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Abstract

Motivation: Multiplexed error-robust fluorescence in-situ hybridization (MERFISH) is a recent technol-

ogy to obtain spatially resolved gene or transcript expression profiles in single cells for hundreds to

thousands of genes in parallel. So far, no statistical framework to analyze MERFISH data is available.

Results: We present a Bayesian model for single cell transcript expression analysis on MERFISH

data. We show that the model successfully captures uncertainty in MERFISH data and eliminates

systematic biases that can occur in raw RNA molecule counts obtained with MERFISH. Our model

accurately estimates transcript expression and additionally provides the full probability distribution

and credible intervals for each transcript. We further show how this enables MERFISH to scale

towards the whole genome while being able to control the uncertainty in obtained results.

Availability and implementation: The presented model is implemented on top of Rust-Bio (Köster,

2016) and available open-source as MERFISHtools (https://merfishtools.github.io). It can be easily

installed via Bioconda (Grüning et al., 2018). The entire analysis performed in this paper is provided

as a fully reproducible Snakemake (Köster and Rahmann, 2012) workflow via Zenodo (https://doi.

org/10.5281/zenodo.752340).

Contact: johannes.koester@uni-due.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The investigation of gene or transcript expression at single cell reso-

lution is of increasing importance in various areas of biological and

medical research. In particular, it is used to study heterogeneous tis-

sues like brain or tumors (Darmanis et al., 2015; Patel et al., 2014)

and it enables the determination of cell types and states (Trapnell,

2015). Based on RNA sequencing (Eberwine et al., 2014; Nawy,

2014), fluorescence microscopy (Femino, 1998; Lyubimova et al.,

2013) and mass spectrometry (Angelo et al., 2014; Giesen et al.,

2014), various technologies and protocols to quantify gene, tran-

script or protein expression in single cells have emerged. Among

these, in situ methods offer the possibility to preserve spatial infor-

mation at cellular or even subcellular level. Currently, only fluores-

cence microscopy based approaches (Femino, 1998; Lubeck et al.,

2014; Nilsson et al., 1994) offer information about the position of
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each observed RNA molecule (i.e. transcript) within the cell

(Crosetto et al., 2015).

With multiplexed error-robust fluorescence in-situ hybridization

(MERFISH), Chen et al. (2015) presented a new approach that

allows the measurement of hundreds to thousands of different tran-

scripts at the same time, while retaining their coordinates within the

cell. In contrast to previous approaches that use multiple colors to

measure multiple different transcripts at the same time (Lubeck

et al., 2014), MERFISH uses a binary code to represent RNA spe-

cies. First, a unique binary word (the encoding) of length n is

assigned to each gene or transcript of interest (see Fig. 1a). Then,

specific readout probes and corresponding fluorescent labels are

designed for n rounds of hybridization and bleaching. Thereby

probes are designed such that a 1-bit at position i in the binary word

corresponds to a fluorescence signal in the ith hybridization round.

When imaging each of the n hybridization rounds, RNA molecules

can be localized by fluorescent spots, and the on/off pattern of a

spot over the n hybridization rounds yields a binary word (the read-

out) again. By matching the latter against the designed encoding, in-

dividual RNA molecules can be assigned to transcripts or genes, and

expression can be quantified. Since both the hybridization and the

fluorescence measurement are error-prone, individual bits in the

readout can differ from the encoding. To enable the matching to

deal with such errors, Chen et al. (2015) propose to use a binary

code with a given minimum Hamming distance (Hamming, 1950)

between any pair of words. With a Hamming distance of 2, 1-bit

errors can be detected. With a Hamming distance of 4, 1-bit errors

can also be corrected, by assigning to the closest encoding.

More than one error in a particular readout can lead to missed

calls and misidentification, which both are the source for systematic

biases in MERFISH data. Indeed, Chen et al. (2015) already report

that about 20% of the molecules are missed when using the first ver-

sion of the MERFISH protocol. A remarkable property of

MERFISH is that the average probability for accidentally reading a

1-bit instead of a 0-bit (0-1 error) and vice versa (1-0 error) can be

easily determined (Chen et al., 2015; Moffitt et al., 2016). In this

work, we use this knowledge to build a Bayesian model for gene or

transcript expression on MERFISH data. We show that this model

enables the correction of the systematic biases that occur within raw

counts. In addition, the model reports full posterior expression dis-

tributions for each transcript along with credible intervals. In line

with recent reports (Halsey et al., 2015), this enables a thorough ex-

ploration of the uncertainties in downstream analyses, which is

exemplified in Supplementary Section S6.

2 Materials and methods

We strive to obtain a posterior estimate of transcript (or gene) ex-

pression in each single cell that is free of biases (Fig. 1). Here, the

unit of expression shall be RNA molecule counts. Using the known

rates for 0-1 and 1-0 errors, we derive probabilities for exact calls

(i.e. the event that an RNA molecule is identified correctly and no

error occured), corrected calls (correct identification, but 1-bit error

corrected), exact miscalls (RNA molecule is assigned to the wrong

transcript), corrected miscalls (RNA molecule is wrongly assigned

although a 1-bit error has been corrected) and dropouts (RNA mol-

ecule is missed because the binary readout is not recognized at all).

These probabilities define an urn model that allows the calculation

of the probability to observe a certain distribution of calls, miscalls

and dropouts for a given transcript expression using a multinomial

distribution. By combining such urns into a joint model over all

transcripts, the joint likelihood of transcript expressions can be cal-

culated. To ensure computational feasibility, we first estimate the

maximum likelihood solution using the EM algorithm, and then cal-

culate individual likelihoods per transcript while fixing miscalls and

expressions of other transcripts to the maximum likelihood esti-

mates. Bayes’ theorem yields corresponding posterior probabilities

from which the maximum a posteriori expression along with cred-

ible intervals can be calculated.

2.1 Readout probabilities
With MERFISH, each transcript is labeled with a different set of

encoding probes. In each of N performed hybridization rounds, dif-

ferent encoding probes are targeted with fluorescent labels. The

encoding probes are designed such that for each transcript, there are

(a)

(b)

(c) (d)

Fig. 1. The MERFISH protocol and Bayesian model for expression analysis on MERFISH data. (a) Outline of the MERFISH protocol. A binary encoding is designed

for each transcript that shall be measured. Multiple FISH iterations are performed such that the binary word is replicated as an on/off pattern of fluorescent sig-

nals. The readout can contain errors, and has to be matched to the encoding to call the correct transcript. For details regarding hybridization and imaging see

Chen et al., 2015, Figs 1 and 2. (b) Events that can occur during the calling process. (c) Urn model to calculate the transcript expression likelihood. From the known

error rates, we derive the probabilities for the different events that can happen in the calling process. These constitute an urn model for each transcript. By com-

bining these urns into a joint model over all transcripts, the likelihood of transcript expression given the observed counts can be calculated. (d) Graphical repre-

sentation of the model as Bayesian network. Latent variables are circles, observed variables are shaded circles. The error rate vectors p0 and p1 are constant

parameters. The moderated fold change F, as well as matrices for expression (X) and miscalls M0 and M1 are latent variables. The counts K0 and K1 are observed

variables
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m unique fluorescence signals in N hybridization rounds. This read-

out can be seen as a binary word. Chen et al. (2015) present two

encoding schemes. With MHD4, the binary words (say, encoding)

assigned to each transcript have length N¼16 (i.e. number of hy-

bridization rounds), contain m¼4 1-bits and the minimum

Hamming distance between two words is 4. With MHD2, words

have length N¼14 with m¼4 1-bits and a minimum Hamming dis-

tance of 2. Technically, the readout for each RNA molecule in a cell

is determined using fluorescence microscopy and subsequent compu-

tational recognition and assignment of the fluorescence signals to

binary words (the readouts). In the following we will use the terms

encoding and transcript interchangeably, since every transcript of

interest is represented by exactly one encoding (i.e. binary word) in

a MERFISH experiment design. Since all stages are error-prone, the

measurement of the readouts can lead to flipped bits. At position k

in the binary word, we denote with p0;k the probability to acciden-

tally obtain a 1-bit instead of a 0-bit (0-1 error rate) and with p1;k

the probability to obtain a 0-bit instead of a 1-bit (1-0 error rate). It

is worth noting that our model is agnostic of the underlying process

as long as the measured outcome is a binary word and error rates

are known. Hence, it will be applicable to any future versions of

MERFISH as long as these properties stay the same. The error rates

p0 and p1 can be estimated from MERFISH data, see Supplementary

Section S4. In the following, we derive probabilities for different

readout events.

After readouts have been obtained, they can be compared to the

designed encodings in order to determine from which transcript they

come. With MHD4, it is possible to correct for 1-bit errors during

this calling process, with MHD2, it is only possible to detect, but

not correct 1-bit errors (Chen et al., 2015). Obviously, these calls

can be incorrect and incomplete, which motivates the comprehen-

sive description of the underlying uncertainties as it will be done in

the following.

Let N be the number of bits in the used encoding and m � N be

the number of 1-bits. First, we strive to calculate the probability to

obtain a readout that is called as a certain target transcript. This can

be an exact call with hamming distance d¼0 to the target transcript

or a corrected call with hamming distance d¼1. We denote with t

the binary encoding of the target transcript and with s the binary

encoding of the real origin of the readout (i.e. the source). The prob-

ability is denoted as

nd;s;t ¼ n0d;s;t;N

with n0 being the recurrence

n0d;s;t;k ¼

p1;kn0d�1;s;t;k�1 þ ð1� p1;kÞn0d;s;t;k�1

if sk ¼ tk ¼ 1; k > 0; d � 0

p0;kn
0
d�1;s;t;k�1 þ ð1� p0;kÞn0d;s;t;k�1

if sk ¼ tk ¼ 0; k > 0; d � 0

p1;kn
0
d;s;t;k�1 þ ð1� p1;kÞn0d�1;s;t;k�1

if sk ¼ 1 6¼ tk; k > 0; d � 0

p0;kn0d;s;t;k�1 þ ð1� p0;kÞn0d�1;s;t;k�1

if sk ¼ 0 6¼ tk; k > 0; d � 0

1 if k ¼ 0; d ¼ 0
0 if d < 0:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

In the recurrence n0 we calculate the probability for the prefix of

length k. If sk ¼ tk, any bit flip (the first term of the respective sums)

increases the Hamming distance to the target transcript, whereas no

bit flip keeps the previous distance (the second term of the sum). In

contrast, if sk 6¼ tk, a bit flip keeps the previous Hamming distance

(because it will flip the source bit to the correct bit of the target

encoding), while no bit flip increases the Hamming distance to the

target transcript.

The function n can be used to calculate probabilities for the dif-

ferent events that can occur to the readout of a certain transcript.

Let e be the encoding for an arbitrary transcript and re be the

obtained readout. Further, let dðre; eÞ ¼ d denote the event that the

Hamming distance between any readout r and any encoding e is

d 2 N. The probability that the transcript is called correctly with

Hamming distance 0 (an exact call) is

Prðdðre; eÞ ¼ 0Þ ¼ n0;e;e:

The probability for a corrected call (Hamming distance 1) of the

transcript of origin is

Prðdðre; eÞ ¼ 1Þ ¼ n1;e;e:

Note that in both cases the source and target transcript are the

same, because we calculate the probability for a correct call. The

next type of event that can happen to a transcript is that it is mis-

called as another transcript. Let e0 be the encoding of the latter.

Then, we can calculate the probability for an exact miscall of e0 as

Prðdðre; e
0Þ ¼ 0Þ ¼ n0;e;e0

and the probability for a corrected miscall of e0 as

Prðdðre; e
0Þ ¼ 1Þ ¼ n1;e;e0 :

We consider above probabilities for all e0 that have a reasonable

Hamming distance to e and denote this set of encodings as neighbors

N e. With the error probabilities known so far, a maximum

Hamming distance of 4 is a reasonable threshold because the prob-

ability would essentially be zero beyond this [as previously also

shown by Chen et al. (2015)]. Finally, the probability for a dropout

event (i.e. the transcript is neither called correctly nor miscalled be-

cause the readout contains too many errors) is the sum of all remain-

ing combinations of bit flips that haven’t been covered by above

events. Alternatively, the result can be obtained by summing call

and miscall probabilities:

Prð8e0 6¼ e : dðre; e
0Þ > 1Þ ¼ 1�

X
e0 :feg[N e

Prðdðre; e
0Þ ¼ 0Þ þ Prðdðre; e

0Þ ¼ 1Þ:

2.2 Estimating transcript expression
In the following, we consider the transcript (or gene) expression as

the real, but unknown, number of RNA molecules present in a single

cell. We first define parameters, latent and observed variables of the

model.

Let E be the set of encodings given by a MERFISH codebook.

The MERFISH protocol suggests to keep a small set �E � E of encod-

ings as misidentification probes, i.e. they are not assigned to any

transcript. Any call of a misidentification probe can be considered as

an artifact. There are two reasons for such an artifact. First, it can

be generated by a miscall from an expressed transcript. Second, it

can be generated out of nothing, by interpreting microscopy or hy-

bridization noise as a real signal. To model the latter, we consider

‘noise’ to be a special transcript with encoding en ¼ 0N, which will

be later treated in a special way.

We denote with n ¼ jE n �Ej the number of real transcripts that

are measured in the experiment and with n0 ¼ jEj the number of

all measured encodings (including misidentification probes). Let

X 2 N
nþ1 be the vector of expressions of all transcripts and the noise

A Bayesian model for single cell transcript expression analysis on MERFISH data 997
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source. Let Md 2 N
ðn0þ1Þ�ðn0þ1Þ with d 2 f0; 1g be the matrices of

miscalls with Hamming distance 0 and 1, with Md
e;e0 denoting the

number of miscalls from encoding e to encoding e0. Finally, let Kd 2
N

n0 with d 2 f0; 1g be the vector of observed counts with Hamming

distance 0 and 1 to the called encoding (e.g. K0
e are the observed

exact counts that have been assigned to the transcript represented by

the binary word e). While K is an observed variable, M is a latent

variable that we will have to estimate along with the expressions X.

See Figure 1d for a graphical representation of the model.

For each transcript with encoding e 2 E n �E, we now define an

urn model that represents the different events that can occur to

obtained readouts. Imagine that the urn contains differently col-

ored balls for exact calls, corrected calls, miscalls to every neigh-

bor e0 2 N e and dropouts. Their relative quantities are defined by

the readout probabilities from Section 2.1. The number of draws

from the urn is then equivalent to the expression of the transcript

and the distribution of drawn balls is equivalent to the observed

and latent events that happen in the experiment. More formally

we can write

PrðK0
e ;K

1
e j X;M0;M1Þ ¼ hðj0

e ;j
1
e ;M

0
e;e1
;M0

e;e2
; . . . ;

M0
e;ek
;M1

e;e1
;M1

e;e2
; . . . ;M1

e;ek
; ke; XeÞ

with hð. . . ; XeÞ being the multinomial probability mass function

with event probabilities

Prðdðre; eÞ ¼ 0Þ; Prðdðre; eÞ ¼ 1Þ;

Prðdðre; e1Þ ¼ 0Þ; Prðdðre; e2Þ ¼ 0Þ; . . . ;Prðdðre; ekÞ ¼ 0Þ;

Prðdðre; e1Þ ¼ 1Þ; Prðdðre; e2Þ ¼ 1Þ; . . . ;Prðdðre; ekÞ ¼ 1Þ;

Prð8e0 6¼ e : dðre; e
0Þ > 1Þ

and Xe trials. The support (i.e. the drawn events) consists of the cor-

rect exact and inexact calls j0
e and j1

e , the miscalls to neighboring

encodings, and the dropout events ke. Thereby it is j0
e ¼

K0
e �

P
e02N 0e[fengM0

e;e0 and j1
e ¼ K1

e �
P

e02N 0e[fengM1
e;e0 , i.e. the cor-

rect calls are the observed counts minus miscalls from other tran-

scripts or the artificial noise source (see above). For the dropout

events ke we take the number of trials Xe minus the sum of the other

events. Note that miscalls computed by the urn for one transcript re-

occur in the j terms of neighboring transcripts. While this ensures

that the real processes in a MERFISH experiment are properly mod-

eled, it also gives rise to additional computational challenges out-

lined in Supplementary Section S3.

For the artificial noise source, we define a slightly different urn.

While we do not have directly assigned counts for the noise, we can

use the misidentification probes as evidence. Instead of having two

events for exact and inexact calls (j0 and j1), we define the two

events for each misidentification probe, i.e. j0
�e ; j

1
�e for each �e 2 �E.

We use the corresponding probabilities Prðdðren ; �eÞ ¼ 0Þ;
Prðdðren

; �eÞ ¼ 1Þ for miscalling �e from noise as event probabilities

and keep the rest of the urn model as defined before.

Now we can define a joint model for the likelihood of transcript

expression as

PrðK0;K1 j XÞ ¼
X

M0 ;M1

Y
e2En �E

PrðK0
e ;K

1
e j X;M0;M1Þ:

Naturally, this is infeasible to calculate because of the combina-

torial number of summands. However, we can use the EM algo-

rithm (Dempster et al., 1977) to obtain an approximation of the

maximum likelihood solution X̂; M̂0 ; M̂1 (see Supplementary

Section S3).

By keeping miscalls M̂0 ; M̂1 fixed and keeping X̂ fixed for every

transcript except a particular one e, we can approximate the poster-

ior probability distribution for expression Xe as

PrðXe ¼ x j K0;K1Þ � PrðXe ¼ xÞhðxÞP
x0 PrðXe ¼ x0Þhðx0Þ

with

hðxÞ :¼ PrðK0;K1 j Xe ¼ x;Xe0 ¼ X̂
0
e; 8e0 6¼ e; M̂0 ; M̂1 Þ:

Depending on the experiment, reasonable prior probabilities could

be negative binomial or Poisson distributed. However, MERFISH so

far is applied to subsets of all available genes or transcripts. Their

expression distribution can be heterogeneous in single cells and

strongly affected by the investigated conditions. Finding appropriate

priors is, among other tasks, subject to future research (see

Supplementary Section S7). For now, we consider flat prior proba-

bilities, which is conservative in the sense that (a) the resulting prob-

ability mass functions will be less sharp and (b) no further

assumptions about the experiment are made. From the posterior

probabilities, we can report the maximum a posteriori probability

(MAP) and the 95% credible interval.

3 Results

We strive to evaluate the benefits of using the presented model on

both simulated and real MERFISH data. For this, we will first show

that the obtained expression estimates are, in contrast to raw counts,

unbiased. Since there exists no real MERFISH dataset where the

true molecule counts are known on a large scale, we show this on

simulated data. On real data, we will show that the presented model

enables improved correlation among the same genes across datasets.

3.1 Available data
Currently, two versions of the MERFISH protocol are available:

Chen et al. (2015) published version 1 with a reported average 0-1

error rate of p0 ¼ 4% and a 1-0 error rate of p1 ¼ 10%. Later,

Moffitt et al. (2016) published version 2 with significantly improved

average error rates of p0 ¼ 0:5% and a p1 ¼ 1%. To assess the ac-

curacy of our method, we simulate MERFISH data for both proto-

cols. Note that we estimated higher error rates as reported for

protocol 1 (see Supplementary Section S4). However, we will use

the reported lower error rates for our simulations to avoid an exag-

geration of the benefits. Further, we use real data from protocol ver-

sion 1 published by Chen et al. (2015): The MHD4 dataset

measures 130 primary transcripts (plus 10 controls) on human fibro-

blast cells (IMR90), using two codebooks (i.e. the binary words

assigned to the transcripts) with a pairwise Hamming distance of at

least 4. The MHD2 dataset measures 985 primary transcripts (plus

16 controls) on the same cell line, using a codebook with a pairwise

Hamming distance of at least 2.

3.2 Example output
Figure 2 exemplifies the output of our model for two genes of the

MHD4 dataset. Since the model reports credible intervals and the

entire probability distribution for each estimate, the certainty of

results can be properly assessed even in single cells. In most cases,

the raw counts obtained by MERFISH are lower than our posterior

estimates. This is consistent with the tendency of underestimation

reported by Chen et al. (2015).
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3.3 Evaluation on simulated data
To validate the estimates of the Bayesian model, we simulated

MERFISH counts for different codebooks and the two protocol ver-

sions. Transcript expressions were drawn from Poisson distributions

with different means. For each drawn count, the corresponding bin-

ary word from the codebook was mutated according to the reported

average rates of 0-1 and 1-0 errors of the used protocol version. In

addition we simulated noise by adding 50% of the total counts as

0-only binary words and mutating them in the same way. This is

equivalent to expecting 2
3 of the investigated cell to be covered by

transcripts. Finally, the mutated binary words were matched against

the codebook, yielding artificial raw counts that are subject to

the same miscall and dropout effects as real MERFISH data.

Figure 3a–c and Supplementary Figure S1d–f (see Supplementary

Section S1) provide results for protocol version 1 with the code-

books from the MHD4 and MHD2 datasets described above. The

simulation is able to reproduce the reported underestimation bias of

raw counts. In contrast, the posterior estimates reported by our

Bayesian model do not show this bias and provide a more accurate

estimate of the true expression. This is also robust with respect to

uncertainty in the 0-1 and 1-0 error rates (see Supplementary Fig.

S3). With protocol version 2, as error rates are much smaller, biases

are expected to be less severe. In fact, when using the MHD4 code-

book with protocol version 2 (MHD4v2), they disappear even when

only considering the raw counts (Supplementary Fig. S1a–c). The

corresponding credible intervals predicted by our model are narrow,

which reflects the increased certainty in the data. While bias is not

an issue with MHD4v2, there is still uncertainty in the data and our

model properly captures this in the credible intervals

(Supplementary Fig. S2c). The improved error rates of protocol ver-

sion 2 offer the opportunity to use a more aggressive encoding in

order to scale towards the whole genome. To illustrate this, we

(a) (b) (c)

Fig. 2. The presented Bayesian model can estimate probability distributions, maximum a-posteriori estimates (MAP) and credible intervals of transcript expres-

sion. The figure shows example probability mass functions (PMF, black dots) of the genes FLNC (a, b) and PRKCA (c) in three single cells from the MHD4 dataset.

The raw total count (number of readouts assigned to the gene) is shown as dashed, and the raw exact count (number of readouts where no bit-correction was ne-

cessary) is shown as dotted gray lines. See Supplementary Section S2 for the general distribution of exact versus corrected counts in the MHD4 dataset

(a) (d)

(b) (c) (e) (f)

Fig. 3. The presented Bayesian model is an accurate estimator of gene expression. We simulated MERFISH data under protocol version 1 (MHD4 codebook) and

protocol version 2 (MHD2v2 codebook). (a) Prediction error as violin plots for different mean expressions using posterior estimates (maximum a posterior prob-

ability, right violin half) and raw counts (left violin half) with MHD4 encoding. (b) Predicted versus true gene expression using posterior estimates (c) and raw

counts with MHD4 encoding. Data is shown in hexagonal bins with intensities corresponding to bin counts (i.e. a 2D histogram). (d, e, f) Corresponding results

for MHD2v2 encoding
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generated a codebook with a pairwise hamming distance of at least

2, binary words of length N¼16, and m¼8 1-bits (MHD2v2, see

Section 2). Such a codebook permits to measure 12, 870 transcripts

at the same time, which is about 2
3 of the expected number of protein

coding genes in the human genome. Figure 3d–f shows that even the

improved error rates of MERFISH protocol version 2 cannot avoid

biased raw counts for such a codebook (this is also the case for the

regular MHD2 codebook in combination with protocol version 2).

Again, our Bayesian model removes the bias, thereby enabling an al-

most whole-genome scale analysis of MERFISH data.

3.4 Evaluation on real data
The MHD4 and MHD2 datasets published by Chen et al. (2015)

share 107 genes. If both experiments would have perfectly measured

all transcripts from these genes on exactly the same cells, we would

expect both experiments to yield exactly the same counts. In reality,

the experiments have of course been conducted on different cells.

Nevertheless, under the assumption that biological conditions have

been the same, the mean expression of each gene within both data-

sets should be the same. We used this property as a proxy for miss-

ing gold standard data, and calculated for both raw counts and the

posterior estimates yielded by our model how accurately the per-

gene means agree between the two datasets. First, we predicted gene

expression on both datasets as (a) the posterior estimates yielded by

our Bayesian model and (b) the raw counts. Let G be the set of com-

mon genes and mg;d be the mean prediction of gene g 2 G in dataset

d 2 fMHD2;MHD4g. Figure 4 depicts the agreement between the

two datasets for both prediction methods in terms of (a) the pre-

dicted means for each gene and (b) the symmetric mean absolute

percentage error

SMAPE ¼
P

g2G jmg;MHD2 �mg;MHD4jP
g2G mg;MHD2 þmg;MHD4

between the two datasets for both posterior and raw prediction.

A perfect agreement cannot be expected due to the fact that (a)

different cells are measured and (b) batch effects exist between the

different MERFISH datasets conducted by Chen et al. (2015) (see

Supplementary Section S6). However, it can be seen that the

Bayesian model provides a significantly improved agreement be-

tween the datasets compared to using raw counts.

4 Discussion

MERFISH has been identified as a major advance in spatial tran-

scriptomics (Shalek and Satija, 2015). In this work, we presented a

Bayesian model for single-cell gene or transcript expression analysis

on MERFISH data. Using simulated and real data, we showed that

the model provides expression estimates that are free of systematic

biases seen with raw MERFISH counts. Reported estimates from

our model are complemented by credible intervals and the entire

probability distribution, which allows to obtain a complete picture

of the uncertainties as it was, e.g. demanded by Halsey et al. (2015).

In the Supplementary Section S6 we exemplify how this information

can be used to control the false discovery rate of differential expres-

sion analysis. The presented model provides, for the first time, a

framework to assess gene or transcript expression with MERFISH,

while properly handling and summarizing uncertainty in the data,

even when investigating a single cell. In combination with the

improved accuracy of version 2 of the MERFISH protocol (Moffitt

et al., 2016) our model even enables to increase the number of meas-

ured transcripts by an order of magnitude, thereby scaling

MERFISH towards the whole genome.

Uncertainties in MERFISH data stem from errors made during

hybridization, fluorescence microscopy and imaging. All these accu-

mulate in the 0-1 and 1-0 error rates that are the main parameter of

our Bayesian model (they can be estimated from the data). Given

that MERFISH is a new technology, it is not yet possible to quantify

how the error rates would differ between labs and microscopes.

Since our model takes these rates into account, the provided un-

biased estimates of transcript expressions together with information

about the uncertainty will help to provide reproducible results

across labs and machines, even if error rates turn out to differ

significantly.

We have shown that the current version of our model is an ac-

curate predictor for Poisson distributed transcript expressions, al-

though it uses a flat prior. Future work will entail the evaluation of

suitable prior probability distributions (e.g. negative binomial), that

enable to (a) introduce prior knowledge about expected mean and

overdispersion or (b) infer these parameters from the data. Given

that MERFISH is a targeted approach, we also plan to support set-

ting priors per gene or group of genes. By this, knowledge about per-

turbations that are applied to the cells (e.g. the knockout of a gene)

can be incorporated into the Bayesian inference.

The MHD4 dataset published by Chen et al. (2015) exhibits an

additional, protocol-specific type of bias: a caveat in the MERFISH

image analysis causes increased dropout rates for encodings with a

large Hamming distance to the most abundant encoding. This prob-

lem has been eliminated in version 2 of the MERFISH protocol

(Moffitt et al., 2016) (personal communication). Due to certain

choices in our implementation of the presented Bayesian model we

are currently only able to partially eliminate this type of bias. In

Supplementary Section S5, we analyze the bias in detail and outline

our plans to improve our implementation accordingly.

With MERFISH protocol version 2, the throughput has been

improved considerably, enabling to measure hundreds of thousands

of cells (Moffitt et al., 2016). This necessitates the efficient data ex-

change between the different steps of MERFISH analysis. Instead of

introducing a custom binary file format, we plan to use an existing

generic approach for binary and compressed data encoding, like

Apache Arrow (https://arrow.apache.org). This will ensure inter-

operability with other tools as well as scripting languages typically

used for post processing (e.g. Python and R).

With single-cell expression analysis, it is reasonable to consider

cells to be in different states and transcript expression to be dynamic

over time (e.g. when investigating cell differentiation). Here, an im-

portant tool is to label individual cells with a pseudotime, that repre-

sents at which point in time of a dynamic process each cell appears

(a) (b)

Fig. 4. Correlation of per-gene means between MHD4 and MHD2 datasets.

Each dot represents the mean estimate across all cells in the two datasets.

SMAPE denotes the symmetric mean absolute percentage error for a predic-

tion between the two datasets. Linear regression is depicted by the line. (a)

Posterior estimates, (b) raw counts
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to be. Campbell and Yau (2016) have previously shown how uncer-

tainties in gene expression can be incorporated into a Bayesian

model for pseudotime inference. Future work might entail the inte-

gration of the uncertainty information provided by our model into

such frameworks, such that reliable pseudotime estimates can be cal-

culated for MERFISH data.
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