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unpublished; available at ftp://ftp.isrec.isb-sib.ch/sib-isrec/pftools/); SAM
version 1.3.3 (ref. 18;http://www.cse.ucsc.edu/research/compbio/sam.html);
HMMER version 1.8.4 (S.R. Eddy, unpublished; available at http://hmmer.
wustl.edu). Binding scores for oligonucleotide sequences were computed
with the program pfsearch (pftools). Simulated SELEX data were generated
by first converting the CTF/NFI profile (Fig. 1A) into an equivalent HMM
with the program ptoh (pftools), and then by generating random instances
from the HMM with the program hmme (HMMER). Exponential bases of
1.14, 1.19, and 1.36 were used to convert the same profile into different
HMMs representing low-, medium-, and high-affinity binding sites, respec-
tively. New HMMs were derived from the simulated SELEX data and from
the Selex3 database with the program buildmodel (SAM). The details of the
computational recipe can be found on our website (http://www.isrec.
isb-sib.ch/selex_nf1/). The new profile (Fig. 2C) was computed from the
new HMM with the program htop (pftools) using a logarithmic base of 1.26
for conversion (corresponding to the 10 x logy scale used in the old profile).
The profile weights were subsequently rescaled manually to conform to the
conventions applied in the old profile (see Fig. 1A legend).

The covariance analysis was done on a set of 3,602 15-mer sites extracted
from the Selex3 library with binding score 265 according to the new profile.
Each sequence was presented in both orientations. The calculation of the x?
test variable and the mutual information value? was based on a 2 x 2 contin-
gency table representation of the corresponding base frequencies: we consid-
ered only the presence or absence of the specific bases under consideration at
each position.

Note: Supplementary information is available on the Nature Biotechnology
website.
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Chromatin immunoprecipitation followed by cDNA microarray
hybridization (ChlP-array) has become a popular procedure for
studying genome-wide protein—DNA interactions and transcrip-
tion regulation. However, it can only map the probable
protein—-DNA interaction loci within 1-2 kilobases resolution. To
pinpoint interaction sites down to the base-pair level, we introduce
a computational method, Motif Discovery scan (MDscan), that
examines the ChlP-array-selected sequences and searches for
DNA sequence motifs representing the protein—DNA interaction
sites. MDscan combines the advantages of two widely adopted
motif search strategies, word enumeration!-* and position-specific
weight matrix updating®-?, and incorporates the ChlP-array rank-
ing information to accelerate searches and enhance their success
rates. MDscan correctly identified all the experimentally verified
motifs from published ChIP-array experiments in yeastl0-13
(STE12, GAL4, RAP1, SCB, MCB, MCM1, SFF, and SWI5), and
predicted two motif patterns for the differential binding of Rapl
protein in telomere regions. In our studies, the method was faster
and more accurate than several established motif-finding algo-
rithms589, MDscan can be used to find DNA motifs not only in
ChiIP-array experiments but also in other experiments in which a
subgroup of the sequences can be inferred to contain relatively
abundant motif sites. The MDscan web server can be accessed at
http://BioProspector.stanford.edu/MDscan/.

Although the 10 to 1,000 binding loci selected by ChIP—array exper-
iments may contain false positives, those with high ChIP-array
enrichment are more likely to represent true positives with multiple
protein—-DNA binding sites. MDscan takes advantage of this knowl-
edge by first searching the highly ChIP—array-enriched fragments
thoroughly, generating multiple candidate motif patterns, and then
updating and refining the candidate motifs using other less likely
sequences, guided by statistical scoring functions derived from
Bayesian statistical formulation’. We applied MDscan to both simu-
lated and biological data sets and compared its performance with
BioProspector’, CONSENSUS?®, and AlignACE®.

In simulation studies, nine motif models were manually created
(Table 1A), representing three different motif widths and three
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University, Stanford CA 94305. 3Department of Statistics, Harvard University,
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different degrees of conservation measured by information con-
tent. Each test data set contained 100 sequences of 600 base pairs
each, generated from a third-order Markov model estimated from
the yeast intergenic regions. Several motif segments were generat-
ed from the motif matrices and added to the data-set sequences,
replacing some segments of the same width. The number of motif
segments added follows four abundance schedules (Table 1B),
imitating a feature of ChIP—array-selected sequences such that the
top sequences contain more motif segments. For every combina-
tion of the three motif widths, three motif strengths, and four
motif abundances, 100 test data sets were generated, giving rise to
atotal of 3 x 3 x4 x 100 = 3,600 data sets. MDscan, BioProspector,
CONSENSUS, and AlignACE were used to search for motifs in
each data set, and the top five motifs reported from each program
are summarized in Table 2. We are interested in the number of
times a program successfully detects the motif inserted in the 100
tests for each motif width—strength—abundance combination, and
the average rank of the correct motif if it comes up in the top five.
When the expected number of motif sites in the top sequences was
unknown, MDscan achieved a similar accuracy to that of
BioProspector; both were more accurate than CONSENSUS and
AlignACE. When a reasonable range of the expected bases per
motif site ((B00) in the top sequences was given, MDscan was fur-
ther improved to give much better results than all the other three
algorithms. Using parameters that give the best results for each
program, MDscan was 3.3 times faster than CONSENSUS, 16
times faster than BioProspector, and 93 times faster than
AlignACE.

Following these successful results on simulation data, we applied
MDscan to 12 published ChIP-array experiments!'®-!3, all per-
formed on yeast (Table 3). The proteins of interest in these experi-
ments are Stel2, Gal4, Rapl, and all the cell cycle-related proteins:
Mbpl, Swi4, Swi6, Fkh1, Fkh2, Ndd1, Mcml, Ace2, and Swi5. Stel2
responds to mating pheromones in haploid yeast cells and tran-
scriptionally activates >200 genes!®. Eight of the top ten motifs
found by MDscan agreed with the published STE12 motif** (all-
capital type is used to represent protein complexes such as MBF or
binding motifs such as STE12; initial capitalization represents pro-
teins such as Stel2). Gal4, one of the best-characterized transcrip-
tional activators, activates genes involved in galactose metabolism!'.

Table 1A. Nine motif models for three motif widths and three
motif strengths

Motif width (consensus) Motif information content

S1 S2 S3
W8 (GACTACCA) 1114 0.962 0.795
W12 (GACTACCATGGA) 0.944 0.840 0.753
W16 (AGGATCTAATGATCCT) 0.832 0.750 0.665

Table 1B. Four motif abundances

Expected copies of motif segments Motif abundance

Al A2 A3 A4
Among top 5 sequences 3 25 2 15
Among middle 35 sequences 1.4 1.1 0.8 0.5
Among last 60 sequences 0.4 0.3 0.2 0.1
Total expected motif segments 88 69 50 31

Motif information content is defined as

% 8 :ZZ p'l |092(4 x pu)'

where pj is the frequency of base j at motif position i. Information content can
range from 0 to 2, reflecting the weakest to the strongest motifs.
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The motifs discovered by MDscan not only agreed with the pub-
lished GAL4 motif', but also revealed a stronger palindromic
pattern: CGGASSASTSTSSTCCG. Rapl is a repressor—activator
protein. In the telomere regions, it represses telomeric transcription
and regulates telomere length; in other genomic regions, it represses
transcription at silent mating—type loci, and regulates the transcrip-
tion of genes encoding ribosomal proteins and glycolytic enzymes!?.
For the 727 Rap1-selected sequences, MDscan identified all top ten
motifs as CACACACACAC, with sites coming from eight sequences
containing extremely high numbers of (CA), repeats. After these
eight sequences were removed, MDscan found three different
motifs in the remaining 719 sequences. As many of the top ten
ChIP-array-enriched sequences were in telomere regions, we divid-
ed the data set into two groups containing 575 nontelomere and 142
telomere sequences, respectively, to perform MDscan. Among the
three motifs identified from the 719 sequences, one motif with con-
sensus CACCCATACAT appeared in all top ten results from the
nontelomere group, agreeing perfectly with all the biologically veri-
fied RAP1 consensus sequences'>!7; the other two were found in the
telomere group, and could be the potential differential telomere
binding sites of Rapl.

There are about 800 cell cycle-regulated genes, the transcription
of which is regulated by transcription factors in a serial fashion'.
Swi4 and Swi6 form SBF, and Mbp1 and Swi6 form MBF; both het-
erodimers are active during G1/S phase and regulate Nddl
(ref. 13). MDscan correctly found the MCB motif from Mbp1 tar-
gets, the SCB motif from Swi4 targets, and both motifs from Swi6
targets'"18. Fkh1 activates S/G2-state genes!?, and MDscan identi-
fied the SFF motif from its targets's. The Mcm1-Fkh2-Ndd1 com-
plex activates G2/M genes and regulates Swi5 and Ace2 (ref. 13).
Targets of each component in the Fkh2-Mcm1-Ndd1l complex
were found to contain the MCM1 motif’8. In addition, MDscan
detected a shorter motif in Fkh2, which resembled the SCB motif.
Swi5, Ace2, and Mcm1 activate M/G1 genes, and they all regulate
Cln3, which in turn activates SBF and MBF™. MDscan correctly
identified the SWI5 motif from both Swi5 and Ace2 targets's.

We also applied the other three algorithms to these ChIP—array-
selected data sets. BioProspector failed to find the SCB motif from
Swi4 and Swi6 targets, the SFF motif from Fkhl targets, and the
MCM1 motif from Fkh2 targets. AlignACE failed to find the MBF
motif from Swi6 targets, the SFF motif from Fkhl targets, the
MCMI motif from Nddl1 targets, and the SWI5 motif from Ace2
and Swi5 targets. With large data sets such as the Rapl nontelom-
ere sequences, MDscan was [B5 times faster than BioProspector
and (K00 times faster than AlignACE. CONSENSUS only found
seven correct motifs in the 12 experiments; among these motifs
only four are partially correct (with mismatched or shifted bases
from the correct consensus).

MDscan first uses a word-enumeration strategy to look for
oligomers of width w (w-mers) that are abundant in the top
sequences. Because MDscan enumerates only existing w-mers in
the top sequences, its search time increases only quadratically with
respect to the total number of bases in the top sequences for all
motif sizes, and linearly with respect to the bases in the remaining
sequences. By using m-match criterion (see Experimental
Protocol) for initialization and adopting a statistically derived
scoring function for subsequent evaluation and refinement,
MDscan overcomes the limitation in existing word-enumeration
algorithms of inflexible base substitutions. As shown by the results
for the Rap1l and Swi6 data, MDscan can also find multiple motifs
in one run.

Existing statistically based algorithms such as AlignACES,
BioProspector?, Gibbs motif sampler”!?, and MEME® rely on itera-
tive procedures (either expectation maximization or Gibbs sam-
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Table 2. Simulation results of MDscan, BioProspector, CONSENSUS, and AlignACE

Tests MDscan MDscan BioProspector CONSENSUS AlignACE
Expect 300 bases/site Expect unknown Expect 6,000 bases/site
Times found Avg.rank  Times found Avg.rank Times found Avg.rank Times found Avg.rank Times found Avg.rank

W8S1A1 100 1.00 100 1.00 100 1.00 85 1.12 100 1.70
W8S1A2 97 1.01 96 1.01 100 1.00 51 1.22 91 2.49
W8S1A3 92 1.09 93 1.19 92 1.08 36 1.61 52 3.38
W8S1A4 68 1.57 54 1.87 46 1.65 11 2.09 4 3.25
W8S2A1 100 1.10 99 1.03 99 1.02 49 151 70 2.97
W8S2A2 91 1.23 80 1.15 97 1.10 27 1.30 36 3.56
W8S2A3 78 1.28 59 1.53 71 1.38 7 1.86 9 4.22
W8S2A4 37 2.68 20 2.05 19 1.89 3 3.67 0 0.00
W8S3A1 82 141 70 1.31 81 1.20 6 1.50 11 4.18
W8S3A2 60 1.50 48 1.94 63 1.37 3 2.33 0 0.00
W8S3A3 39 1.90 33 2.24 36 1.56 4 1.50 1 5.00
W8S3A4 20 2.45 8 2.50 4 3.25 2 1.00 0 0.00
W12S1A1 100 1.00 100 1.00 100 1.00 100 1.00 100 1.00
W12S1A2 100 1.00 100 1.00 100 1.00 98 1.00 100 1.01
W12S1A3 99 1.00 99 1.01 100 1.01 81 1.02 96 1.49
W12S1A4 91 1.11 81 1.10 74 1.22 39 1.54 50 2.80
W12S2A1 100 1.00 100 1.00 100 1.00 94 1.00 99 1.12
W12S2A2 99 1.01 96 1.00 100 1.03 86 112 95 1.68
W12S2A3 95 1.00 93 1.08 86 1.10 47 145 63 2.83
W12S2A4 72 1.19 58 1.33 43 1.44 14 1.57 14 3.36
W12S3A1 98 1.00 98 1.01 97 1.00 76 1.14 95 1.83
W12S3A2 93 1.03 87 1.06 93 1.03 49 1.35 71 2.62
W12S3A3 81 1.25 68 1.28 68 121 18 1.83 23 3.00
W12S3A4 51 1.69 33 1.76 16 1.69 7 1.43 1 3.00
W16S1A1 100 1.00 100 1.00 100 1.00 100 1.00 100 1.00
W16S1A2 100 1.00 100 1.00 100 1.00 100 1.00 100 1.01
W16S1A3 100 1.00 100 1.00 100 1.00 93 1.02 100 1.12
W16S1A4 97 1.00 95 1.01 87 1.10 71 1.45 63 1.97
W16S2A1 100 1.00 100 1.01 100 1.00 99 1.00 100 1.01
W16S2A2 100 1.00 100 1.00 100 1.00 95 1.00 100 1.05
W16S2A3 99 1.00 99 1.00 97 1.02 73 1.22 83 1.53
W16S2A4 79 1.05 79 1.11 61 1.20 31 1.55 35 2.69
W16S3A1 99 1.00 99 1.00 100 1.00 94 1.06 100 1.11
W16S3A2 100 1.00 100 1.00 99 1.00 84 121 95 1.63
W16S3A3 94 1.03 91 1.01 86 1.09 41 151 49 2.61
W16S3A4 69 1.17 62 1.10 26 1.31 11 1.55 7 3.86

For each method, the first column indicates the number of times the correct motif was within the top five motifs reported in the 100 test data sets; the second column
indicates the average rank of the correct motif when it was in the top five. MDscan results for 300 bases/site and unknown motif frequency, CONSENSUS results for
seeding with first and proceeding linearly, and AlignACE results for 6,000 bases/site (or ten expected motif sites for the whole data set) shown here are the best results

among their different parameter specifications.

pling) with nonquantifiable convergence properties?. In practice,
they often encounter serious local-maximum problems when
dealing with large data sets and require multiple runs to ensure
meaningful findings. As the data set becomes larger (as shown
with Rapl nontelomere sequences), the speed and sensitivity
advantages of MDscan become more substantial.

Although it incorporates sequence-ranking information to
accelerate the search and enhance sensitivity, MDscan is tolerant
of moderate ranking errors—its only requirement is that the top
sequences have stronger motif signals in general. If a reasonable
range of the total number of motif elements in the top sequences
can be estimated (300 base pairs per motif site in the simulation,
for example), MDscan can use a scoring function derived from a
Bayes formulation’ to achieve a higher overall accuracy.

MDscan can also be applied to search the upstream sequences of
all the induced or repressed genes in a genome from a single
microarray experiment by using the most induced or most
repressed sequences as the top group. In a preliminary test,
MDscan finished searching through all motif widths between
5and 15 in one yeast cell-cycle expression data set'$ in an hour and
successfully identified the MBF, STRE, and REB1 motifs and
another motif known to be involved in RNA processing
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(E. M. Conlon, X. S. Liu, J. D. Lieb, D. L. Brutlag, and J. S. Liu,
unpublished data).

MDscan equips biologists with a computational tool for discov-
ering transcription-factor binding motifs in data generated by
gene expression and ChIP-array experiments. The combination of
a heuristic word-enumeration approach and rigorous statistical
modeling underlying MDscan also offers a promising strategy for
tackling gene regulation problems in higher eukaryotes.

Experimental protocol

Consider a set of n DNA sequences selected from ChIP-array experiments,
ranked according to their ChIP—array enhancement scores, from highest to
lowest. MDscan first scrutinizes the top ¢ ((B—20) sequences in the ranking
to form a set of promising candidates. Assuming the protein-binding motif
to be of width w, MDscan enumerates each nonredundant w-mer (seed) that
appears in both strands of the top t sequences and searches for all w-mers in
the top t sequences with at least m base pairs matching the seed (called m-
matches). The m is determined so that the chance that a pair of randomly
generated w-mers are m-matches of each other is <0.15%. For each seed, we
find all the m-matches in the top ¢ sequences and use them to form a motif
weight matrix. If the expected number of bases per motif site in the top
sequences can be estimated, we use the following approximate maximum a
posteriori (MAP) scoring function of Liu et al.” to evaluate a matrix:
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Table 3. MDscan results for sequences selected by ChIP—array experiments

Biological test (number of sequences (seq), Published binding motif consensus MDscan results and motif rankings

data size (kb), running time on 1GHz PC)

l@ © 2002 Nature Publishing Group http://biotech.nature.com

Stel2 (26 seq, 18 kb, 4 s) STE12 TGAAACAM *  TGVAACA 1,2,58,9
AAACVAA 3,10

* GAAACAA 4

* YTGAAAC 6,7

Gal4 (23 seq, 17 kb, 23 s) GAL4 CGGNy; CCGO * CGGASCASTSTSSTCCG 1-8,10
*  GGAGCACTGTTGACCGA 9

Rapl (727 seq, 309 kb, 10 s) RAP1 Same as below * CACACACACACAC 1-10
Rapl (719 seq, excluding the 8 seq RAP1 RTRCACCCANNCMCC!S [JGGCACTTGCATCA 1,3
with CA repeats, 305 kb, 10 s) RMAYCCRMNCAYY16 *  ACCCATAYCTCAC 5,6
RMACCCANNCAYY?6 ~  ACCCTTACACTAC 2

ACACCCAYACAYYYY N CACTTACCCTACC 4,10

n ACTTACCCTACCA 7

" CTTACCCTACCMCY 8,9

Rapl (577 nontelomere seq, excluding RAP1 Same as above *  ACACCCATACATC 1-3,7
the 3 seq with CA repeats, 254 kb, 15 s) * KACACCCATACAT 4-6,8
*  CACCCATACATCT 9,10

Rapl (142 telomere seq, excluding the RAP1 Same as above OKGCACTTGCMICA 1,2
5 seq with CA repeats, 51 kb, 6 s) 0 GCACTTGCCTCAG 4
N MACTTACCCTACC 3,5,10

" ACTTACCCTACCA 6,8

n CTTACCCTACCAT 7,9

Mbp1 (137 seq, 92 kb, 3 s) MCB ACGCGT18 *  ACGCGT 1-3,6,7
* RACGCG 4,8-10

*  CCCGTC 5

Swi4 (210 seq, 148 kb, 6 s) SCB CGCGAAAALL *  ACGCGAA 1,4
SCB CACGAAALS AACGCGA 2,35

AAACCCG 6

* CGCGAAA 7-10

Swib (222 seq, 143 kb, 7 s) MCB ACGCGT18 #  ACCGCGTM 1-3,6
# GACGCGT 4

SCB CGCGAAAALL # TAACCCG 5

SCB CACGAAALS # AAACGCG 7,8

@ ACGCGAA 9

@ CGCGAAA 10

Fkh1 (184 seq, 120 kb, 10 s) SFF GTMAACAALS * GTAAACAA 1,3,5-8
SCGSGKSG 2.4

*  TAAACAAA 9,10

Fkh2 (197 seq, 135 kb, 7-12 s) SCB CGCGAAAALL %  ACGCSAAA 1,4
SCB CACGAAALS % AAACGCGA 5

% CGCCAAAA 6

% AACGCGAA 7

MCM1 TTACCNAATTNGGTAAS & TTTCCTAATTAGGAA 1,2,4

&  TCCTAATTAGGAAAT 3,5

& CCBAATTAGGAAATA 6-8,10

& TTCCTAATTAGGAAA 9

Ndd1 (123 seq, 83 kb, 20 s) MCM1 TTACCNAATTNGGTAAS *  TTTCCTAATTAGGAAA 1-4
*  TTCCTAATTAGGAAAT 5-6

TCCTAATTAGGAAATA 7-8,10

CCTAATCAGGAAATAT 9

Mcm1 (116 seq, 79 kb, 15 s) MCM1 TTACCNAATTNGGTAAS *  TTTCCTAATTAGGAAA 1-6
*  ATTTCCTAATTAGGAA 7-10

Ace2 (77 seq, 56 kb, 3 s) Swi5 ACCAGC!8 *  DCCAGC 1,4,8
*  CCACCR 2,3,5,6,9

CCSGSC 7,10

Swib5 (90 seq, 64 kb, 2 s) SWi5 ACCAGC!8 * RCCAGC 1,2,10
* CCWGSM 3-9

*, Motif discovered by MDscan agreed with the published motif consensus; [} a second and #, a third motif identified as potential binding to Rap1 at telomere regions; #,
SCB motif and @, MCB motif both found in Swi6 targets; %, MCB motif and & MCM1 motif found in Fkh2 targets when different motif widths were used for the search.

838 nature biotechnology = VOLUME20 =  AUGUST2002 = http://biotech.nature.com



I@ © 2002 Nature Publishing Group http://biotech.nature.com

w T
Xm x piilogpii— R log(po(s)) —log(expected bases/site)}
w EZL]ZA ’ ’ X ansegzmems

where x,, is the number of m-matches aligned in the motif, p;; is the fre-
quency of nucleotide j at position i of the motif matrix and py (s) is the
probability of generating the m-match s from the background model.
When the expected number of sites in the top sequences is unknown, we
evaluate the motif matrix with:

w T
log(x:) logpy_ 1 1
w EZL]ZAPU o8Py X allsegzmen(l)sg(p(j(S))

We use a Markov background model estimated from all the intergenic
regions of a genome. For example, the probability of generating ATGTA
(supposing the three bases preceding this segment are CTT) from this
background model is

Po(ATGTA) = p(Alprevious 3 bases CTT) x p(T|previous 3 bases TTA) x

p(Glprevious 3 bases TAT) % p(T|previous 3 bases ATG) %
p(A|previous 3 bases TGT)

After computing the scores for all the w-mer motifs established in this
step, we save the highest 10-50 “seed” candidate motifs for updating in the
next step.

In the motif updating process, every retained candidate motif matrix is
used to scan all the w-mers in the remaining sequences. A new w-mer is
added into a candidate weight matrix if and only if the motif score of that
matrix is increased. We further refine each candidate motif by re-examining
all the segments that are already included in the motif matrix during the
updating step. A segment is removed from the matrix if doing so increases
the motif score. The aligned segments for each motif usually stabilize with-
in ten refinement iterations. MDscan reports the highest-scoring candidate
motifs as the protein-DNA interaction motif.
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Genome-wide internal
tagging of bacterial exported
proteins
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As a result of the explosive growth of bacterial genomic and
postgenomic information, there is a pressing need for efficient,
inexpensive strategies for characterizing the in vivo behavior and
function of newly identified gene products. We describe here an
internal tagging procedure, based on transposon technology!?, to
facilitate the analysis of membrane-bound and secreted proteins
in Gram-negative bacteria. The technique is based on a
broad—host range transposon (ISphoA/hah), which may be used
to generate both alkaline phosphatase (AP) gene fusions and
63-codon in-frame insertions in the genome. The 63-codon inser-
tion encodes an influenza hemagglutinin epitope and a hexahisti-
dine sequence, permitting sensitive detection and metal affinity
purification of tagged proteins. For each gene targeted, it is thus
possible to monitor the disruption of phenotype (using the transpo-
son insertion), the gene’s transcription and translation (using the
AP reporter activity), and the behavior of the unfused protein
(using the internal tag). Studies on a sequence-defined collection
of Escherichia coli strains generated using the transposon showed
that the synthesis and subcellular localization of tagged proteins
could be readily monitored. The use of ISphoA/hah should provide
a cost-effective approach for genome-wide in vivo studies of the
behavior of exported proteins in a number of bacterial species.

Transposons that generate fusions to the E. coli AP gene (phoA, have
been previously shown to allow the selective identification of genes
encoding exported proteins in bacteria®*. However, further analysis
of the proteins identified may be limited, since the hybrid polypep-
tides produced lack the C-terminal sequences of the target protein,
and are thereby susceptible to cellular proteolysis. Also, they fre-
quently exhibit altered subcellular localization, and usually lack
detectable function of the target protein. In-frame insertions derived
from phoA fusions are less prone to these difficulties, but are general-
ly constructed with plasmid-borne genes using in vitro manipula-
tions that are not well suited for large-scale genomic studies™”.
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