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We propose a fast and powerful analysis algorithm, titled Model-
based Analysis of Tiling-arrays (MAT), to reliably detect regions
enriched by transcription factor chromatin immunoprecipitation
(ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the
baseline probe behavior by considering probe sequence and copy
number on each array. It standardizes the probe value through the
probe model, eliminating the need for sample normalization. MAT
uses an innovative function to score regions for ChIP enrichment,
which allows robust P value and false discovery rate calculations.
MAT can detect ChIP regions from a single ChIP sample, multiple
ChIP samples, or multiple ChIP samples with controls with increas-
ing accuracy. The single-array ChIP region detection feature min-
imizes the time and monetary costs for laboratories newly adopt-
ing ChIP-chip to test their protocols and antibodies and allows
established ChIP-chip laboratories to identify samples with ques-
tionable quality that might contaminate their data. MAT is devel-
oped in open-source Python and is available at http:��chip.
dfci.harvard.edu��wli�MAT. The general framework presented
here can be extended to other oligonucleotide microarrays and
tiling array platforms.

functional genomics � genome tiling microarrays � model-based probe
analysis � transcription regulation

Identifying the binding sites and regulatory targets of a transcrip-
tion factor (TF) is crucial to understanding its biological function.

Since the first publications on the subject (1–3), chromatin immu-
noprecipitation (ChIP) coupled with DNA microarray analysis
(ChIP-chip) has quickly evolved as a popular technique to study the
in vivo targets of DNA-binding proteins at the genome level.
Although PCR-based promoter arrays have been successfully used
with ChIP-chip to characterize all of the TFs in yeast (4), they are
impractical when extended to mammalian genomes. Recently,
Affymetrix (Santa Clara, CA), NimbleGen Systems (Madison, WI),
and Agilent Technologies (Palo Alto, CA) have developed oligo-
nucleotide arrays that tile all of the nonrepetitive genomic se-
quences of human and other eukaryotes. The Affymetrix tiling
arrays have on average one perfect match (PM) probe for every 35
bp of DNA and an optional mismatch (MM) probe for every PM
probe. Although these whole-genome tiling microarrays allow
biologists to conduct unbiased genome-wide ChIP-chip experi-
ments, they also generate massive amounts of data, creating a need
for effective and efficient analysis algorithms. Our interest in
developing such algorithms for Affymetrix whole-genome tiling
arrays arises from their low cost and the complex nature of the
resulting data.

All methods previously developed to identify regions enriched by
ChIP on Affymetrix tiling arrays are based on statistics that
compare ChIP array data with one or more control sample. The
Mann–Whitney U test is applied to ChIP-chip data by ranking of
ChIP and control probe signals within 1-kb sliding windows (5) but
does not consider the variability in probe behavior. Other research-
ers have modeled probe behavior using pooled ChIP-chip data
from multiple laboratories and then infer ChIP-enriched states
through a hidden Markov model (HMM) (6). Another method
applies Welch’s t statistic comparing ChIP and control replicates,

calculated for each probe, and then uses a running window average
of the t statistics to identify ChIP regions (7). This method becomes
unreliable when there are only a few replicates to estimate probe
variance. TileMap (8) proposes an empirical Bayes shrinkage
improvement by weighting the observed probe variance and pooled
variances of all of the probes on the array. TiMAT (http:��bdtnp.
lbl.gov�TiMAT) first calculates an average fold change between
ChIPs and controls for each probe, then uses a sliding-window
trimmed mean to find ChIP regions.

In this work, we propose a fast and powerful analysis algorithm,
titled Model-based Analysis of Tiling-arrays (MAT), to identify
regions enriched by TF ChIP-chip on Affymetrix tiling arrays (see
Fig. 1 for a strategy diagram of MAT). Instead of estimating probe
behavior from multiple samples, MAT models baseline probe
behavior by considering the 25-mer sequence and copy number of
all probes on a single tiling array. With a good baseline probe
behavior model, MAT can standardize the signals of each probe in
each array individually, and detect ChIP regions from a single ChIP
sample, multiple ChIP samples, or multiple ChIP samples with
controls, with increased accuracy.

Results
We applied MAT to the estrogen receptor (ER) ChIP-chip data (9)
on Affymetrix tiling arrays covering chromosome (chr) 21 and 22.
This chip set contained A, B, and C arrays, each with �300,000
probe pairs (PM and mismatch). Three ChIP-chip replicates (rep-
resented as C1, C2, and C3) were hybridized by using MCF7 cells
45 min after ER activation, and three Input control replicates
(represented as I1, I2, and I3) were hybridized by using the MCF7
genomic input DNA. We remapped all of the probe sequences to
the newest genome assembly (UCSC Hg17), and filtered probes to
ensure that no probe is mapped to more than one location in any
1-kb window and that no two probes are mapped to the same
genomic location.

Probe Behavior Model Fitting. We applied MAT to each array in the
data set and estimated the probe behavior model by examining the
signal intensity, sequence, and copy number of all probes on an
array. Position-specific nucleotides (� and � parameters from Eq.
1) accounted for 28–36% of the variation in the arrays (based on
the multiple R2 of the model). This model resulted in correlations
of 0.53–0.60 between the predicted probe intensities and observed
values in five of the six samples. Not only did A, C, G, and T
contribute differently to the probe intensity, the position-specific
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nucleotide coefficients (Fig. 2) indicated that the two or three
nucleotides at the two ends and in the middle of the probe tend to
have the most variable effects. Including the effect of the squared
ACGT counts (� parameters in Eq. 1), the correlation between
model predictions and observations increased to 0.65–0.72 in five
of the six samples. Model fitting in I3 only achieved a correlation of
0.49 and multiple R2 of 24%. We did not consider this result a failure
in our method; rather, based on Fig. 4a, it appeared that less DNA
was added to the array; therefore, the noise was higher relative to
the signal intensity values.

We found that �5% of the probes on the chr21 and chr22 tiling
arrays mapped to multiple locations in the genome. These multiple
copy number probes gave slightly higher signal than single copy
probes with similar sequence and tended to cluster together on the
chromosome. This clustering caused regions containing the multi-
ple copy number probes to be falsely identified as ChIP regions (6),
unless we adequately accounted for their copy number effect.
Although incorporating the copy number effect (� parameter) did
not improve model fitting significantly, it reduced the number of
ChIP regions called in the Input triplicates (3I) control sample
analysis by 60% at a P value cutoff of 10�7.

Probe Standardization. After MAT probe behavior model fitting,
the residuals between the model and observation were approxi-
mately normally distributed and centered at 0 (Fig. 3a). The
residual Q-Q plot (Fig. 3b) showed that the vast majority of probes
were on the theoretical quantile, except for a small percentage of

probes on the upper tail, which represented DNA enriched during
ChIP and PCR amplification and cross-hybridized probes. We
divided all of the probes on an array into 100 affinity bins such that
each bin contains �3,000 probes predicted to have similar inten-
sities. A sample variance was estimated for each bin and used as the
variance for all probes in the bin. MAT used the model-predicted
intensity and bin variance to standardize every probe on the array
according to Eq. 2. Before probe standardization, the probe value
distributions in the samples (Fig. 4a) showed a clear need for
array-wise normalization. After probe affinity standardization, the
resulting t values were well normalized across arrays and samples
(Fig. 4b) and thus could be directly compared.

To further confirm that MAT did not need sample normaliza-
tion, we quantile-normalized (10) all samples before we applied
MAT to each array. MAT identified the exact same 77 ChIP regions
by using all six samples with or without normalization at a P cutoff
of 10�7, and MATscores were nearly identical except for the
highest, which were �5–10% lower in the normalized data, result-
ing in less confident predictions (in terms of P) of these regions.

ChIP Region Detection. MAT was applied to detect ChIP regions in
three different scenarios: single sample, multiple samples (repre-
sented as 3C for ChIP triplicates and 3I for Input triplicates), or
multiple ChIP samples with input controls (represented as 3C �
3I). When applied to ChIP sample C1, MAT identified many
windows with high MATscore (Fig. 5a), most of which were true
ChIP regions (detailed method comparison statistics appear be-

Fig. 1. Strategy diagram for MAT.

Fig. 2. The effect of A (Left), C (Center), and G (Right) at each probe nucleotide position on probe intensity. Plotted are the coefficients estimated from the
A array in each of the six samples. C1, red; C2, green; C3, blue; I1, cyan; I2, magenta; I3, yellow.
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low). MAT also scored a few windows high in control sample I1
(Fig. 5b), which were presumably false positives. At a P cutoff of
10�7, individual ChIP samples produced between 57 and 71 sites,
whereas individual Input controls produced between 6 and 12 sites.

Compared with C1, 3C gave a few more high MATscore windows
(Fig. 5c). Although the MATscore distribution in 3C had slightly
higher variance than in C1, the high-scoring windows gave much
higher MATscores in 3C. This result translated into much more
confident predictions for these high-scoring windows. The
MATscore distribution from 3I also had slightly higher variance
(Fig. 5d). However, most high-scoring windows in I1–I3 either
disappeared or gave reduced MATscores in 3I. At a P cutoff of
10�7, MAT called 81 regions from 3C and only two from 3I. One
of these two regions with high MATscores in 3I showed even higher
MATscores in 3C and has been validated to be a true ChIP region
by quantitative PCR (qPCR). The other region is likely a false
positive. These results indicate that at this cutoff, using 3C without
controls, MAT had very few false-positive predictions.

When triplicate ChIPs and input controls were combined (3C �
3I), most high-scoring windows retained their MATscores. How-
ever, MATscore distribution showed slightly smaller variance com-
pared with 3C, because any cell-specific and probe-specific varia-
tions not modeled in Eq. 1 were filtered by subtracting the Inputs.
A total of 77 ChIP regions were identified from (3C � 3I) at a P
cutoff of 10�7, of which 68 were in common with the 3C without 3I.
So far, 83 regions have been qPCR-validated as ER ChIP regions
on chr21�22; 57 sites were previously validated (9); and 26 were
validated independently based on ER ChIP-chip data on whole-
genome tiling arrays (J.S.C. and M.B., unpublished data). A total
of 64 of the 83 qPCR-validated regions were called by MAT at this
cutoff. If we lowered the cutoff to 10�6, MAT called 90 regions, of
which 69 were qPCR-validated. At this cutoff, MAT identified 101
regions from 3C and 13 regions from 3I (one of which was even

higher in the 3C). The advantage of having controls was demon-
strated here because as many as four potential false-positive regions
were filtered by subtracting 3I from 3C.

Method Comparisons. We compared the performance of MAT
with that of the HMM (6), TileMap (8), and TiMAT (http:��
bdtnp.lbl.gov�TiMAT). We did not include the Mann–Whitney
U test (5) or Welch t test (7) [both of which only worked with
(3C � 3I)] because HMM and TileMap had demonstrated better
performance than Mann–Whitney, and TileMap had been
shown to work better than Welch’s t test. For the HMM
background distribution, a total of 54 ChIP-chip and control
samples (5, 9) were used to estimate probe behavior. Quantile
normalization was conducted on all six samples for HMM,

Fig. 3. Distribution of residuals between MAT model predictions and ob-
served intensities for array A in sample C1. (a) Residuals across model predicted
values. The gray line is the Lowess fit. (b) Q–Q plot of the residuals. The gray
line is the theoretical normal (0, 1) distribution.

Fig. 4. Probe value distribution in the A array of the six samples before (a) and after (b) probe standardization.

Fig. 5. MATscore of all 600-bp windows across the Affymetrix human
chr21�22 tiling A array. Shown are the MATscores calculated by using ChIP
sample 1 (C1) (a), Input sample 1 (I1) (b), 3C (c), 3I (d), and all six samples (3C �
3I) (e). The thickness of each horizontal band reflects the variance of the
MATscores.

Johnson et al. PNAS � August 15, 2006 � vol. 103 � no. 33 � 12459

G
EN

ET
IC

S
ST

A
TI

ST
IC

S



TileMap, and TiMAT. Default parameters were used for each
algorithm to find ChIP regions from all six samples (3C � 3I).
Different methods reported different numbers of ChIP regions
using default parameters. Because TileMap predicted the fewest
ChIP regions, 55 (using the HMM option, its moving average
option reported 13 sites), we used the top 50 predictions from
each algorithm to compare the performance of the algorithms.
The results are summarized in Table 1. We first compared the
predictions with the 83 qPCR-validated regions. Among the top
50 predictions from all six samples (3C � 3I), 49 in MAT, 40 in
HMM, 45 in TileMap, and 44 in TiMAT were qPCR-validated,
respectively. The actual published HMM (9) estimated probe
behavior from 76 instead of 54 samples, including some unpub-
lished data. Among the top 50 HMM predictions based on the
probe model, 46 were qPCR-validated, and 38 overlapped with
the MAT (3C � 3I) predictions. Note that the qPCR-validated
regions were biased because they were selected mostly from the
HMM and MAT analyses. With this result, we only demon-
strated that for (3C � 3I), the top 50 sites predicted by the
different methods were comparable.

We proceeded to compare the different methods when fewer
samples were available. TileMap only worked with multiple ChIPs
and multiple Inputs. TiMAT could detect ChIP regions from a
single ChIP with its corresponding Input. However, the sample-to-
sample agreement using TiMAT on paired ChIP and Input samples
is not as high as that using MAT on ChIP sample alone. HMM (6)
was able to find ChIP regions from single or multiple ChIP samples
without controls. Its predictions on C1, C2, C3, and 3C samples
were consistent with each other and with (3C � 3I). However,
HMM relies on probe behavior estimates from many more samples
and could be very sensitive to the number and quality of samples
used. Compared with HMM, TileMap, and TiMAT, MAT was able
to conduct independent single-sample analysis and showed superior
flexibility and consistent accuracy. The MAT analysis on C1, C2,
and C3 individual ChIP samples gave concordant results to each
other, to the (3C � 3I) result, and to qPCR validations.

The results in Table 1 suggest that MAT yields 68–84% of the

ChIP regions from a single ChIP sample as compared with the 3C
and 3I controls. This finding is very valuable for laboratories newly
adopting ChIP-chip to quickly test and optimize their protocol and
antibodies. They could run one ChIP sample on a single array for
the different protocols or antibodies and use MAT to make
predictions. If a few of the MAT predictions could be qPCR-
validated, they could replicate the working protocol or antibody to
obtain a comprehensive result. In addition, laboratories familiar
with ChIP-chip could still run MAT on each individual ChIP
sample and easily identify samples whose results are inconsistent
with the other samples and with (3C � 3I). Biologists could choose
to ignore the samples of questionable quality from downstream
analysis.

Conclusion and Discussion
We propose a fast and powerful algorithm, MAT, for data analysis
of ChIP-chip on Affymetrix tiling arrays. By using a simple linear
model, MAT estimates the baseline probe behavior based on probe
sequence characteristics and genome copy number. By using this
baseline model to standardize the probes, MAT is able to filter
much of the noise in the data and clarify the true biological signals
in the data. This framework could be adapted to fit more sophis-
ticated probe models. For example, we could consider melting
temperature, secondary structure, or 23�24-mer cross-hybridiza-
tion of each probe. Additionally, nonlinear and other modeling
approaches could be used to increase the explanatory ability of the
model. Because each whole-genome tiling array contains �6 mil-
lion probes, the overfitting of models with a few hundred param-
eters is not a concern. For the whole genome tiling arrays, MAT
estimates the 81 parameters from randomly selected 400,000 probes
instead of from all of the probes on the array to save memory.

It is worth noting that the MAT algorithm presented here is not
specific for analyzing ChIP-chip on Affymetrix tiling arrays; how-
ever, it is a general method for analyzing data from almost any
experiment using Affymetrix tiling microarrays. The approach of
MAT for probe sequence modeling, single-chip standardization,

Table 1. Percent agreement between the top 50 sites predicted by different analysis algorithms and the 83 qPCR-validated regions
and with each other

Analysis
method

MAT HMM TileMap TiMAT

3C � 3I 3C C1 C2 C3 3C � 3I 3C C1 C2 C3 3C � 3I 3C � 3I C1 � I1 C2 � I2 C3 � I3

qPCR 98 94 74 88 92 88 (92) 88 76 74 86 90 88 62 80 72
MAT

3C � 3I
3C 86
C1 68 74
C2 84 88 64
C3 84 90 70 84

HMM
3C � 3I 76 72 58 70 64
3C 74 74 58 74 70 86
C1 62 58 70 72
C2 68 64 76 82 58
C3 74 70 82 82 70 72

TileMap
3C � 3I 78 70 60 72 70 70 70 54 64 66

TiMAT
3C � 3I 84 74 60 76 74 68 (70) 68 60 62 68 84
C1 � I1 58 60 50 52 60 64
C2 � I2 74 64 60 60 74 78 58
C3 � I3 64 54 56 52 66 76 50 60

Values in parentheses are the HMM results when the probe behavior model was estimated from many more samples. Segmental duplication and simple repeat
regions were filtered before comparison. (The qPCR regions above were not randomly selected and cannot be used to compare methods; they are included as
a quality check to show that the methods above are producing true results.)
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can be extended to accommodate analysis of Affymetrix gene
expression and SNP arrays and long oligomicroarray platforms.

The current MAT probe model relies heavily on the fact that
most of the probes on the array are measuring the nonspecific
hybridization. We do not expect that the small percentage of
non-null probes will bias the model estimates significantly. In the
case that the small percentage of enriched probes did have an effect,
a more robust method for parameter estimation (such as median
regression or iteratively reweighted least squares) could be used to
fit the background model. However, in the case of DNA and histone
modification studies, as many as half of the data points could
measure true biological signal, and even robust methods would
result in a large amount of bias in parameter estimation. In this case,
one could first fit the model, identify ChIP regions, and then remove
probes in these regions. The model could then be refit and used to
identify more ChIP regions.

In most microarray applications, it is necessary to apply array
normalization and probe background adjustments to preprocess the
resulting data, which is typically a two-step process. The single-array
probe standardization procedure presented here is a simultaneous
array normalization and background adjustment. The probe back-
ground model is fit to each array individually, and then the intensity
values are standardized to have the same mean and variance across
all probes within all arrays. We have demonstrated here that the
method is effective, and it eliminates the need for additional
normalization.

MAT is unique in its ability to handle a single ChIP-chip sample,
multiple ChIP samples, or experiments with replicate ChIP and
control samples. The single chip analysis feature can serve as a
quality assessment tool. For laboratories newly adopting the ChIP-
chip technology, this feature allows the testing of experimental
protocol from a single ChIP sample on a single array (instead of the
whole chip set). For laboratories with multiple antibodies against
the same TF, this feature enables them to quickly find the antibody
that gives the cleanest or strongest target enrichment. For labora-
tories with a working ChIP-chip protocol and antibody, this feature
allows for the examination of individual samples to identify those
with questionable quality, which might contaminate the data set.
With multiple ChIP samples, MAT can more confidently detect
ChIP regions with reduced false discovery rate (FDR). For exper-
iments with multiple ChIP and control samples, MAT has increased
sensitivity and specificity and can adjust for possible cell-line–
specific anomalies. Finally, MAT can be used to analyze experi-
ments with unbalanced designs (i.e., 3 ChIPs and 1 input control),
allowing researchers yet more flexibility for study design, modeling
out cell-line–specific anomalies while balancing time and monetary
constraints.

The FDR procedure described in MAT controls the FDR among
all called regions in the arrays. FDR controls have been incorpo-
rated into other ChIP-chip algorithms (8); however, these methods
only control probe-wise FDR. To illustrate this distinction, consider
the following example. Suppose that there are 20 probes with scores
higher than a given cutoff, and also suppose one of these scores is
a false positive. Now suppose that the 19 enriched probes are
clustered on the chromosome and come from 4 distinct regions. In
this hypothetical case, the probe FDR is 0.05, but the region FDR
is 0.20. Because regions are usually of interest in tiling array analysis,
there is an advantage to controlling for region FDR.

Predicted ChIP regions are sometimes contained in segmental
duplication regions; consider, for example, a region that has five
segmental duplications in the whole genome, and one copy is bound
by the TF with a 6-fold ChIP enrichment. After adjusting for probe
copy number, MAT will find this region to be ChIP enriched, and
qPCR will likely find a 2-fold enrichment [i.e., (4 � 1 � 1 � 6)�5 �
2]. However, because these segmental duplications are often 99%
identical, neither ChIP-chip analysis on tiling arrays (even with
control replicates) nor qPCR could distinguish whether it is one
copy with 6-fold ChIP-enrichment or all five copies each with a

2-fold ChIP-enrichment. This issue can be problematic for down-
stream analyses such as finding the genes regulated by a ChIP
region. Therefore, MAT will ‘‘flag’’ any ChIP-enriched segmental
duplications in the output. Researchers can decide whether to
investigate all ChIP regions or only the unique regions in the
genome.

Methods
Probe Behavior Model Estimate and Probe Standardization. The
estimation of probe behavior in MAT takes advantage of two
characteristics of ChIP-chip data on Affymetrix tiling arrays. First,
the majority of probes in a typical ChIP-chip experiment measure
primarily nonspecific hybridization. Second, each Affymetrix tiling
array contains between 0.3 million and 6 million 25-mer oligonu-
cleotide probes, allowing for an accurate and robust prediction of
probe sequence effects. Motivated by the sequence-specific probe
behavior models for gene expression microarrays (11, 12), we
propose the following tiling array probe affinity model:

log�PMi	 � �niT � �
j�1

25 �
k�{A,C,G}

� jkI ijk

� �
k�{A,C,G,T}

�knik
2 � � log�ci	 � � i, [1]

where

Y PMi is the PM probe value of probe i;
Y nik is the nucleotide k count in probe i;
Y � is the baseline value (intercept or constant) based on the

number of T nucleotides on the probe, e.g., 25� is the baseline
when the probe sequence is a run of 25 T nucleotides;

Y Iijk is an indicator function such that Iijk � 1 if the nucleotide
at position j is k in probe i, and Iijk � 0 otherwise;

Y �jk is the effect of each nucleotide k (except T, which is already
modeled in �) at each position j;

Y �k is the effect of nucleotide count squared;
Y ci is the number of times that the sequence of probe i appears

in the genome. Affymetrix tiling array libraries provide the
25-mer sequence of every probe, which we mapped to the
non-repeat-masked newest (May 2004) version of the human
genome assembly;

Y � is the effect of the log of the probe copy number; and
Y �i is the probe-specific error term, assumed to follow a normal

distribution.

There are 81 parameters in this model, 1 for �, 25 � 3 for �, 4
for �, and 1 for �. MAT estimates the parameters by ordinary least
squares using all of the probes on a tiling array. Model fitting is
applied to each array separately (i.e., each single array in a tiling
array chip set) in each ChIP-chip or control sample. After param-
eter estimation, the model can predict probe the baseline intensity
of i, m̂i, given its probe sequence and copy number. MAT divides
the probes on the array into ‘‘affinity bins,’’ each containing a few
thousand probes with similar m̂i. MAT estimates the observed
sample variance within each affinity bin and uses it as the probe
variance for each probe in the bin. The large number of observa-
tions in each affinity bin produce far more stable variance estimates
of probe behavior than those derived from multiple samples (6, 8),
which may not even be available.

With the probe behavior model, MAT standardizes each probe
on each array as follows:

ti �
log�PMi	 � m̂i

s i affinity bin
, [2]

where m̂i is the baseline intensity predicted by the model based on
the sequence and copy number of probe i, and si affinity bin is the

Johnson et al. PNAS � August 15, 2006 � vol. 103 � no. 33 � 12461

G
EN

ET
IC

S
ST

A
TI

ST
IC

S



standard deviation of the affinity bin to which probe i belongs.
Probes with a high t value are not necessarily all ChIP-enriched, but
they exhibit significantly higher values than predicted by the model.
The distribution of t values is approximately standard normal, and
t values may be compared across experiments without further
normalization.

Detect Regions Enriched by TF ChIP-Chip. We propose a powerful
scoring scheme across sliding windows to identify ChIP-enriched
regions. Sonication during ChIP procedure shears the DNA to
�500-bp fragments, and the median length for the predicted ER
ChIP regions (6) on chr21 and chr22 that are qPCR-validated is 650
bp (9). Therefore, for our analysis above, MAT considers the
600-bp window surrounding each probe and ignores windows with
less than eight probes (however, these parameters are adjustable in
the MAT software, so the researcher can find what works best in
each case). MAT computes a trimmed mean of all of the t values
in the window. The trimmed mean removes the top 10% and
bottom 10% of the t values and averages the remaining 80% of the
t values. A MATscore is also calculated for each window and
assigned to the probe at the center of the window:

MATscore(region) ��nP 	 TM� t values in region),

[3]

where TM is the trimmed-mean of all of the probe t values in the
region, and np is the number of observation points in the region used
to calculate the TM. MATscores are distributed approximately
normal and allow different regions to be directly compared, even
though they may have different lengths or contain a different
number of observations in the region.

MAT can detect regions enriched by TF ChIP-chip in three
different scenarios: single sample, multiple replicates, and multiple
replicates of ChIP-chips and controls. In a single sample, a
MATscore will be calculated from all of the probes within each
600-bp sliding window. The score cutoff to call a ChIP region can
be set arbitrarily, determined based on random-sample qPCR
validation (5), or based on a P value or FDR (see below for details)
cutoff. With multiple replicates, a MATscore will be calculated for
each window by pooling all of the probes across all of the replicates.
Even though the replicates might have similar trimmed mean t
values, having more replicates and more probes in the window will
give higher confidence to the prediction. When multiple replicates
for the ChIP-chip and controls are all available, the MATscore of
each window is calculated as the MATscore of the ChIP replicates
subtracted by the MATscore of the control replicates. This process
removes any cell-specific variations that are not modeled in Eq. 1
and increases the confidence of ChIP region predictions that are
marginally significant from the ChIP-only samples.

In addition, MAT also allows the researcher to divide the
MATscore difference (between ChIP and Input) by a region
standard deviation estimated from the region’s trimmed t values in
the Input controls. This process reduces the scores of regions that
are very noisy or where the inputs give inconsistent results. We have
found this technique to work well when there are enough t values

(�2 Inputs samples) to estimate a good standard deviation. How-
ever, for small Input sample size, this estimate is very noisy and thus
is not recommended.

To assign a P value to a window, it is necessary to estimate the
nonenriched null distribution of the MATscores. To approximate
this distribution, we calculate the MATscore for a nonoverlapping
set of 600-bp windows that cover the array, starting from the
window with the smallest chromosome coordinates and progres-
sively moving across the chromosome in 600-bp increments. As-
suming the MATscores to be normally distributed, MAT estimates
the variance from windows with MATscores smaller than the
median (likely close to zero) and the null distribution to be
symmetric about the median.

MAT can also find enriched regions based on a user-specified
region FDR. Assuming the null MATscore distribution to be
symmetric about the median, for each MATscore cutoff above the
median (positive cutoff), the negative MATscore cutoff is defined
as the value symmetric to the positive cutoff about the median.
After merging nearby probes beyond both MATscore cutoffs, the
region FDR can be defined as the ratio of positive over negative
regions. MAT can automatically select the proper MATscore cutoff
to so that the region FDR is less than or equal to the user-specified
FDR value.

Therefore, the user can specify a P value, FDR, or a MATscore
cutoff to call ChIP regions. After the initial ChIP regions are called,
MAT merges regions that are within 300 bp of each other and
assigns them the scores (MATscore and P value) associated with
the highest-scoring window in the merged region.

Software Implementation. MAT is implemented in open source
Python and is freely available at http:��chip.dfci.harvard.edu�
�wli�MAT. It requires four types of input files. The first three are
as follows: the Affymetrix ‘‘.cel’’ files, which contain the signal value
of every probe; the ‘‘.bpmap’’ library files, which contain the
sequence, locations (on the array and on the genome), and copy
number of each probe; the repeat-library file, which contains the
chromosome coordinates of RepeatMasker repeats (www.repeat-
masker.org), simple repeats (13), and segmental duplications (14).
The MAT parameters (including the grouping of the .cel and
.bpmap files) are then organized into a user-edited ‘‘.tag’’ (Tiling
Array Group) file. MAT returns two types of output file: the ‘‘.bar’’
files, which contain the MATscore for each probe and which can be
imported to Affymetrix’s Integrated Genome Browser for visual-
ization; and a ‘‘.bed: file with the chromosomal coordinates of all of
the ChIP regions with MATscore and repeat (including segmental
duplications) flag. MAT can process the tiling arrays on a single
Linux computer faster than an Affymetrix scanner can scan these
arrays. The strategy diagram is summarized in Fig. 1.
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