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ABSTRACT

Tumor progression and the efficacy of immunother-
apy are strongly influenced by the composition and
abundance of immune cells in the tumor microenvi-
ronment. Due to the limitations of direct measure-
ment methods, computational algorithms are often
used to infer immune cell composition from bulk tu-
mor transcriptome profiles. These estimated tumor
immune infiltrate populations have been associated
with genomic and transcriptomic changes in the tu-
mors, providing insight into tumor–immune interac-
tions. However, such investigations on large-scale
public data remain challenging. To lower the barriers
for the analysis of complex tumor–immune interac-
tions, we significantly improved our previous web
platform TIMER. Instead of just using one algorithm,
TIMER2.0 (http://timer.cistrome.org/) provides more
robust estimation of immune infiltration levels for
The Cancer Genome Atlas (TCGA) or user-provided
tumor profiles using six state-of-the-art algorithms.
TIMER2.0 provides four modules for investigating the
associations between immune infiltrates and genetic
or clinical features, and four modules for exploring
cancer-related associations in the TCGA cohorts.
Each module can generate a functional heatmap ta-
ble, enabling the user to easily identify significant as-
sociations in multiple cancer types simultaneously.
Overall, the TIMER2.0 web server provides compre-
hensive analysis and visualization functions of tumor
infiltrating immune cells.

INTRODUCTION

Tumor-infiltrating immune cells are important in cancer
treatment efficacy and patient prognosis (1–5). The com-
position of immune cells in the tumor microenvironment
contributes to tumor heterogeneity, and creates interesting
yet challenging complexities when investigating dynamic in-
teractions between immune and cancer cells (6). Gene ex-
pression profiling using microarrays or RNA sequencing
(RNA-seq) are mature methods for tumor characterization,
which have been widely used to generate a wealth of tran-
scriptomics profiles in many cancer types. While informa-
tive, tumor transcriptomics data do not immediately indi-
cate immune cell compositions, which instead require com-
putational inference.

The available computational algorithms (7–12) for im-
mune infiltration estimation fall into two main categories:
gene signature- and deconvolution-based approaches (13).
Gene signature-based approaches utilize a list of cell-type-
specific gene sets. By using the expression values of these
signature gene sets in tissue samples, these models infer ev-
ery cell type independently, either by performing enrich-
ment analysis of the gene sets (7) or by aggregating them
into an abundance score (8). Deconvolution methods de-
fine the problem as mathematical equations that model the
gene expression of a tissue sample as the weighted sum of
the expression profiles from the cells in the population mix
(9–12). These two complementary categories of algorithms
have demonstrated variable performance advantages in es-
timating specific immune cell types in different tumors. We
hope that evaluating estimations from multiple algorithms
might help the user gain more comprehensive and robust
results. This motivated us to improve TIMER, a web server
that we developed previously (14).
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The original TIMER web server included only one im-
mune infiltration estimation algorithm (14). Guided by
user feedback, we have developed an enhanced version of
TIMER (TIMER2.0) that integrates multiple state-of-the-
art algorithms for immune infiltration estimation. These al-
gorithms were applied to the expression profiles of the Can-
cer Genome Atlas (TCGA) tumors, allowing users to ex-
plore various associations between immune infiltrates and
genetic features in the TCGA cohorts (15). We also imple-
mented several modules to facilitate investigation of fea-
tures of interest in different cancer types. TIMER2.0 also
provides an ‘estimation component’ to infer immune infil-
trates on user-provided expression profiles using multiple
algorithms.

New developments

Cellular composition estimation. To make reliable immune
infiltration estimations, TIMER2.0 utilizes the immunede-
conv (16), an R package which integrates six state-of-the-art
algorithms, including TIMER (9), xCell (7), MCP-counter
(8), CIBERSORT (10), EPIC (11) and quanTIseq (12).
These algorithms have been systematically benchmarked
(16), and each was found to have unique properties and
strengths. For example, different tissue types may induce
distinct cancer-cell intrinsic expression and create differ-
ent immune contexts (17). TIMER is the only method that
takes tissue specificity into account when estimating im-
mune cell populations, although it only makes estimations
on six immune cell types. xCell can make estimations on
the higher number of different immune cell types but may
fail to detect signals from homogeneous samples. CIBER-
SORT deconvolves more detailed subsets of T-cell signa-
tures. EPIC and quanTIseq have the advantage of directly
generating scores interpreted as cell fractions. Uniform pre-
processing of all the TCGA samples using these algorithms
enables users to visualize all the estimations together to
reach more confident conclusions.

Functional heatmap table. Users commonly wish to ex-
plore associations in all cancer types simultaneously to con-
trast the cancer type of interest. Using the old version of
TIMER, the user had to manually query cancer type one-
by-one. We improved this feature in TIMER2.0 by present-
ing a color-coded heatmap table to combine all calculation
information for each of the input features and cancer types.
In this table, red blocks indicate statistically significant pos-
itive values and the blue blocks indicate statistically signifi-
cant negative values. Gray denotes non-significant results.
The user can order rows by each column through click-
ing the column header. Detailed information about a rela-
tionship can be found intuitively by clicking on the corre-
sponding entry. Thus, the functional heatmap table enables
the user to quickly identify significant associations and find
common trends among different cancer types or a unique
relationship in a specific cancer type.

Estimation for mouse data. Mouse models are widely used
in research of human disease, although there are few com-
putational algorithms available to estimate immune infiltra-
tion for mouse tissues. Recently Petitprez et al. developed

a new version of MCP-counter for mouse, called mMCP-
counter (18), which we have incorporated into the mouse
model of the ‘estimation component’. To perform analyses
with the other five algorithms that were developed to quan-
tify the immune infiltrates for human samples, TIMER2.0
converts mouse gene IDs to the orthologous human gene
IDs. We note that estimations on mouse samples should be
interpreted with caution since human and the mouse tu-
mors may have different immune properties.

RESULTS

Overview of TIMER2.0 web server

TIMER2.0 is a freely available web server to the research
community, and it is implemented by the Shiny web frame-
work for R (version 3.6.1). TIMER2.0 consists of three ma-
jor components: immune, exploration and estimation. The
immune component contains four modules that allow users
to investigate the association between estimated immune in-
filtrates and gene expression, somatic mutations, somatic
copy number alterations (sCNAs) and clinical outcomes in
the TCGA cohorts (Figure 1). The exploration component
has four modules that allow users to find cancer-related as-
sociations in TCGA. Users can compare the expression of
a gene between tumor and normal and find the associations
between the expression of one gene with patient survival,
or the mutation status and expression level of other genes.
Given the inputs for each module in the immune component
and the exploration component, a functional heatmap ta-
ble presents the association between each input feature and
cancer type. All TCGA tumor data, including transcrip-
tome profiles, somatic mutation calls, somatic copy num-
ber variations and patient clinical outcomes, are collected
from the GDAC firehose website (http://firebrowse.org/).
TIMER2.0 extracts raw counts and Transcripts Per Million
(TPM) from RSEM results (19). The estimation component
can infer immune cell infiltration of user-provided expres-
sion profiles using the six estimation algorithms (Figure 2).
Instruction for each module is provided on the module page,
and an overview of the entire website with a tutorial video
is available on the home page.

Immune component

Gene Module. The relationship between tumor gene ex-
pression and immune infiltration is of great interest to many
researchers. The ‘Gene Module’ allows a user to identify
such relationships in a fast, comprehensive and unbiased
way. If a user selects a gene and an immune cell type,
TIMER2.0 generates a heatmap table of the Spearman’s
correlations between the expression of the input gene and
the abundance of the immune cell type as well as its sub-
types in the 59-cell hierarchy across all cancer types (Figure
1A). This display allows the user to view whether the ex-
pression of their input gene is consistently associated with
the immune cell type across different cancer types using dif-
ferent estimation algorithms. When ‘purity adjusted’ option
is selected, clicking on any of the numbers in the table will
return two scatter plots showing (i) the correlation of the
given gene expression with tumor purity (the proportion of
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Figure 1. An illustration of immune component outputs. Upon a query to the immune component, TIMER2.0 evaluates associations between immune in-
filtrates and genetic or clinical features and displays the results as a functional heatmap (A). Upon a user clicking on the heatmap, each module subsequently
generates figures (B–E) showing the detailed information about the corresponding relationship. (A) An example of functional heatmap table generated
by the ‘Gene Module’ shows the association between PDCD1 expression and immune infiltration level of multiple CD8+ T cell types estimated by all
six algorithms across TCGA cancer types. The red indicates a statistically significant positive association, and the blue indicates a statistically significant
negative association. Gray denotes a non-significant result. (B) An example of scatter plots from the ‘Gene Module’. Correlation of PDCD1 expression
with tumor purity (left) and with the infiltration level of CD8 T cell estimated by TIMER (right) in lung squamous carcinoma. (C) An example of the
violin plot from the ‘Mutation Module’ displays the difference in TIMER-estimated CD8 T cell infiltration levels between tumors with mutant or wild-type
TP53 in bladder cancer. (D) An example of the violin plot from the ‘sCNA Module’ visualizes the difference of CD8 T cell infiltration level estimate among
tumors with different sCNA status of PIK3CA gene in head neck cancer. (E) An example of the Kaplan–Meier plot from the ‘Outcome Module’ shows
the difference of overall survival among patients stratified by both the estimated infiltration level of CD8+ T cell and PDCD1 expression level in breast
cancer.

cancer cells in a sample) (20) and (ii) the association of the
gene expression with the immune cell type (Figure 1B).

Mutation Module. Somatic mutations play crucial roles in
tumorigenesis and profoundly influence patient treatment
response and survival (21,22). Researchers are often inter-
ested in the effect of gene mutations on tumor immune envi-
ronment, specifically immune cell infiltration changes. The
‘Mutation Module’ allows users to analyze and visualize the
effect of non-synonymous somatic mutations on immune
cell infiltration across multiple cancer types and immune
cell types simultaneously. Given the input gene, TIMER2.0
displays a bar plot showing mutation frequency of the gene
for each TCGA cancer type. The heatmap table with em-
bedded violin plots presents differential immune infiltration
levels between tumors with the input gene mutated and tu-
mors without the input gene mutated (Figure 1C).

sCNA Module. Genes with somatic copy number alter-
ations (sCNAs) are hallmarks of tumorigenesis and pro-
gression (23), and could influence immunotherapy response
(24). The ‘sCNA Module’ allows a user to compare immune

infiltration distribution by the sCNA status of a gene across
TCGA cancer types. Given the input gene, TIMER2.0 dis-
plays a stacked bar plot showing the relative proportion
of different sCNA states of the gene for all TCGA can-
cer types. TIMER2.0 requires the user to specify a ‘deep
deletion’ or ‘high amplification’ alteration status of the
gene, as defined by GISTIC2.0 (25), to compare with the
‘diploid/normal’ status. The heatmap table displays the log-
fold changes of immune infiltration levels between the spec-
ified alteration group and the normal one. With a click on
an entry of the table, the user can view the immune infiltra-
tion distribution between different sCNA status of the gene
on a violin plot for pairwise comparisons of normal group
with each alteration group (Figure 1D).

Outcome Module. Tumor-infiltrating T cells (26,27) and B
cells (28,29) have been reported to affect patient clinical out-
come. The clinical relevance of the immune infiltrates can
be learned by examining associations between immune in-
filtration level and patient clinical outcome. The ‘Outcome
Module’ allows a user to quickly evaluate the association
of immune subset abundance and patient survival across
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Figure 2. An illustration of outputs for the estimation component. TIMER2.0 provides estimations of immune infiltration levels for user-provided tumor
profiles using six state-of-the-art algorithms. An illustration of expression profiles (TPM-normalized) of five randomly selected TCGA LUAD samples into
the estimation component. (A) The data table presents the different immune cell type infiltration estimated by multiple algorithms. (B) For the eight immune
cell types for which all six algorithms can estimate the abundance, TIMER2.0 draws a multi-panel bar plot showing differences of their infiltration level
estimated by different algorithms among samples. Of the six algorithms, three algorithms (CIBERSORT in original mode, quanTIseq and EPIC) generate
values comparable within the same sample. Based on estimations from these algorithms, TIMER2.0 also presents (C) a multi-panel pie plot showing the
proportion of immune cell types in each sample. The eight previously described immune cell types are highlighted in different colors.

TCGA cancer types. Briefly, TIMER2.0 uses a Cox pro-
portional hazard model to evaluate the effects of immune
infiltration level, specific gene expression on patient clinical
outcome. User-selected variables, such as patient age, tumor
stage, gene expression, with the exception of immune cell
types, are considered as confounding factors for adjustment
in the regression model. The heatmap table shows the nor-
malized coefficients of immune cell types. Each entry on the
heatmap table stands for an independent Cox model that in-
cludes only one immune cell type and the confounding fac-
tors for one cancer type. The user can click on an entry to
examine how the immune cell (high versus low) and gene ex-
pression (high versus low, if the user inputs a gene of inter-
est) are associated with patient survival on Kaplan–Meier
(KM) curves (Figure 1E).

Exploration component

Tumor expression of certain genes such as oncogenes (30)
or cancer/testis genes (31,32) may also be associated with
tumor therapy response and patient clinical outcome. To
investigate cancer-related associations between tumor fea-
tures in the TCGA cohorts, TIMER2.0 provides the ‘Ex-
ploration Component’ with four modules.

Gene DE Module. To evaluate whether a gene has thera-
peutic target potential, the gene is commonly uniquely ex-
pressed or highly expressed in tumors than most normal tis-
sues. The ‘Gene DE Module’ allows users to rapidly com-
pare a gene’s expression level between tumor and matched
normal tissues across all TCGA cancer types. When a user
inputs a gene, TIMER2.0 displays box plots of the gene ex-
pression distribution in tumors versus normal tissues across
all cancer types. Significance is determined by differential
gene expression analysis using edgeR (33).

Gene Outcome Module. Gene expression-based ap-
proaches have been developed to predict survival and
therapy response (32,34,35). The ‘Gene Outcome Module’
allows a user to simultaneously evaluate the gene expres-
sion association of multiple genes on patient survival across
TCGA cancer types. Similar to the ‘Outcome Module’,
TIMER2.0 utilizes the Cox proportional hazard model for
association evaluation. Variables belonging to clinical or
histological features are considered as confounding factors
in the regression model. Once a user submits the request,
TIMER2.0 draws a heatmap table of the normalized
coefficients of the input gene expression in the Cox model.
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Each entry on the heatmap represents an independent
Cox regression coefficient, which associates each gene
expression and other co-variant to the hazard ratio for
the corresponding cancer type, respectively. The user can
click an entry on the heatmap to investigate the association
between the gene expression and survival in the KM curves.
For example, high expression levels of CD8A, CD8B and
the cytotoxic T lymphocytes (CTLs) marker genes GZMA,
GZMB and PRF1 are associated with improved survival
in skin cutaneous melanoma (SKCM) patients, which is
consistent with the anti-tumor function of CTLs.

Gene Mutation Module. Identifying the functional impact
of somatic mutations in the gene expression pattern is crit-
ical for precision oncology and drug discovery (36). The
‘Gene Mutation Module’ allows a user to assess how the
mutation status of one gene influences the expression of the
mutated gene and other genes across TCGA cancer types.
When a user selects one recurrently mutated gene X and en-
ters gene Y on the expression query, TIMER2.0 displays a
heatmap of log-fold changes of gene Y expression between
tumors with the gene X mutation and tumors without the
gene mutation. The user can click an entry on the table to
view detailed violin plots of gene expression distribution in
the mutant versus wild-type tumors.

Gene Corr Module. This module allows a user to discover
the co-expression pattern of genes across TCGA cancer
types. Given one initial gene X of interest and up to 20 other
genes, TIMER2.0 generates a heatmap table of Spearman’s
correlation of gene expression between gene X and the other
input genes. The user can click an entry on the heatmap to
view scatter plots of the expression correlation between the
two genes.

Estimation component

Given the prevalence of transcriptome studies across
immuno-oncology, we improved the capacity for immune
infiltration estimation and interpretation of user-provided
expression profiles. The ‘estimation component’ accepts a
gene by sample expression matrix in a ‘csv’ or ‘txt’ file for-
matted with standard delimiters. The values in this matrix
should be TPM-normalized without log-transformation to
fit the requirements of all estimation methods. Once the in-
put file is uploaded, TIMER2.0 automatically shows the
number of samples so that the user is able to confirm that
the file was uploaded correctly. TIMER2.0 adopts the im-
munedeconv package (16) to infer immune cell compo-
nent abundance of the input gene expression data using
the six state-of-the-art algorithms described previously. The
TIMER algorithm takes tissue-specific effects into account
and requires cancer-type information to improve the accu-
racy of the estimation. If a user selects ‘AUTO’ as the cancer
type, TIMER2.0 will automatically assign the sample to the
TCGA cancer type with the highest expression similarity.

Once the user uploads the gene expression file and clicks
‘RUN’, TIMER2.0 will run immune infiltration estimation
and show a progress bar. The results are summarized in a
downloadable data table with the estimated values of all im-
mune infiltrates for each sample from each algorithm (Fig-

ure 2A). It is worth noting that the estimation from dif-
ferent algorithms have different interpretations. While all
six methods allow comparisons of the same cell type be-
tween samples, CIBERSORT, quanTIseq and EPIC also al-
low comparisons of the different cell types within the same
sample. To illustrate this difference, we examine the two im-
ages that TIMER2.0 draw when input sample size is <10.
The first image is a multi-panel bar plot comparing the in-
filtration level between samples for eight common immune
infiltrates estimated by each method (Figure 2B). The sec-
ond image is a pie plot showing the proportion of the eight
immune infiltrates estimated by CIBERSORT, quanTIseq
and EPIC (Figure 2C).

DISCUSSION

TIMER2.0 is an updated web server with unique features
that enable analyses and visualization of tumor immunity
and its association with other tumor molecular and clinical
features. First, TIMER2.0 estimates immune cell infiltra-
tion in TCGA tumors or user-provided transcriptome data
using six different computational methods so users might
gain more confidence on the results that are consistently ob-
served using different methods. Second, TIMER2.0 helps to
find associations between immune infiltration, gene expres-
sion, mutations and survival features in the TCGA cohorts.
Finally, TIMER2.0 provides user-friendly and interactive
visualization to facilitate data exploration. With tumor pro-
filing data from single-cell technologies increasingly avail-
able, there will undoubtedly be improvements in defining
signatures of tumor-infiltrating immune cells and in meth-
ods for computational estimation. We envision continued
development of the TIMER web resource to benefit the can-
cer immunology research community.
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