLA4 therapies (Fig. 4g–i and Supplementary 
Table 8a). The prediction performance of TIDE is also higher than 
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the signatures of T cell dysfunction and ICB resistance discussed in 
Fig. 2a (Supplementary Fig. 5b). Meanwhile, the TIDE prediction 
performance is robust against modest variations of CTL cutoff in 
the definition of CTL-high or -low tumors (Supplementary Fig. 5c). 
Moreover, a higher tumor TIDE prediction score is associated not 
only with worse ICB response, but also with worse patient survival 
under anti-PD1 and anti-CTLA4 therapies (Fig. 4j–l). One explana-
tion for the better performance of TIDE is that TIDE utilized both T 
cell dysfunction and exclusion signatures to model immune escape 
in tumors with different CTL levels, while other biomarkers con-
sider only one aspect (Supplementary Fig. 5d–f and Supplementary 
Table 8b,c). Paradoxically, a previous computational method 
ImmunoPhenoScore claimed to have 100% accuracy in predicting 
ICB response in melanoma46, but we observed considerably lower 
accuracy of ImmunoPhenoScore using the source codes provided 
by the authors (Fig. 4g–i).

Besides the anti-PD1 RNA-Seq cohort14 analyzed in Fig. 4, a recent 
study generated RNA-Seq profiles on another melanoma cohort 
treated with anti-PD145. We focused on 24 patients with genom-
ics profiles (expression and mutation) of pre-treatment tumors 
and anti-PD1 as the first-line immunotherapy (without previous  

anti-CTLA4 therapy). While the TIDE prediction score has a simi-
lar accuracy to the mutation load (Supplementary Fig. 6a,b), it is 
significantly predictive of the patient overall survival (‘Ipi naive’ 
in Supplementary Fig. 6c), demonstrating its prognostic value. We 
noted that TIDE achieved a lower prediction performance in the 
Riaz study compared to its performance in the Hugo study (Fig. 4d 
versus ‘Ipi naive’ in Supplementary Fig. 6). A possible explanation is 
that the Riaz study45 used the RECIST v1.1 criteria for disease pro-
gression, while the Hugo study14 used the immune-related RECIST47, 
which is more appropriate for predicting immunotherapy response. 
Further, TIDE is trained using data from ICB-naive tumors and 
thus not relevant in modeling the tumors that progressed after a 
first-line ICB2 (‘Ipi progressed’ in Supplementary Fig. 6).

The TIDE dysfunction score predicts regulators of ICB resis-
tance. We hypothesized that some genes with high scores in 
TIDE signatures might serve not only as biomarkers but also as 
ICB resistance regulators. We focused on the T cell dysfunction 
signature for genes regulating T cell dysfunction in tumors. As 
the T cell dysfunction scores were computed using the data from  
treatment-naive tumors, we utilized orthogonal data from a mouse 
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model of acquired anti-CTLA4 resistance to identify genes that are 
associated with ICB resistance36. We ranked genes with significant T 
cell dysfunction scores in Fig. 1c by the expression fold-change in the 
ICB-resistant tumors36 and identified Serpinb9 as the most upregu-
lated gene (Fig. 5a,b). In ICB clinical cohorts, the SERPINB9 expres-
sion level is consistently lower in responders than non-responders 
(Supplementary Fig. 7a). Moreover, SERPINB9 expression alone is 
significantly associated with worse overall survival in two clinical 
studies of anti-CTLA4 therapy3,48 (Fig. 5c, Supplementary Fig. 7b 
and Supplementary Table 9).

SERPINB9 is a member of the serine protease inhibitor (ser-
pin) family. The encoded protein can inactivate granzyme B to 
protect lymphocytes (for example, T cells and natural killer cells) 

from granzyme that may leak from the granules49. It is normally 
expressed in cytotoxic lymphocytes, antigen-presenting cells and 
immune-privileged sites50–52. Meanwhile, a study using in vitro cell 
culture models reported that a high SERPINB9 level in cancer cells 
resulted in resistance to T cell-mediated killing53. To infer which 
cell type in tumors is the potential source of a high SERPINB9 level, 
we examined the Protein Atlas database of immunohistochemis-
try results for 15,000 genes in 20 cancer types54. The SERPINB9 
protein is expressed at a higher level in cancer cells of melanoma 
and several other cancer types as compared to normal tissues 
(Supplementary Fig. 7c,d). Thus, SERPINB9 may promote the 
resistance to T cell-mediated killing during ICB therapy through 
its high expression in cancer cells.
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To validate SERPINB9 function in cancer cells, we knocked out 
Serpinb9 using CRISPR–Cas9 in the murine B16F10 melanoma cell 
line, which is the parental line of the anti-CTLA4-resistant tumor 
model previously discussed36. After knocking out Serpinb9 using two 
different CRISPR guide RNAs (gRNAs), the protein level became 
undetectable (Fig. 5d and Supplementary Fig. 8). When co-cultured 
with Pmel-1 cytotoxic T cells, the Serpinb9-knockout B16F10 cells 
were more sensitive to T cell-mediated killing compared to control 
cells (Fig. 5e, Supplementary Fig. 9a and Supplementary Table 10). 
In contrast, B16F10 cells with Serpinb9 overexpression were signifi-
cantly more resistant to T cell-mediated killing compared to control 
cells (Fig. 5f, Supplementary Fig. 9b and Supplementary Table 10).

Notably, in B16F10 cells, the SERPINB9 protein level is signifi-
cantly increased on treatment with IFNγ​, a cytokine produced by 
cytotoxic T cells following antigen-specific activation55 (Fig. 5d). This 
SERPINB9 induction following IFNγ​ treatment might be explained 
by the binding of IRF1, a transcription factor activated by IFNγ​ sig-
naling56, near the Serpinb9 gene that is observed in public ChIP-Seq 
data sets (Supplementary Fig. 10a,b). In human melanoma tumors, 
the expression level of SERPINB9 is highly correlated with IRF1 on 
both bulk tumor and single-cell levels (Supplementary Fig. 10c,d).  

These results support that SERPINB9 in cancer cells regulates resis-
tance to T cell-mediated killing, which is essential for ICB response. 
Interestingly, the SERPINB9 expression level is also consistently 
upregulated following pathogen infection in curated studies from 
the NCBI Gene Expression Omnibus42 and Expression Atlas57 
databases (Supplementary Fig. 11 and Supplementary Table 11).  
This result indicates that SERPINB9 is potentially a general regula-
tor of immune evasion utilized by both tumors and pathogens.

Discussion
We developed a computational method called TIDE, which integrates 
the expression signatures of T cell dysfunction and T cell exclusion to 
model tumor immune evasion. The TIDE signatures, trained from 
treatment-naive tumor data, can predict ICB clinical response based 
on pre-treatment tumor profiles. Furthermore, TIDE predicted regu-
lators of ICB resistance whose inhibition might improve ICB response. 
We experimentally validated the role of SERPINB9, an inhibitor of 
the cytotoxic lymphocyte protease GZMB, in tumor immune eva-
sion, which is an essential process of ICB resistance. Although no 
small-molecule inhibitor of SERPINB9 is available, the Pfizer OASIS 
database indicates this protein as potentially druggable58.
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Of the 73 data sets analyzed in this study, only five gave statisti-
cally significant T cell dysfunction signatures from the interaction 
test (Supplementary Table 2). This result is partly because we con-
sidered only 48 out of the 73 data sets where a higher level of tumor- 
infiltrating cytotoxic T cells is correlated with better survival out-
come. In some cancer types, such as renal cell carcinoma, which has 
a substantial level of CD8 T cell infiltration, higher CTL may not be 
associated with survival benefits43. Also, depending on the sample size 
or characteristics of specific data sets, there might not be any statisti-
cally significant genes interacting with CTL to influence survival. Since 
averaging signatures from the five data sets yielded a signature more 
robust than any individual signature, integrating additional cancer data 
sets in the future has the potential to further improve the robustness of 
the T cell dysfunction scores (Fig. 2c). With additional data, cancer-
type-specific regulators may be identified on the basis of the biological 
variations of T cell dysfunction scores across different cancer types.

When using the TIDE model to predict ICB response, we 
determined a cutoff to classify tumors as CTL-high or CTL-low. 
We used the average expression of CTL markers (CD8A, CD8B, 
GZMA, GZMB and PRF1) across all tumors to determine the CTL 
threshold. However, if matched normal tissues are available, the 
CTL threshold could also be determined by comparing the CTL 
marker expression in tumors with marker expression in normal tis-
sues. The TIDE signature consists of genome-wide scores of T cell 
dysfunction and exclusion. While a genome-wide transcriptome 
biomarker might be robust for ICB response prediction, RNA-Seq 
has not been widely adopted in the clinic. A smaller gene panel for 
qPCR or NanoString assays could be more clinically pragmatic. We 
demonstrated TIDE performance on an anti-PD1 response data set 
where baseline tumor expression was measured on the NanoString 
PanCancer panel (Fig. 4c).

One limitation of our study is that we focused primarily on gene 
expression biomarkers. However, other biomarker types can also 
predict T cell infiltration and ICB response. For example, beta-
catenin protein level has a negative correlation with CTL in many 
cancer types (Supplementary Fig. 3d,e and Supplementary Table 12).  
Moreover, tumors initially responding to ICB may later acquire 
mutations, such as in B2M, IFNGR1/2 and JAK1/2 genes, to become 
ICB resistant2. However, our study focuses only on predicting 
intrinsic ICB resistance. Therefore, more data types and methods 
are necessary to model the immunotherapy efficacy comprehen-
sively. It is possible that TIDE could be applied jointly with other 
types of biomarker to achieve a higher prediction performance.

To enable testing of TIDE by clinicians and the public, we cre-
ated a web application for response prediction using transcriptome 
profiles at http://tide.dfci.harvard.edu. TIDE has the potential to 
help oncologists select patients who are more likely to benefit from 
ICB. It would be of significant interest to test the clinical utility of 
TIDE in ICB decision-making in a prospective clinical trial. New 
immune-oncology data are emerging at an increasingly rapid pace. 
We envision that computational modeling and data integration will 
be increasingly utilized to refine ICB response biomarkers and iden-
tify new immunotherapy targets.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41591-018-0136-1.
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Methods
Data collection of clinical genomics studies. We collected cancer data sets with 
both patient survival durations and tumor gene expression profiles from the 
TCGA31, PRECOG17 and METABRIC32 databases. If the clinical information is 
available, we separated the breast cancer data sets into the PAM50 (Prediction 
Analysis of Microarray 50, Prosigna) subtypes13 of luminal A, luminal B, Her2 
positive, basal and triple negative (a variation of basal subtype). This separation 
is because each PAM50 subtype has a distinct genomics profile59 and degree of 
cytotoxic T cell infiltration60. Among all TCGA cancers, melanoma has two major 
tumor types annotated (that is, primary and metastatic); thus, we split melanoma 
profiles into primary and metastatic subtypes. The PRECOG database provided 
only survival duration information without other clinical factors; thus, we cannot 
perform subtype analysis. METABRIC is a breast cancer cohort, and we split all 
tumors according to the PAM50 subtypes (luminal A, luminal B, HER2, basal and 
triple negative).

To ensure the robustness of our analysis, we excluded the data sets from 
microarray platforms with fewer than 15,000 genes or without probes for 
cytotoxicity T cell markers (CD8A, CD8B, GZMA, GZMB and PRF1). Also, we 
included only data sets with more than 50 patients and 10% death rate because a 
low event number may undermine the reliability of Cox-PH survival regression26. 
Finally, 73 data sets from 3 databases passed our selection criteria (Supplementary 
Table 2a). The expression values of all genes are normalized by subtracting the 
mean values across all samples in a data set.

Statistical analysis. The interaction test in multivariate Cox-PH regression was 
applied to identify gene association with T cell dysfunction phenotype. In statistics, 
two variables interact if the effect of one variable depends on the status of the other, 
and a multiplication term in a multivariate linear model can test the interaction 
effect between two variables25. We applied the Cox-PH survival regression to test 
how the level of CTL interacts with other genes in the tumor to affect survival 
outcome. We solve a linear model Hazard =​ a×​CTL +​ b×​V +​ d×​CTL×​V +​ c using 
the Cox-PH regression26. The CTL level is estimated through the bulk-tumor 
expression average of CD8A, CD8B, GZMA, GZMB and PRF1. In the Cox-PH 
model, the death hazard was estimated through the patient survival information. 
The variable V represents the expression level of a candidate gene in the test. Since 
we have selected data sets where CTL correlates with favorable survival outcome, 
the coefficient a is always negative. The association slope between CTL and Hazard 
is a +​ d×​V (Fig. 1b). If the coefficient d is positive, a higher V level will flatten  
the slope between CTL and Hazard, indicating a reduced association between  
the cytotoxic T cell level and better survival outcome. If d is negative, a higher  
V level will sharpen the slope between CTL and Hazard, indicating an increased 
association between the cytotoxic T cell level and better survival outcome. The 
T cell dysfunction score for each gene is defined as the Wald test z score, which 
is the coefficient d divided by its standard error26 (Fig. 1c and Supplementary 
Table 1). Of note, the thresholds shown in Fig. 1a and Supplementary Fig. 1a are 
used only to illustrate the principle of statistical interaction used by the model. 
When computing the T cell dysfunction scores through regression, we used the 
continuous variables without any thresholds. Also, we included clinical covariates, 
such as age, gender and stage (if available), in the regression to control for potential 
confounding factors.

To identify significant genes in the interaction test, we applied the Benjamini–
Hochberg method to convert the two-sided Wald test P values to FDRs61, and 
selected clinical data sets with more than 1% genes having an FDR smaller than 
0.1. This procedure is equal to selecting data sets where the distribution of P values 
has a significant peak near zero62. For example, the P-value histogram computed 
using TCGA melanoma data has a spike near zero, indicating that a set of genes 
significantly interact with CTL to affect survival outcome (Supplementary Fig. 1b). 
In contrast, the result computed from glioblastoma data does not contain any genes 
with significant interactions (Supplementary Fig. 1b).

Performance comparison on predicting ICB response. We collected the RNA-Seq 
data in melanoma for anti-CTLA43 and anti-PD114 therapies with gene expression 
profiles for 25 and 42 pre-treatment tumors with complete clinical information, 
respectively. We collected the NanoString data for anti-PD1 therapies with gene 
expression profiles of 33 baseline tumors in four cancer types15. For each data set, 
we standardized the transcriptome data across patients by quantile-normalization, 
and further normalized the expression values of each gene by subtracting the 
average among all samples. Therefore, a zero value indicates the average expression.

To predict each tumor’s potential to escape T cell-mediated killing, we first 
classified each tumor into CTL-high or CTL-low categories through the CTL 
marker expression levels (CD8A, CD8B, GZMA, GZMB and PRF1). Tumors with 
all positive values (higher than average) are classified as CTL-high, while the rest 
as CTL-low (Supplementary Fig. 4a). For the CTL-high tumors, we computed 
the Pearson correlation between tumor gene expression profiles and the T cell 
dysfunction signature (Supplementary Fig. 4b). For the CTL-low tumors, we 
computed the Pearson correlation between tumor gene expression profiles and 
the T cell exclusion signature (Supplementary Fig. 4b). The correlation with 
T cell dysfunction or exclusion signatures may have different distributions 
(Supplementary Fig. 4c). Therefore, to make the scale of Pearson correlations 

comparable between CTL-high and -low tumors, we normalized the correlation 
values within each sub-category through the standard deviation of correlations 
computed using the TCGA melanoma data. The scaled correlations were defined 
as TIDE prediction scores, representing the potential of tumor immune escape 
(Fig. 4a–c).

We also computed the response prediction from other biomarkers published 
in the literature. The predicted values of gene expression biomarkers (for example, 
IFNG, CD8, PDL1 and CRMA) were the average values among all members 
defined by the original publications (Supplementary Table 7). The predicted values 
of ImmunoPhenoScore were computed using the source codes provided by the 
authors46. The predicted value of the tumor SCNA biomarker was downloaded 
from the original publication for the anti-CTLA4 data set9 and provided by W. 
Hugo for the anti-PD1 data set14.

The outcome predicted by all biomarkers is a range of values, instead of a binary 
outcome. For example, total mutation load, CD8 expression level and TIDE prediction 
score all give one value for each patient tumor instead of a response classification. 
Therefore, we utilized the ROC curve, which plots the true-positive rates versus false-
positive rates at various thresholds of biomarker values (Fig. 4d–f). The area under the 
ROC curve was used as the quality metric of prediction (Fig. 4g–i).

Gene selection for a focused TIDE signature. We select the most informative 
genes with both high variance across tumors and significant values in the TIDE 
signature. We selected 770 genes because that number is compatible with a 
NanoString platform that could be designed for a clinical assay. In the first step, we 
computed the standard deviation of expression values across samples for all genes 
in each TCGA cancer data set and selected 4,150 genes whose standard deviation is 
higher than the average of all genes in more 80% TCGA data sets. Next, we ranked 
the 4,150 genes by their maximum absolute values in the TIDE signatures of T cell 
dysfunction and exclusion. From this ranked list, we selected the top 770 genes, 
which is the maximum number that can fit on a NanoString assay. The column 
‘TIDE.selected’ in Fig. 4g–i shows the TIDE performance on selected genes.

T cell killing assay based on co-culture between B16 and T cells. B16F10 cells 
were maintained in complete DMEM media (10% FBS and 50 U ml−1 of penicillin/
streptomycin). B16F10-Cas963 cells were maintained in complete DMEM media 
with 2.5–5 µ​g ml−1 of blasticidin. CD8 T cells isolated from mice were cultured in 
complete RPMI 1640 media (10% FBS, 20 mM HEPES, 1 mM sodium pyruvate, 
0.05 mM 2-mercaptoethanol, 2 mM l-glutamine and 50 U ml−1 streptomycin and 
penicillin). All cell lines are tested for mycoplasma contamination. Pmel-1 TCR 
transgenic mice were purchased from Jackson Laboratory (stock no. 005023).

CD8 T cells were isolated from spleen and lymph nodes from Pmel-1 TCR 
transgenic mice using the EasySep mouse CD8+ T cell isolation kit (STEMCELL 
no. 19753) according to the manufacturer’s protocol. Freshly isolated CD8 T 
cells were stimulated with anti-CD3/CD28 beads (ThermoFisher no. 11452D) at 
a bead to cell ratio of 1:2 to induce differentiation into an effector state. On day 
3, recombinant mouse IL-2 (Biolegend, no. 575406) was added to the culture 
at 20 ng ml−1. T cells were used for co-culture with B16F10 cells after at least 
six days of in vitro activation. Our animal experiments have complied with all 
relevant ethical regulations. The study protocol in this study was approved by the 
Institutional Care and Use Committee at Dana Farber Cancer Institute.

To knockout Serpinb9, CRISPR gRNA sequences targeting Serpinb9 or 
non-targeting control were cloned into a PLKO3G-GFP vector and confirmed 
by sequencing. To overexpress Serpinb9, its cDNA was amplified, cloned into a 
pEF1a-puro vector and confirmed by sequencing. Knockout or overexpression 
constructs were co-transfected with pCMV-dR8.91 and pCMV-VSV-G (Addgene 
no. 8454) into HEK293T cells to generate lentivirus. Transfection was performed 
using TransIT-293 (Mirus, MIR2700) following the manufacturer’s protocol. 
Lentivirus was collected 48 h later and stored at −​80 °C. To generate Serpinb9-
knockout cells, B16F10-Cas9 cells were infected with a lentivirus driving 
expression of a single gRNA overnight to inactivate Serpinb9 genes individually. 
Infected cells were sorted on the basis of GFP expression by BD FACS Aria II. 
To generate Serpinb9-overexpressing cells, B16F10-Cas9 cells were infected with 
either pEF1a-puro backbone or pEF1a-puro-Serpinb9. Infected cells were selected 
by culturing with 2 µ​g ml−1 puromycin. Control (non-targeting gRNA or pEF1a-
puro backbone), Serpinb9-deficient or Serpinb9-overexpressing B16F10-Cas9 cells 
were lysed and subjected to western blot analysis with the following antibodies: 
anti-SERPINB9 (Santa Cruz Biotechnology no. sc-57531) and anti-VCL (Sigma 
Aldrich no. V9264).

In a competition assay with Serpinb9-knockout cells, Serpinb9-deficient or 
non-targeting guide control B16F10-Cas9 cells (GFP positive) were mixed with 
control B16F10-Cas9 cells (GFP negative) at a 1:1 ratio. In a competition assay with 
Serpinb9-overexpressing cells, pEF1a control or pEF1a-Serpinb9 B16F10-Cas9 cells 
(GFP negative) were mixed with control GFP-infected B16F10-Cas9 cells (GFP 
positive) at a 1:1 ratio. Mixed cells were stimulated with 10 ng ml−1 or 100 ng ml−1 of 
interferon gamma for 24 h to enhance MHC class I expression. These tumor cells 
were then co-cultured with in vitro-activated Pmel-1 T cells at different effector-
to-target ratios in a 6-well plate. Tumor cells were plated at equal density in all 
wells, and T cells were added at 0, 1/3, 1/2 or 100% of the number of tumor cells. 
There are two or three cell-culture replicates for each condition. After a three-
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day co-culture with T cells, the fold-change of Serpinb9-edited B16F10 cells was 
determined by FACS, comparing the percentage of Serpinb9-edited B16F10 cells 
to control B16F10 cells (Supplementary Fig. 9). T cells present in these cultures 
were gated out on the basis of antibodies specific for CD45 (APC–Cy7) (Biolegend, 
103115).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Software availability. The TIDE web application of response prediction is freely 
accessible with any modern web browser through http://tide.dfci.harvard.edu/. We 
will keep the website and tool operating and freely accessible for the foreseeable 
future. The source code for computing the T cell dysfunction score through the 
interaction test is available under GNU Public License v3 through GitHub at 
https://github.com/foreverdream2/dysfunction_interaction_test.

Data availability. Users can query our analysis results with gene names: http://
tide.dfci.harvard.edu/query/. All of our processed input data, analysis output data 

and an example script to repeat our major results are available at http://tide.dfci.
harvard.edu/download/.
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6.   Statistical parameters 

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 

Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 

sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 

complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

}   Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 

study. 

Python 2.7.13 included in Anaconda 4.3.1 

R version 3.4.1 

FlowJo X 10.0

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 

available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 

providing algorithms and software for publication provides further information on this topic.

}   Materials and reagents

Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 

unique materials or if these materials are only available 

for distribution by a for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 

for use in the system under study (i.e. assay and species).

1. anti-SERPINB9: Santa Cruz Biotechnology #sc-57531, clone PI9-17, lot number: 

H0316, dilution 1:1000 

 

SERPINB9 antibody (clone PI9-17) was validated in multiple cell lines according to 

manufacturer's documentation, and used in multiple other publications for 

detection of SERPINB9 protein (e.g. PMID 19956856). We also validated this 

antibody through comparing the protein levels between WT and Serpinb9-/- cells. 

 

2. anti-VCL: Sigma Aldrich #V9264, clone hVIN-1,  lot number: 124M4787V, dilution 

1:1000 

 

VCL antibody (clone hVIN-1) has been validated in manufacturer's documentation 

and multiple other publications (e.g. PMID 21159656). 

 

3. CD45: APC-Cy7 Biolegend 103115, clone 30-F11, lot number: B185138, dilution 

1:200 

 

CD45 antibody (clone 30-F11) has been validated in manufacturer's documentation 

and multiple other publications (e.g. PMID: 29301958).
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10. Eukaryotic cell lines

a.  State the source of each eukaryotic cell line used. Both B16F10 and HEK293T cell lines were purchased from ATCC.

b.  Describe the method of cell line authentication used. Both B16F10 and HEK293T cell lines has been confirmed by short tandem repeat 

(STR) analysis.

c.  Report whether the cell lines were tested for 

mycoplasma contamination.
Both B16F10 and HEK293T cell lines were tested negative for mycoplasma 

contamination.

d.  If any of the cell lines used are listed in the database 

of commonly misidentified cell lines maintained by 

ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

}    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived 

materials used in the study.

We isolated T cells from Pmel1 TCR transgenic mice with C57BL6 background, 8-12 

week old, male.

Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population 

characteristics of the human research participants.

This study does not involve human research participants.
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Flow Cytometry Reporting Summary
 Form fields will expand as needed. Please do not leave fields blank.

    Data presentation
For all flow cytometry data, confirm that:

1.  The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

2.  The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of 
identical markers).

3.  All plots are contour plots with outliers or pseudocolor plots.

4.  A numerical value for number of cells or percentage (with statistics) is provided.

    Methodological details
5.   Describe the sample preparation. B16F10 cells (parental or with transgenic GFP expression) were co-

cultured with CD8+ T cells derived from Pmel-1 TCR transgenic mice. After 
co-culture, cells were incubated with anti-CD45 and then analyzed by 
FACS.

6.   Identify the instrument used for data collection. Sony SP6800 Spectral Analyzer

7.   Describe the software used to collect and analyze 
the flow cytometry data.

Data were collected using Sony SP6800 software and analyzed using 
Flowjo.

8.   Describe the abundance of the relevant cell 
populations within post-sort fractions.

N/A

9.   Describe the gating strategy used. We first gated on DAPI- CD45- cells to exclude dead cells and 
hematopoietic cells. We then analyzed the percentage of GFP+ population 
in each sample, which is distinct from un-transduced parental control cells.

 Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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