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SUMMARY

Identifying reliable drug response biomarkers is
a significant challenge in cancer research. We pre-
sent computational analysis of resistance (CARE), a
computational method focused on targeted thera-
pies, to infer genome-wide transcriptomic signatures
of drug efficacy from cell line compound screens.
CARE outputs genome-scale scores to measure
how the drug target gene interacts with other genes
to affect the inhibitor efficacy in the compound
screens. Such statistical interactions between drug
targets and other genes were not considered in pre-
vious studies but are critical in identifying predictive
biomarkers. When evaluated using transcriptome
data from clinical studies, CARE can predict the
therapy outcome better than signatures from other
computational methods and genomics experiments.
Moreover, the CARE signatures for the PLX4720
BRAF inhibitor are associated with an anti-pro-
grammed death 1 clinical response, suggesting a
common efficacy signature between a targeted ther-
apy and immunotherapy. When searching for genes
related to lapatinib resistance, CARE identified
PRKD3 as the top candidate. PRKD3 inhibition, by
both small interfering RNA and compounds, signifi-
cantly sensitized breast cancer cells to lapatinib.
Thus, CARE should enable large-scale inference of
response biomarkers and drug combinations for
targeted therapies using compound screen data.

INTRODUCTION

Despite the rapid development of cancer treatment methods,

many issues such as drug resistance and severe side effects
are still limiting the effectiveness of most anticancer drugs

(Holohan et al., 2013; Widakowich et al., 2007). Predictive bio-

markers of clinical benefits are valuable components to assist

personalized treatment decisions (Issaq et al., 2011). In an ideal

scenario, a genomics biomarker could analyze the DNA

sequences or gene expression profiles of a patient’s tumor and

make a reliable prediction regarding therapy response to

an anticancer drug. However, despite a few successful bio-

markers from clinical genomics studies (Trifiletti et al., 2017),

finding reliable prognostic biomarkers is still an open research

area for most anticancer drugs in most cancer types (Mabert

et al., 2014).

Many approaches have been adopted to identify gene bio-

markers and regulators of response and resistance to anticancer

therapies from clinical genomics data. For example, post-treat-

ment tumors that are resistant to drugs could be profiled for

recurrent genomic and transcriptomic alterations, with pre-treat-

ment sensitive tumors as the reference (Hugo et al., 2015). When

associated with patient therapy and clinical outcome, the gene

expression or mutation profiles of pre-treatment tumors could

also provide insight on prognostic biomarkers (Filipits et al.,

2011; Guarneri et al., 2015; van ’t Veer et al., 2002). The ideal

dataset from which to build predictive biomarkers would be

systematic drug sensitivities and tumor molecular profiles (e.g.,

mutation and expression) across a large cohort of patients with

clinical information. However, these data incur significant efforts

and expenses and have limitations on the number of drugs

tested.

A faster and cheaper alternative to profile clinical samples is to

use cell lines as experimental systems. Genomic profiling and

screening technologies, together with immortalized cell line

models, are important experimental strategies to investigate

the efficacy of therapeutic compounds. For example, molecular

profiling of drug-resistant cell lines derived from chronic treat-

ment of sensitive cell lines is widely used to identify cell-intrinsic

gene signatures of drug resistance (McDermott et al., 2014; Naz-

arian et al., 2010). Genome-wide screens using CRISPR have

been developed to investigate the impact of gene knockout on

drug efficacy in cell line and mouse models (Manguso et al.,
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2017; Shalem et al., 2014). In addition, CRISPR activation

and open reading frame (ORF) screens can induce gene expres-

sion and reveal the associations between gene activation and

drug resistance (Johannessen et al., 2013; Konermann

et al., 2015).

With the rapid advance of automation technology, high-

throughput compound screening is rapidly becoming a rich

source of information about the mechanisms of drug response

and resistance (Hu and Zhang, 2016). Early efforts in NCI60 cell

lines correlated gene expression and drug activity patterns

across a panel of 59 cancer cell lines to explore mechanisms

of drug resistance (Scherf et al., 2000; Shoemaker, 2006).

Several new consortiums have conducted both molecular

profiling and drug efficacy measurements on hundreds of

cancer cell lines. The Cancer Cell Line Encyclopedia (CCLE),

Genomics of Drug Sensitivity in Cancer (GDSC), and Cancer

Therapeutics Response Portal (CTRP) projects screened 24,

250, and 545 compounds, respectively, across almost 1,000

cell lines (Barretina et al., 2012; Iorio et al., 2016; Seashore-Lu-

dlow et al., 2015). These compound screen projects used sta-

tistical approaches such as Elastic Net and ANOVA to identify

drug efficacy signatures by testing the associations between

gene mutation or expression status and drug efficacy across

cell lines. Several studies also explored machine-learning

approaches that incorporate high-dimensional nonlinear rela-

tionships to analyze compound screens (Costello et al.,

2014). A limitation of these previous studies is that they applied

the same analysis procedures to all types of compounds

without distinguishing between targeted therapies on specific

oncogenes and chemotherapies with general cytotoxicity.

Since different drug types may follow distinct mechanisms of

action, it is likely that customized approaches may achieve

better predictive performance depending on the specific drug

categories. In addition, the clinical relevance of cell line models

has been continuously questioned (Gillet et al., 2011, 2013). It

remains to be systematically tested whether the biomarkers

identified from cell line data have sufficient relevance to the pa-

tient clinical response.

In this study, we use large-scale compound screening data to

identify biomarkers that predict the clinical response to targeted

therapies. We focused on targeted therapies and built a frame-

work, computational analysis of resistance (CARE). Different

from previous methods analyzing compound screens, CARE

evaluates how drug targets interact with other genes to affect

drug efficacy by testing the interaction effects in multivariate

models. Such interaction effects between drug targets and other

genes were not considered in previous studies, but are critical in

identifying predictive biomarkers for targeted therapies. In

addition, CARE scores each gene in the genome and uses the

correlation between the CARE scores and tumor expression to

predict drug response and is therefore robust against noise on

individual genes. In the following sections, we will introduce

the algorithmic design of CARE and demonstrate its perfor-

mance in predicting clinical outcomes of targeted cancer thera-

pies. We will also show the better performance of our approach

by systematic method comparisons and experimentally validate

new synergistic drug combinations predicted by CARE. The

source code and results of our study are available at http://

care.dfci.harvard.edu.
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RESULTS

CARE Identifies Robust Genome-wide Signatures of
Targeted Therapy Efficacy
Compound screens on cancer cell lines, which measure the

growth inhibition of drugs across many cell lines with diverse

molecular characteristics, contain abundant information about

factors determining drug efficacy (Hu and Zhang, 2016). We

observed that many known biomarkers of targeted therapy effi-

cacy had significant interaction associations with the drug target

genes in the compound screening data. For example, CCLE

screens show that the BRAF V600E mutation correlates with

increased cell line sensitivity to theBRAF inhibitor PLX4720 (Bar-

retina et al., 2012). However, this association between drug

target and drug efficacy (gaps between the BRAF V600E mutant

and other cell lines in Figure 1A) decreases with increased EGFR

expression. This observation is consistent with the knowledge

that EGFR activation promotes resistance to BRAF inhibitors

(Sun et al., 2014). In contrast, the increased expression of

LEF1, a gene known to sensitize tumor cells to BRAF inhibitors

(Hugo et al., 2015), is associated with increased PLX4720 inhibi-

tion of BRAF mutant cells in CCLE screens (Figure 1A). In statis-

tics, an interaction between two variables happens if the effect of

one variable (e.g., BRAF mutation’s effect on PLX4720 efficacy)

depends on the other variable (e.g., EGFR or LEF1 expression).

These observations on known targeted therapy biomarkers

motivated us to develop the statistical method, CARE, to

systematically identify genes with similar behaviors.

To evaluate how genes impact targeted therapy efficacy,

CARE examines how the expression or mutation state of a

gene P interacts with the drug target gene status T to influence

the drug inhibition efficacy in a multivariate linear model (Fig-

ure 1B). An interaction term is created as the product between

the statuses of candidate gene P and drug target T and evalu-

ated toward drug inhibition outcome throughmultivariate regres-

sion. A negative interaction coefficient ‘‘c’’ indicates activation of

gene P to be associated with a decreased correlation between

drug target and drug inhibition efficacy and thus with drug resis-

tance (Figure 1B). In contrast, a positive coefficient ‘‘c’’ indicates

activation of P to be associated with an increased correlation

between drug target status and inhibition efficacy and thus

with drug sensitivity.

The overall effect of gene P on drug efficacy is computed as a

conditional effect when the drug target T is active, combining

both interaction and base coefficients in a linear model (Fig-

ure 1C; STAR Methods) (Brambor et al., 2006). To estimate the

statistical significance of the conditional effect, CARE computes

a t value (coefficient/SE) using the ordinary least-square method

(Figure 1C) (Freedman, 2009). For example, CARE correctly

identified EGFR as a resistant gene for the BRAF inhibitor, as

indicated by a negative CARE score (Table 1), and LEF1 as

having a sensitizing role for the BRAF inhibitor, as shown by a

positive CARE score (Table 2). CARE also identified AXL to be

a resistant gene for lapatinib (a dual ERBB2 and EGFR inhibitor)

through the negative CARE scores with ERBB2 as lapatinib

target (Table S1), which is consistent with previous knowledge

(Liu et al., 2009). Finally, instead of selecting specific genes,

CARE outputs a vector with one score for every human gene

(Figure 1C). This score vector allows us to identify potential

http://care.dfci.harvard.edu
http://care.dfci.harvard.edu
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Figure 1. Inference of Genome-Scale Gene Signatures for Targeted Therapy Efficacy

(A) Association between BRAFmutation and inhibitor efficacy conditioned on other gene variables. All CCLE cell lines were divided into three categories ranked

by EGFR or LEF1 expression (Low, below 25%; Mid, between 25% and 75%; High, above 75%). In each category, the PLX4720 inhibition values are shown for

cell lines with aBRAF V600Emutation and others without themutation, with themedian value as a thick bar in the boxplot. The bottom and top of the boxes are the

25th and 75th percentiles (interquartile range). Whiskers on the top and bottom represent the maximum and minimum data points within 1.5 times the inter-

quartile range.

(B) Interaction test in multivariate regression. Variables T and P represent the statuses of drug target and candidate gene in the test, respectively. The coefficient

of product covariate (T*P) in regression represents the interaction effect between T and P on drug inhibition outcome. The slopes between drug target status and

drug inhibition efficacy are shown by arrows, with red and black colors indicating the direction of change when variable P increases.

(C) CARE score definition. The effect of variable P on drug inhibition efficacy is computed as a t value conditioned on drug target status T as one. The SE is

estimated through the coefficient covariance.

(D) CARE framework of clinical response prediction. For each targeted therapy, CARE will first calculate a genome-wide vector of scores with one value per gene

using compound screen data. To predict drug responses, CARE computes Pearson correlations between the tumor gene expression profiles and CARE scores

on genome scale, with positively correlated patients labeled as responders and negatively correlated ones labeled as non-responders.

An author presentation of Figure 1 is available as Movie S1. See also Figure S1 and Table S2.
biomarker genes, whose expression or mutation status has

significant associations with drug efficacy. When predicting

whether a tumor will respond to the drug, we calculate the

genome-wide Pearson correlation between the tumor expres-

sion profile and CARE score (Figure 1D), which provides a robust

estimation and avoids noise from individual genes.

To systematically identify gene signatures associated with

response and resistance to different targeted therapies, we

applied CARE to three large-scale compound screen datasets.

The CCLE (Barretina et al., 2012), GDSC (Iorio et al., 2016),

and CTRP (Seashore-Ludlow et al., 2015) projects screened

numerous compounds across hundreds (approximately

500–1,000) of cancer cell lines (Figure S1A; Table S2). For each

compound with annotated target genes, we first used a forward

selection algorithm to ensure that the status (e.g., expression

and mutation) of the annotated drug target gene has sufficient

correlation with drug efficacy (Jiang et al., 2015) (STAR

Methods). There are 17, 118, and 190 compounds passing the
selection criteria in the CCLE, GDSC, and CTRP cohorts,

respectively. The response measurements of these targeted

therapies are reasonably consistent across different datasets

(Figures S1B and S1C).

We applied CARE to identify genes associated with drug effi-

cacy for many compounds across the three cohorts and focused

on druggable genes with significant negative CARE scores for

visualization (Figure 2). For example, AXL, a druggable kinase

implicated as a resistance driver for many targeted therapies

(Liu et al., 2009; Zhang et al., 2012), has significant negative

CARE scores for multiple compounds screened in three cohorts

(Figures 2A and 2B). Another example is that SRC has negative

CARE scores on most drugs (Figures 2A and 2C), which corrob-

orates previous findings that SRC activation promotes resis-

tance toward several targeted therapies (Wilson et al., 2014;

Zhao et al., 2017). In contrast, CSK, a negative regulator of

SRC (Okada et al., 1991), has significant positive CARE scores

for many compounds (Figure 2C), suggesting that loss of CSK
Cell Systems 6, 343–354, March 28, 2018 345



Table 1. Negative Interaction between BRAF Mutation and EGFR

Coefficient SE t Value p Value

BRAF.V600E 0.16504 0.00972 16.984 5.03 3 10�51

EGFR �0.00117 0.00248 �0.473 6.37 3 10�1

EGFR*BRAF.V600E �0.04905 0.01042 �4.706 3.31 3 10�6

CARE score �0.05023 0.01012 �4.962 9.72 3 10�7

The interaction between BRAF mutation and EGFR gene expression is

evaluated by linear regression, with PLX4720 efficacy as the outcome.

The t value is defined as regression coefficient divided by the SE and

the p value is calculated by the two-sided Student’s t test.

See also Table S1.

Table 2. Positive Interaction between BRAF Mutation and LEF1

Coefficient SE t Value p Value

BRAF.V600E 0.16107 0.0107 15.06 2.90 3 10�42

LEF1 0.00282 0.00264 1.07 2.86 3 10�1

LEF1*BRAF.V600E 0.02849 0.00793 3.59 3.62 3 10�4

CARE score 0.03131 0.00748 4.19 3.37 3 10�5

The interaction between BRAF mutation and LEF1 gene expression is

evaluated by linear regression, with PLX4720 efficacy as the outcome.

The t value is defined as regression coefficient divided by the standard

error (SE) and the p value is calculated by the two-sided Student’s t test.

See also Table S1.
may promote drug resistance toward many targeted therapies.

Notably, the interaction test in Figure 1B can evaluate both

expression and mutation of gene P on drug efficacy. For

example, the significant negative CARE scores of KRAS muta-

tions in many compound screens (Figure S2) support the role

of KRAS mutations in promoting drug resistance (Misale et al.,

2012; Sameen et al., 2016).

CARE Outperforms Other Genomic Signatures in
Predicting the Clinical Outcome of Targeted Therapies
Encouraged by the consistent results of previous studies, we

systematically tested the clinical utility of CARE by evaluating

the accuracy of CARE scores in predicting the patient clinical

outcome of targeted therapies. To this end, we used the

expression profiles of pre-treatment tumors from 12 mela-

noma patients who had a BRAF V600E mutation and were

treated with vemurafenib, each with progression-free survival

(PFS) information (Hugo et al., 2015). Patients are predicted

to be responders if their tumor expression profiles are posi-

tively correlated with CARE scores of PLX4720, a chemical

analog of vemurafenib (Bollag et al., 2012), and non-re-

sponders if the profiles are negatively correlated (Figure 1D).

The correlations between patient tumor expression profile

and CARE scores were significantly associated with the PFS

time, verifying CARE’s predictive power in clinical samples

(Figure 3A).

To compare CARE with other experimental methods conduct-

ed on cell lines, we collected the gene scores associated with

drug efficacy derived from CRISPR knockout, CRISPRa, small

hairpin RNA (shRNA), ORF screens, and expression profiles of

drug-resistant cell lines (Table S3A). For each signature, we

stratified the patients according to the correlation between tu-

mor gene expression values and cell line gene scores (such as

differential expression or screen selection level) published in

these experiments. Then, we predicted positively correlated pa-

tients as the responders and negatively correlated patient as the

non-responders. As an evaluation standard to test prediction ac-

curacy, we defined patients with the top and bottom 50%PFS as

the responders and non-responders, respectively. The predic-

tion accuracy metrics are highest for CARE, followed by

CRISPRa/CRISPR knockout screens and other experimental

methods (Figure 3B). When evaluated with an alternative associ-

ation metric computed by the Cox-PH model, CARE also

demonstrated the highest association with PFS outcome among

all methods (Figure S3A).
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To further investigate the clinical utility of CARE, we next

tested another drug, lapatinib, on HER2+ breast cancer. The

CHER-LOB clinical trial released complete pathological

response statuses of patients together with their gene expres-

sion profiles (Guarneri et al., 2015). We computed the Pearson

correlation between gene expression values and CARE scores

for lapatinib from the CCLE cohort, and found that responders

have significantly higher correlations with the CARE scores

than non-responders (Figure 3C, one-tailed rank-sum test

p = 0.047). We also collected gene signatures profiled by many

experimental methods (Table S3B) and used the other signa-

tures to correlate with patient gene expression profiles to predict

response. When evaluating the fraction of patients with correctly

predicted response status, we foundCARE prediction to give the

highest accuracy over other signatures (Figure 3D).

The CARE signature for the PLX4720 BRAF inhibitor,

computed from cell line screens, is also indicative of the clinical

response to anti-programmed cell death 1 (anti-PD1) immune

therapy in melanoma (Figure 3E). The accuracy metric of

CARE is even higher than several known biomarkers of anti-

PD1 response (Figure 3F) (Hugo et al., 2016; Nishino et al.,

2017), as well as a gene signature from an in vivo CRISPR

screen (Table S3C) (Manguso et al., 2017). The clinical outcome

of melanoma patients was known to be associated with the

cytolytic activity (CYT), defined as the sum of GZMA, GZMB,

and PRF1 expression in a bulk tumor as an infiltration estima-

tion of cytolytic lymphocytes (Rooney et al., 2015). Among

The Cancer Genome Atlas melanoma tumors, a higher CYT

level predicts better patient overall survival, but only in patients

predicted to be responders by the CARE PLX4720 signature

(Figure 3G). Thus, the cell-autonomous gene signature of

CARE is associated with both immunotherapy response and

tumor immune evasion. To explore the possible mechanisms,

we applied gene set enrichment analysis on the PLX4720

CARE signature and found epithelial-to-mesenchymal transition

(EMT) to be the most enriched category (Figure 3H). EMT was a

known driver process in drug resistance and tumor immune

evasion (Dongre et al., 2017; Shibue and Weinberg, 2017),

and was implicated in resistance to anti-PD1 therapy (Hugo

et al., 2016). We explored the prediction performance of other

compound CARE signatures on the anti-PD1 response. In all

screen cohorts, CARE signatures more correlated with the

EMT signature show the better predictive power of anti-PD1

response (Figure S3B). Therefore, the CARE signature has pre-

dictive power on immune resistance through enrichment of
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Figure 2. CARE Scores for Genes Associated with Resistance to Multiple Drugs

(A) CARE scores of druggable genes associated with resistance to more than one compound. To uniformly compare scores across different cohorts, we

normalized all CARE scores within each cohort to zero mean and unit variation. Genes that are further discussed in the main text are highlighted by stars.

(B) Statistically significant CARE scores ofAXL for compounds analyzed in each cohort. Themedian value in each group is shown as a thick bar in the boxplot. The

bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). Whiskers on the top and bottom represent the maximum and minimum data

points within the range represented by 1.5 times the inter-quartile range.

(C) Statistically significant CARE scores for SRC and its inhibitor CSK for compounds analyzed in each cohort. All values are shown in the same way as in (B).

See also Figure S2.
EMT, a common resistance mechanism between targeted ther-

apies and immunotherapies.

One limitation of our evaluation of clinical prediction accuracy

on targeted therapies is that published studies only profiled a
small number of patients. For example, there are only 12, 25,

and 31 patients with complete clinical information and pre-treat-

ment transcriptome for vemurafenib (Hugo et al., 2015), pembro-

lizumab (Hugo et al., 2016), and lapatinib (Guarneri et al., 2015),
Cell Systems 6, 343–354, March 28, 2018 347
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Figure 3. CARE Can Reliably Predict Clinical Outcome of Targeted Therapies

(A) CARE prediction results on the anti-BRAF clinical outcome. For 12 patients treated with vemurafenib (Hugo et al., 2015), CARE computed the Pearson

correlations between PLX4720 CARE scores and tumor gene expression profiles. The progression-free survival (PFS) was compared between positively and

negatively correlated patients by the Kaplan-Meier curves, with p values from the two-sided Wald test in Cox-PH regression.

(B) Performance comparison on predicting anti-BRAF vemurafenib response. For each gene signature (Table S3A), the response was predicted for patients by

correlating between tumor expression profiles and signature gene scores. The prediction accuracy metrics were compared. AUC, area under the ROC curve.

(C) CARE prediction results on the anti-HER2 clinical outcome. For 32 patients treated with lapatinib (Guarneri et al., 2015), the patient-wise correlations with

CARE signature were shown according to the clinical response status, with the p value computed by one-sided Wilcoxon rank-sum test.

(D) Performance comparison on predicting anti-HER2 lapatinib response among several signatures (Table S3B) as in (B).

(E) Prediction results on the anti-PD1 clinical outcome using the anti-BRAF CARE scores. For 25 patients treated with pembrolizumab (Hugo et al., 2016), the

patient-wise correlations with PLX4720 CARE signature were shown according to the response status, with the p value computed by one-sided Wilcoxon rank-

sum test.

(F) Performance comparison on predicting anti-PD1 pembrolizumab response. PDL1, CD274 expression; CD8, expression sum of CD8A and CD8B; BRCA2,

BRCA2 mutation status; Mutation, non-synonymous mutation load; CRISPR, anti-PD1 resistance signature determined by in vivo CRISPR screen (Table S3C).

(G) Association between CARE signature and tumor immune evasion. CARE predicted all The Cancer Genome Atlas melanoma patients as either responders or

non-responders using the PLX4720 signature computed from CCLE data. In each category, the overall survival (OS) was shown for patients with positive and

negative values of immune cytolytic activity ([CYT], computed as expression sum ofGZMA, GZMB, and PRF1). The p values were computed by two-sided Wald

test in Cox-PH regression.

(H) Gene set enrichment analysis for the PLX4720 CARE signature. The epithelial-to-mesenchymal transition (EMT) was the highest enrichment term. All CARE

gene scores are shown in ascending order in the bottom. The genes with EMT function are labeled with black bars in the middle. The enrichment score of EMT

signature at each score rank is shown on the top. NES, normalized enrichment score. p Value, permutation test p value with 1,000 shuffles.

(I) CARE prediction results on the paclitaxel response. For paclitaxel, we identified three studies with both tumor gene expression data and pathologic complete

response (PCR) status. There are 193, 115, and 92 patients in the studies of Pusztai, Noguchi, and Symmans, respectively. The correlation between patient

(legend continued on next page)
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respectively. In contrast, there are published studies with data

for hundreds of patients undergoing chemotherapy treatment.

Even though the focus of our study is targeted therapy, we can

also apply CARE to chemotherapies with known targets. For

example, TUBB is the target gene of paclitaxel by the CCLE

annotation (Barretina et al., 2012). There are three independent

studies on paclitaxel treatment that include 193, 115, and 92

patients, respectively (Figure 3I) (Hatzis et al., 2011; Miyake

et al., 2012; Popovici et al., 2010). We used the paclitaxel

CARE scores, computed from CCLE data, to predict therapy

response in the clinical cohorts and achieved approximately

70% accuracy (Figure S3C), a performance better than other

genomics signatures (Figure 3J; Table S3D).

We also examined howwell the paclitaxel response signatures

derived from one clinical cohort predict responses in another

cohort compared with the CARE signature derived from cell

line compound screens. To this end, we computed associations

between gene expression levels and therapy response using

logistic regression in each clinical cohort. Then, we used the

computed gene associations to predict responses in another

clinical cohort and calculated the average accuracy among all

six pairwise combinations across three paclitaxel studies. The

CARE signature, although derived from cell line compound

screens, achieved comparable performance with signatures

derived from independent clinical cohorts (‘‘Clinical’’ in

Figure 3J).

CARE Is More Robust than Other Computational
Methods in Finding Biomarkers
Previously, several computational methods were utilized by

different studies to analyze compound screen data. Therefore,

we compared CARE with other computational methods in pre-

dicting gene signatures of drug efficacy using the evaluation

standards from both cell models and clinical studies. These

methods include Correlation, Elastic Net, support vector regres-

sion (SVR), and the GDSC tool, which uses the ANOVA test to

identify responsebiomarkers (Iorio et al., 2016). Correlation refers

to the Pearson correlation between the gene expression ormuta-

tion status and drug inhibition outcome. ANOVA estimates the

difference among group means and variations of drug response

according to the gene status. Elastic Net, which applies penalties

to constrain the regression coefficients, is a popularmethodused

inpreviouscompoundscreenprojects to identify genealterations

associated with compound efficacy (Barretina et al., 2012; Gar-

nett et al., 2012). SVR is similar to the support vector machine

(SVM) (Smola and Scholkopf, 2004), but the response variable

modeled is continuous in SVR instead of categorical as in SVM.

Both Elastic Net and SVR use regression coefficients on each

gene as associations with drug efficacy.

To set up the first evaluation standard, we collected several

differential gene expression profiles between drug-resistant

cell lines derived from chronic drug treatment and their parental

cell lines. For PLX4720 and lapatinib screened in all three co-

horts, we collected expression profiles from several studies
expression profiles and CARE scores of paclitaxel was shown according to the r

ference between responders and non-responders, are 7.253 10�4, 4.953 10�5,

(J) Performance comparison on predicting paclitaxel response among signatures

See also Figure S3 and Table S3.
(Bailey et al., 2014; Giles et al., 2013; Liu et al., 2009; Nazarian

et al., 2010; Zhang et al., 2012). We defined the positive set in

evaluation standard as the upregulated genes in a resistant cell

line compared with its parental line and the negative set as the

downregulated genes. We then compared the computational

methods using a receiver operating characteristic (ROC) curve

(Figures 4A, S4A, and S4B) in which a reliable prediction should

curve toward the upper left corner. Elastic Net predicted a small

number of genes and missed most efficacy-associated genes in

the evaluation standard (Figures S4C and S4D; Table S4A)

(Barretina et al., 2012; Garnett et al., 2012). AlthoughGDSC, Cor-

relation, and SVR all have better performance than Elastic Net,

CARE outperformed them all (Figures 4A, S4A, and S4B). We

also tested the performance of different model variations. The

current form of CARE score combined both interaction and

base coefficients (Figure 1C). Alternatively, we can compute a

t value for only the interaction coefficient (‘‘c’’ in Figures 1B

and 1C) or the base coefficient (‘‘b’’ in Figures 1B and 1C) without

an interaction term in the linear model. Similarly, for other statis-

tical methods, we also fitted model variations considering the

combination, interaction, and base effects (STAR Methods).

On average, the combination form of CARE score outperformed

all the other variations (Figure 4B).

To set up the second evaluation standard of comparison, we

utilized the metrics for predicting clinical response to targeted

therapies (Figures 3B, 3D, 3F, and 3J) and compared the drug

efficacy signatures predicted from different computational

methods (Figure 4C). Among all targeted therapies, CARE

achieved robust prediction performance based on various accu-

racy metrics (Figure 4C). Thus, based on the comparisons above

with evaluation standards from both cell-line models and clinical

studies, CARE outperformed other computational approaches in

predicting gene signatures of drug response and resistance from

compound screening data.

For all the comparisons above, we only focused on drugs with

high correlation between drug target status and drug efficacy.

We further tested the CARE performance for drugs whose

efficacy has low correlation with gene status of annotated

targets, since the target gene status may not be the feature

most correlated with drug efficacy. For example, the Pearson

correlations between topotecan effectiveness and TOP1 expres-

sion levels are 0.099 and 0.105 in the CCLE and CTRP data,

respectively, which all rank below 70% among all gene feature

correlations. Using an ROC curve, we found that the CARE

statistics and Pearson correlation achieved similar performance,

and that the interaction-only statistic has the worst prediction

performance (Figures S4E and S4F). Thus, CARE may not have

better performance than correlation when the annotated target

gene does not correlate well with drug efficacy.

CARE Predicts Synergistic Drug Targets in Treating
HER2+ Breast Cancer Cells
Finally, we evaluatedwhether CARE can identify synergistic drug

targets to enhance the effectiveness of targeted therapies
esponse status. The two-sided rank-sum p values, testing the correlation dif-

and 2.253 10�2 for the Pusztai, Noguchi, and Symmans studies, respectively.

(Table S3D) as in (B), with accuracymetrics averaged among three cohorts in (I).
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Figure 4. CARE Outperforms Other Computational Methods in Finding Drug Efficacy Biomarkers

(A) Performance comparison on predicting transcriptome signatures of drug-resistant cell lines. Receiver operating characteristic (ROC) curves were used to

compare different computational methods for their performance in predicting gene expression signatures of PLX4720 and lapatinib-resistant cell lines.

(B) Performance comparison amongmodel variations. For eachmethod, we computed several variations of scores and compared their performance in predicting

drug resistance associated genes as in (A). Themeans of the area under the ROC curve (AUC) across three screen cohorts are compared among all methods with

SDs as error bars. Combination: the association calculated for the sum of both interaction and base coefficients. Interaction: only the interaction coefficient.

Partial: only the coefficient of each gene P in a model without interactions.

(C) Performance comparison on predicting clinical outcome. For each method, the response was predicted for patients through the correlation between patient

gene expression values and the result scores from each model. The accuracy metrics are compared in the same way as Figure 3B.

See also Figure S4 and Table S4.
through combination medicine. We focused on the gene signa-

tures for the ERBB2 inhibitor lapatinib, an orally active drug for

HER2+ breast cancer and other solid tumors (Geyer et al.,

2006; Janjigian, 2016). To this end, we selected genes with

significantly negative CARE scores, indicating that high gene

expression levels correlate with lapatinib resistance. We further

selected genes upregulated in lapatinib-resistant cell lines

(Bailey et al., 2014; Liu et al., 2009) and negatively associated

with patient response in the CHER-LOB trial (Guarneri et al.,

2015). Among the 47 genes meeting these criteria, only PRKD3

and AKT3 have compound inhibitors available (Table S5A).

AKT3 has been reported to promote resistance to anti-HER2

therapy in breast cancer (Moody et al., 2015). PRKD3 was pre-

dicted by CARE to have a stronger association with the clinical

outcome than the known lapatinib resistance drivers AKT3 and

the previously discussed AXL (Figure S5A), and yet has never

been reported to promote lapatinib resistance. Thus, we decided

to validate PRKD3 experimentally.

We first knocked down PRKD3 using a pooled mixture of 30

different small interfering RNAs targeting PRKD3 to reduce
350 Cell Systems 6, 343–354, March 28, 2018
off-target effects, and observed significantly increased lapatinib

sensitivity in the HER2+ breast cancer cell line SKBR3 (Figures

5A and 5B). Encouraged by this result, we searched publicly

available inhibitors and found three pan-PRKD kinase family

(PRKD1, PRKD2, and PRKD3) inhibitors, KBNB14270,

CRT0066101, and CID2011756. Using the Bliss independence

model (Bliss, 1939) to evaluate the synergy between two com-

pounds, we tested the effect of each PRKD inhibitor in combina-

tion with lapatinib. The Bliss independence model assumes no

drug interaction and defines the co-treatment additive inhibition

as IA + IB – IA * IB, where IA and IB represent the inhibition by com-

pound A and B alone, respectively. The drug combination is syn-

ergistic if the measured co-treatment inhibition is higher than the

expected additive effect and antagonistic if the measured inhibi-

tion is lower than the additive effect. At varying lapatinib doses,

the inhibition effect of co-treatment with 4 mM PRKD inhibitor

KBNB14270 is consistently better than the additive effect, indi-

cating a consistent synergy between KBNB14270 and lapatinib

(Figures 5C and S5B). We also observed a similar synergy for

CRT0066101 (Figures S5B and S5C). We next tested the drug
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Figure 5. Inhibition of PRKD3 Increases

Lapatinib Sensitivity

(A) The siRNA pool knockdown efficiency against

PRKD3measured by qPCR andwestern blot (WB).

The relative expression level in qPCR is theaverage

value from three replicates with SDs as the error

bars. NC, negative control siRNA of scrambled

sequences.

(B) The inhibitioneffects onSKBR3growth fromboth

PRKD3 knockdown and negative control conditions

on a series of lapatinib doses by 2-fold dilution from

5 mM.N represents no treatment control of lapatinib.

Each inhibition fraction is themedianvalue fromthree

replicate experiments, with SDs as the error bars.

(C) The inhibition effects on SKBR3 growth from

lapatinib mono-treatment and co-treatment with

PRKD inhibitor KBNB14270 in 4 mM. The additive

effect of co-treatment is estimated from the Bliss

independencemodel. Each inhibition fraction is the

median value from three replicate experiments,

with SDs as the error bars.

(D) The synergy scores (the difference between

co-treatment and Bliss additive inhibition) for dose

combinations between lapatinib (Lap) and

KBNB14270 (KBNB). Each score is the median

value from three replicate experiments.

(E) The synergy scores for combinations between

lapatinib and CRT0066101 (CRT).

See also Figure S5 and Table S5.
synergy by varying the dose of different PRKD inhibitors.

KBNB14270 and CRT0066101 consistently showed positive

synergy with lapatinib (Figures 5D and 5E), and CID2011756

showed synergy at low lapatinib doses (Figure S5D). Besides

lapatinib, trastuzumab is another targeted therapy used in

HER2+ breast cancer. We also observed significant synergy

between PRKD inhibitors and trastuzumab on the SKBR3 cell

line (Figures S5C and S5D). Thus, our results suggest PRKD

inhibitors as potentially synergistic therapies with anti-HER2

treatment in breast cancers.

During the gene prioritization process for lapatinib resistance,

we only explored those genes with consistently high CARE

scores across all three screen cohorts. However, some genes

prioritized without this stringent threshold may still have very

significant CARE scores in a subset of cohorts. For example,

SERPINE1 has very significant CARE scores in CCLE and

CTRP cohorts, but not GDSC, therefore not included in our pre-

vious prioritization result (Table S5B). While other genes may not

have consistently significant CARE scores (Table S5B), which in-

dicates that their association with drug resistance may not be

valid across a broad range of cell lines in the compound screens.

DISCUSSION

Wedeveloped a computational method, CARE, to systematically

identify genes associated with response and resistance to tar-

geted therapies based on compound screens. Comparisons

based on multiple clinical datasets demonstrated the superior

performance of CARE over other computational and experi-

mental methods. Notably, we predicted PRKD3 as a potential

regulator of anti-HER2 resistance and validated it as a promising

target to increase lapatinib and trastuzumab efficacy through
combinatorial treatment with PRKD inhibitors. Further experi-

ments on animal models are needed to increase the clinical

potential for these drug combinations.

CARE outperformed the gene signatures from CRISPR

screens in predicting the patient clinical outcome (Figures 3B

and 3F). One possible explanation is that the quality of CRISPR

screens awaits further improvement at this early stage of tech-

nology development, as indicated by the low agreement

between replicates (Figure S3D). Another possibility is that

CARE analysis is based on drug sensitivity measurements in

many cell lines with diverse characteristics, whereas current

CRISPR/CRISPRa (or shRNA) screens on drug treatment were

only available in individual cell lines.

For standard drugs in clinics, the data from drug-resistant cell

models and human clinical studies could help to identify the

response biomarker genes independently from CARE signa-

tures. However, the molecular profiles of drug-resistant models

are typically available on the scale of one or two cell lines. In

addition, most drug clinical studies only profiled a small number

of patients (e.g., 12 patients for vemurafenib, 32 for lapatinib). In

contrast, the CARE signature is trained using the genomics and

pharmacological data from approximately 1,000 cell lines with

distinct characteristics; thus, it is generalized from a broad ge-

netic background. Second, for most compounds that are not

used in clinics, the molecular profiles of drug-resistant cell lines

and clinical response do not exist. However, CARE signatures

would still be available to understand potential drug resistance

mechanisms for these compounds.

A limitation of CARE is that some driver mutations of drug

resistance may not exist in sufficient frequency in the screened

cell lines. For example, there is only one CCLE cell line harboring

the EGFR T790M mutation, the dominant mechanism of
Cell Systems 6, 343–354, March 28, 2018 351



resistance to EGFR inhibitors (Holohan et al., 2013). As a result,

CARE cannot make statistical inferences on this mutation.

Meanwhile, although current compound screening projects

have tested almost 1,000 cell lines, the number of cell lines in

each cancer type is still limited (Figure S4G). CARE has better

performance in pan-cancer analysis than lineage-specific anal-

ysis due to the sample size limitation in each cancer lineage

(Figures S4H and S4I). Another limitation is that CARE currently

utilizes only cell line data that describe cell autonomous

behavior. However, the efficacy of many targeted therapies

not only involves direct cytotoxic effects but also relies on the

activation of tumor-targeting immune responses (Galluzzi et al.,

2015). Thus, future computational methods should model the

impact of the tumor microenvironment in predicting therapy

response.

Despite these limitations, CARE has demonstrated reliable

performance in inferring gene biomarkers to predict the efficacy

of targeted therapy, as well as synergistic drug combinations.

Recent years have seen the advances in high-throughput tech-

nologies and increased data volumes for cancer drug research

(Chen and Butte, 2016). We foresee that CAREwill provide future

assistance in the development of anticancer drug biomarkers

and combination therapies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-PRKD3 Cell Signaling Technology Cat# 5655S; RRID: AB_10695917

Mouse monoclonal anti-ACTB Sigma-Aldrich Cat# A1978; RRID: AB_476692

HRP-linked anti-mouse IgG Cell Signaling Technology Cat# 7076S; RRID: AB_330924

HRP-linked anti-rabbit IgG Cell Signaling Technology Cat# 7074S; RRID: AB_2099233

Trastuzumab Dana Farber Pharmacy CAS: 180288-69-1: AB_2459634

Chemicals, Peptides, and Recombinant Proteins

Lapatinib Selleck Chemicals Cat# S2111; CAS: 231277-92-2

KBNB14270 Sigma-Aldrich Cat# SML0525; CAS: 1233533-04-4

CRT0066101 Sigma-Aldrich Cat# SML1507; CAS: 956123-34-5

CID2011756 Sigma-Aldrich Cat# SML0369; CAS: 638156-11-3

Critical Commercial Assays

Cell Titer-Blue Cell Viability Assay Promega Cat# G8081

Experimental Models: Cell Lines

SKBR3 ATCC HTB-30

Oligonucleotides

siRNA pool targeting PRKD3 siTOOLs Biotech siPOOL- 5 Kit - 23683

siRNA pool negative control siTOOLs Biotech siPOOL- 5 Kit – negative control

qPCR Primer: PRKD3: Forward:

CTTTCAGCTTTAGCCACAGTAG

This paper N/A

qPCR Primer: PRKD3: Reverse:

AGAGCATCTCACCACAGTAATC

This paper N/A

qPCR Primer: ACTB: Forward:

GACCCAGATCATGTTTGAGACC

This paper N/A

qPCR Primer: ACTB: Reverse:

CCAGAGGCGTACAGGGATAG

This paper N/A

Software and Algorithms

CARE This paper http://care.dfci.harvard.edu/download

nls_logsig This paper http://care.dfci.harvard.edu/download

Limma Bioconductor http://bioconductor.org/packages/limma

glmnet CRAN http://cran.r-project.org/web/packages/glmnet

scikit-learn Anaconda http://scikit-learn.org/stable/

RABIT (Jiang et al., 2015) http://rabit.dfci.harvard.edu/download

GSL scientific library GNU http://www.gnu.org/software/gsl/

Other

CCLE compound screen data (Barretina et al., 2012) https://portals.broadinstitute.org/ccle

GDSC compound screen data (Iorio et al., 2016) http://www.cancerrxgene.org/downloads

CTRP compound screen data (Seashore-Ludlow et al., 2015) https://portals.broadinstitute.org/ctrp
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Xiaole

Shirley Liu (xsliu@jimmy.harvard.edu). All cell lines, chemicals, and reagents can be attained directly from the original supplier.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

The SKBR3 is a female breast cancer cell line of HER2+ subtype purchased from ATCC. All models are regularly tested for being free

of mycoplasma, and their identities are verified.

METHOD DETAILS

Pharmacological Screen Data Collection
Compound inhibition, gene expression, andmutation profileswere available from thewebsites of CCLE (Barretina et al., 2012), GDSC

(previously namedCGP) (Iorio et al., 2016) andCTRP (Seashore-Ludlow et al., 2015) with data version until 07/10/2016. All compound

names are converted to the standard names in PubChem database (Kim et al., 2016). The CARE framework uses a sigmoid function

to fit drug inhibition values at different doses into a response curve, and compute the drug inhibition as the area under the dose-

response curve, ranging from 0% to 100%. The source code of response curve fitting is released as program ‘‘nls_logsig’’ (Key

Resources Table).

Clinical Data Collection
The gene expression profiles of pre-treatment tumors and patient clinical information were collected for vemurafenib in melanoma

(Hugo et al., 2015), lapatinib in HER2+ breast cancer (Guarneri et al., 2015), pembrolizumab in melanoma (Hugo et al., 2016), and

paclitaxel in breast cancer (Hatzis et al., 2011; Miyake et al., 2012; Popovici et al., 2010). In each dataset, the expression value of

each gene is normalized by subtracting the mean value across all samples. Only genes with top 50% expression variance in each

study were considered in response prediction. In the pembrolizumab study, 28 patients were profiled in the original study (Hugo

et al., 2016). However, one patient is profiled on-treatment, one patient has duplicated profiles, and one patient does not have

survival information. Therefore, only the pre-treatment expression profiles of 25 patients with complete clinical information are

included in further analysis.

Selection of Drug Target Gene Statuses
For each compound, we used the drug target gene annotation provided by each screen projects. Among annotated targets, we ran a

forward feature selection algorithm RABIT (Jiang et al., 2015) to minimize the Mallow’s Cp and make sure that included target gene

status can jointly predict the drug efficacy without redundancy. Mallow’s Cp estimates the prediction precision of a linear model with

drug target features as covariates and drug efficacy as the response (Mallows, 1973). The stepwise selection procedure stops at the

minimum Mallow’s Cp value (James et al., 2013). Our analysis only included reliable drug target gene statuses with positive coeffi-

cients in the final linear model. There are 17, 190, and 118 compounds with reliable targets selected in the CCLE, CTRP, and GDSC

cohorts, respectively.

The drug target selection process abovemay not select the primary drug target status. For example, our procedure selected EGFR

gene expression for erlotinib and gefitinib through high correlation with drug efficacy (Figure S1D), but EGFRmutation is known as the

primary drug target status. The reason is that the cell line collection screened in three projects have a very low frequency of EGFR

mutation. The most common EGFR activating mutations are in-frame deletions of exon 19 and L858R point mutation in exon 21,

which account for �90% of all EGFR mutations in lung cancer (Ladanyi and Pao, 2008). Among the CCLE cell lines screened by

both CCLE and CTRP project, only five cell lines harbor these mutations (Figure S1E upper). In the COSMIC cell collection screened

by GDSC project, only four cell lines harbor these mutations (Figure S1E bottom). In both CCLE and COSMIC cohorts, only one cell

line has T790M mutation that drives EGFR inhibitor resistance (Figure S1E). Among about 1000 cancer cell lines in each collection,

less than five cell lines in total cannot lead to any reliable statistical inference. We only included mutation variables with more than

10% frequency among tested cell lines. Thus, we excluded EGFR mutation in our analysis and used the expression as alternative

target status. Consistent with the results from cell screens, several clinical studies also reported that EGFR gene level as a strong

predictor of erlotinib and gefitinib efficacy (Cappuzzo et al., 2005; Haas-Kogan et al., 2005; Jazieh et al., 2013; Tsao et al., 2005).

For CDK4/6 inhibitor palbociclib, we noticed that the status of RB1, but not CDK4/6, is used as the patient selection criterion in

palbociclib clinical trials (O’Leary et al., 2016). Indeed, the correlations between RB1 expression and palbociclib efficacy rank above

98% among all gene correlations in both CCLE andGDSC screens (Figure S1F). Thus, in our current analysis, we includedRB1 as the

target.

Interaction Test in Multivariate Linear Regression
For each targeted therapy, the drug efficacy associations of all genes are tested by an interaction test in linear regression (Figure 1B).

Variable T and P represent the statuses of the drug target gene and a candidate gene in the test, respectively. For gene mutation

status, a value of zero on variable T or P indicates an absence of mutation; and a value of one indicates a presence of the mutation.

For gene expression status, our analysis normalized all values to zero mean and one standard deviation. Thus, a value of zero on

variable T or P represents the average expression level of a gene across all cell lines; and a value of one represents one standard

deviation higher than average. We solve a linear model ‘‘Inhibition = a*T + b*P + c*T*P + Intercept + 3’’ using the ordinary least square

method (OLS) (Freedman, 2009). Since we have selected compounds whose inhibition efficacy positively correlates with the

drug target status T, the coefficient ‘‘a’’ is always positive. The slope between drug target status and drug inhibition efficacy is
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‘‘a + cP’’ (Figure 1B). If the coefficient ‘‘c’’ is negative, increasing Pwill decrease the slope. In contrast, if the coefficient ‘‘c’’ is positive,

increasing P will increase the slope.

To estimate the overall association between gene P and drug inhibition efficacy, we computed the sum of coefficients ‘‘b + c’’

(Figure 1C), defined as the conditional effect (Brambor et al., 2006). The linear model of CARE has the form ‘‘Inhibition = a T + b

P + c T P + Intercept + 3’’. The covariates T and P represent gene statuses. For mutation status, value ‘‘0’’ represents the absence

of mutation, and value ‘‘1’’ represents the presence of the mutation. For expression status, we have transformed the values for each

gene to zero-mean and one standard deviation. Thus, value ‘‘0’’ represents the average expression level among all cell lines, and

value ‘‘1’’ represents the expression level of one standard deviation higher than average. The association between drug inhibition

response and candidate gene P when target gene T is activated could be represented as ‘‘Inhibition = a + b P + c P + Intercept +

3j T = 1’’. Thus, ‘‘b + c’’ represents the association between drug inhibition and candidate gene P when drug target is activated

(i.e., T = 1).

For coefficient sum b + c, the t-value is calculated following the procedure of general linear hypothesis testing (Figure 1C) (Hothorn

et al., 2008). If a linear model has the form y = X b + 3, following OLS conditions, we could estimate coefficient b and its covariance

matrix S as bb and bS. For any linear combinations of parameters cb (c is a linear vector), we can estimate it as cbb and its covariance

matrix as c0 bSc (Freedman, 2009). Under the OLS assumptions, the t-statistics
cbbffiffiffiffiffiffiffiffiffiffiffi
c0 bSc

p follows student t-distribution with n-p-1 as the

degree of freedom (Hothorn et al., 2008). In the hypothesis test, the null hypothesis is cb = 0 and alternative hypothesis is cbs0. In our

CARE method, we use the linear combination of two coefficients b and c as a special case of t-statistics described above. CARE

computes a two-sided p-value for the t-statistics through the student t-test. For all p-values of tested genes in each screen profile,

the Benjamini Hochberg procedure can convert p-values to false discovery rates (FDR) with 0.05 as result selection threshold.

Interaction Test for Compounds with Multiple Drug Targets
Certain drugs may have multiple annotated drug targets (e.g., Lapatinib targets both ERBB2 and EGFR). For such cases, we solve a

single linear model with all covariates: Inhibition=
PN

1 ai � Ti +b � P+
PN

1 ci � Ti � P+ Intercept + 3, where N is the number of drug

targets. Then, for each target gene Ti, CARE computes the t-value as
b+ ci

ds:e:ðb+ ciÞ
(Table S1). For lapatinib, the CHER-LOB trial

only considered the ERBB2 level in patient selection. Thus, we used the CARE scores associated with ERBB2 to predict therapy

response.

Difference between CARE and Other Regression, Correlation, and ANOVA Methods
Most computational approaches tested in this study involved computing products among different variables. However, the products

among these methods are different. The product ‘‘T*P’’ in CARE is a covariate for testing the interaction effects ‘‘c’’ in linear model

‘‘Inhibition = a*T + b*P + c*T*P’’ (Figure 1B). After computing ‘‘T*P’’, we still need to use the ordinary least square approach to calcu-

late all coefficients (e.g., b, c) as the final output (Freedman, 2009). In contrast, for correlation, the product of normalized variables

‘‘Inhibition * P’’ is directly the final output. ANOVA is different from correlation in that ANOVA is testing the difference among group

variations associated with categorical variables. We used the ANOVA implemented in the GDSC package (Iorio et al., 2016), which

requires the gene expression level of P as discrete values of either high or lowwith a cutoff on the average value among all patients. In

contrast, both correlation and CARE work on continuous variables without any cut-off threshold.

Annotation of Druggable Genes
For all geneswith drug score larger than 5 in the Pfizer OASIS database (Fernandez-Banet et al., 2016), we further searched their gene

name on Selleck website (http://www.selleckchem.com), and only keep genes with inhibitors commercially available.

Experimental Validation on PRKD3 as Synergistic Target of Anti-HER2 Therapies
The siRNA pool targeting PRKD3 and non-target control siRNAs were purchased from the siTools Biotech company (http://www.

sitoolsbiotech.com). The antibody to PRKD3 was from Cell Signaling Technology (D57E6, 1:500 dilution). The antibody to ACTB

was from Sigma Aldrich (A1978, 1:5000 dilution). Secondary antibody HRP anti-mouse was from Cell Signaling Technology

(#7076S, 1:2500). HRP anti-rabbit was from Cell Signaling Technology (#7074S, 1:2500). Lapatinib was from SelleckChem, and tras-

tuzumab was from Dana-Farber Pharmacy store. All PRKD inhibitors (KBNB14270, CRT0066101, and CID2011756) were purchased

from Sigma Aldrich.

The SKBR3 cell line (ATCC,Mycoplasma tested free) was cultured inMccoy 5Amedium (Fisher Scientific) with 10%FBS. On day 1,

siRNA pools (siTools Biotech) targeting PRKD3 and control were reverse transfected at a concentration of 20nM with Lipofectamine

RNAiMax (Invitrogen), and seeded in 96 well plates at 10,000 cells per well. We examined the knockdown efficiency at 24 hours with

qPCR and 72 hours with western blot. ACTB is the control gene for both qPCR and western blot. On day 2, the cell line was treated

with lapatinib with ten concentrations, starting from 5uM with a dilution factor of two. After three days, we used the Cell Titer Blue

assay (Promega) to test the cell viability.

In the drug co-treatment experiments, different dose combinations of PRKD inhibitors and lapatinib or trastuzumab are seeded

together with the SKBR3 cell at 10,000 cells per well. The inhibition effects are measured after three days using Cell Titer Blue assay.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Gene Biomarkers from Different Computational Methods
We trained each statistical model on the full range of screen data. The coefficient or statistical metric associated with each gene

feature is the genome-wide biomarker to predict drug efficacy. Specifically, the CARE biomarker is the genome-scale score vector

of t-values computed from interaction test (Figure 1C). For correlation, the biomarker is the genome-scale vector of Pearson corre-

lation values betweenmolecular gene status and drug inhibition values across cell lines. The ANOVA analysis was implemented in the

GDSC software package (Iorio et al., 2016), and the biomarker is the vector of delta values comparing the difference of drug response

by gene mutation status, or discrete status of gene expression.

For support vector regression (SVR), we trained linear epsilon-SVM using Python model scikit-learn. The input matrix X is

composed of gene expression and mutation status. The response Y consists of drug inhibition values across cell lines. For CCLE

screen, the dimension of Xmatrix is 18,293 (gene variables of expression andmutation) x 493 (cell lines). For CTRP screen, the dimen-

sion of X matrix is 18,293 x 821. For GDSC screen, the dimension of X matrix is 31657 x 962. For each compound, the SVM training is

done together with ten-fold cross validation (CV) with the high dimensional Xmatrix. Using the linear kernel, we tuned the cost param-

eter among 1, 10, 100, 1000, and selected an optimal value with best CV R2 score. The biomarker from the linear SVM consists of the

coefficients of all genes.

For elastic net, we trained one linear model for each compound, using ten-fold cross validation by R glmnet package with the same

SVR input (Friedman et al., 2010). The parameter ‘‘alpha’’ controls the combination between the L1 penalty of lasso and the L2

penalty of ridge regression. We explored alpha values from 0 to 1 with 0.1 as the step and took the value with the best CV R2 score.

The biomarker from elastic net consists of the coefficients of all genes.

Gene Biomarkers from Different Genomics Experiments
The gene biomarker from each genetic screen (CRISPR, CRISPRa, shRNA, siRNA, and ORF) consist of all gene log-fold-change

values that test the difference of median guide RNA frequency between drug treatment and control conditions. The biomarker

from each chronic cell line experiment consists of the gene differential expression t-values computed by Limma between the

drug resistant cell line and parental sensitive line (Ritchie et al., 2015). For clinical studies (Hatzis et al., 2011; Miyake et al., 2012;

Popovici et al., 2010), we tested the association between gene expression values and patient clinical response with logistic regres-

sion, and the biomarker comes from the t-values of gene coefficients.

Clinical Response Prediction through Genome-Scale Biomarkers
For each genome-scale biomarker, the Pearson correlation between gene expression values and biomarker gene scores predicts the

treatment response for each patient in a clinical study (Figure 1D). Positively correlated patients are responders, and negatively

correlated patients are nonresponders. For each clinical study, we ranked all human genes according to the standard deviation of

expression values across patients and only used the top 50% genes in a correlation analysis. Certain genomic screen studies did

not release their data (Table S3) (Eichhorn et al., 2008; Moody et al., 2015). For these studies, we extracted the top gene hits reported

in the publication and computed the average gene expression value over these top gene hits as therapy response prediction.

Comparison of Methods for Finding Genes Associated with Drug Efficacy
As the evaluation standard of gene signatures associated with response and resistance to targeted therapy, we utilized gene expres-

sion data from drug resistant cell lines derived from chronic treatment on sensitive cell lines. For microarray data, we used Limma to

extract the differential expressed genes between drug resistant cell line and parental sensitive cell line (Ritchie et al., 2015). The eval-

uation standard positive set consists of the upregulated genes selected by Limma, and the evaluation standard negative set consists

of those down-regulated genes (adjusted p value < 0.05).

For BRAF inhibitor, we used the data from a previous study that derived drug resistant cell lines from chronic drug treatment and

compared the gene expression profiles between drug resistant cell lines and their parental lines (Nazarian et al., 2010). Among three

drug resistant cell lines, only M229-R5 and M238-R1 (but not M249-R4) have more than ten differential upregulated genes with

default Limma parameters. We used the intersection of differential expressed genes between M229-R5 and M238-R1 as the eval-

uation standard set for BRAF inhibitor. Comparing to the union, the overlap of differentially expressed genes could give a more

consistent result in a third drug resistant cell line SKMel28 (Figures S4J and S4K) (Hugo et al., 2015). Many previously known genes

involved in anti-BRAF resistance are differentially expressed in the M229-R5 and M238-R1 cell lines (Tables S4B and S4C).

For lapatinib, we found microarray data of drug resistant cell lines derived from BT474 (Liu et al., 2009) and SKBR3 (Bailey et al.,

2014), and used the overlap of differentially expressed genes between these two cell lines as evaluation standard. For topotecan, we

found microarray data of drug resistant cell line derived from A2780 (Januchowski et al., 2014), and used the overlap of differentially

expressed genes between two independent resistant clones as the evaluation standard.

Based on the evaluation standard defined above, we used receiver operating characteristic (ROC) curve to compare computa-

tional methods in predicting drug efficacy gene scores from compound screen data (Figure 4A). The ROC curve plots the true positive
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rate against the false positive rate at various thresholds of gene scores. If a method makes random predictions, the ROC curve will

stay on diagonal. If a method makes perfect predictions, the ROC curve will stay on upper left corner. The area under ROC curve

(AUC) can measure the overall performance of a method (Figure 4B).

DATA AND SOFTWARE AVAILABILITY

The open source CARE package is available under GNU Public License v3 on our website: http://care.dfci.harvard.edu/download/.

The source code for our Bliss synergy analysis is also available on the download page. Users can query our analysis results with drug

or gene names on our website (http://care.dfci.harvard.edu). Also, all of our processed input data, analysis output data, and an

example script to repeat our major results are available at http://care.dfci.harvard.edu/download/.
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