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Abstract. With the completion of genomes of many species and the advances of microarray
technologies, we begin to possess a tremendous amount of valuable biological data — but these
raw products are still far from usable. One of the most challenging problems of this century
is to decipher this huge amount of biological information, turning the data into knowledge.
The past decade has witnessed a number of successful applications of statistical models in
computational biology. This article focuses on one of these success stories: Using Bayesian
models and Monte Carlo methods to find short repetitive patterns in a set of DNA or protein
sequences, a task often referred to as the motif discovery. We review a few probabilistic models
that have recently been shown useful for motif discovery and provide a novel framework based
on a Bayesian segmentation model to unify these approaches. We show how to combine the
dictionary model with the Gibbs sampler and how a segmentation-based data augmentation

scheme can be implemented. A few interesting open problems are also discussed.

1 Introduction

The human genome and many other genome sequencing projects have resulted in rapidly growing
and publicly available databases of three most important biopolymers, DNA, RNA, and proteins
(e.g., the GeneBank). The data in these databases are sequences of letters, without punctuation
or space characters, from an alphabet of size d (d = 4 for DNA and RNA sequences, and
d = 20 for protein sequences). Recent advances in gene-chip technologies further enable and
entice biologists to generate huge amounts of numerical data measuring the copy numbers of
mRNAs in the cell. The task of extracting biological insight from these sequence databases or
the microarray data represents one of the grand scientific challenges of the 21st century. The
near-completion of the human genome in 2000 makes this interesting question more an urgent
task in the scientific community. This task, often termed as “data mining” in the literature,
differs from the mining of other types of databases for three reasons (i) many sophisticated
structures have been built into the biopolymer databases, (ii) much is already known about the

structure and function of these molecules, and (iii) fundamental laws in physics and chemistry



apply to them. Consequently, more sophisticated mathematical/statistical models are often
critical in developing a “mining” strategy for these datasets.

Our focus here is to find short (7-30 base pairs) recurring patterns in a set of biopolymer
sequences. The pattern is called a motif and each occurrence of the pattern is called a motif
element. The problem is analogous to finding a commonly occurring word in a text. What
makes the task difficult is that there are often “typos” (sometimes very serious ones) in each
occurrence of the “word.” It is therefore rather natural to employ a probabilistic model to
describe the motif pattern (i.e., a stochastic word) and let basic statistical principles (i.e., the
Bayesian methodology) guide us in the discovery of these patterns.

The motivation for this motif discovery task is that repetitive patterns in biopolymer se-
quences often correspond to functionally or structurally important parts of these molecules. For
example, motif elements in noncoding regions of DN A sequences are very likely the sites to which
certain proteins, called transcription factors (TF), bind so as to control the gene’s expression
(see Section 2 for more biological background of this problem). Conserved patterns in protein
sequences can reveal the proteins’ functional roles and may correspond to these molecules’ active
sites interacting with ligands, a critical piece of information for drug designers. After reviewing
the basic biology about gene regulation, this article discusses two related statistical approaches
for motif finding: One is based on the product multinomial block-motif model [9] (Section 3),
and the other based on a segmentation model (Section 4). A segmentation-based Gibbs sampler

is implemented and shown to outperform the original Gibbs motif sampler [9].

2 Regulation of Gene Expression

Every cell has a complete copy of the orgamism’s genetic information. There are over 4,000
genes in the E. coli genome and over 30,000 in the human genome. These genes encode the
information needed to make the proteins and RNAs. The expression of these genes is tightly
regulated so as to meet the requirements of specific cells and for cells to respond to changes in
their environment. So they need to continuously monitor external conditions and respond in
ways that optimize survival. Cells respond to the external signals by regulating the types and
quantities of its proteins. They do this by regulating the genes that encode the information
for making the proteins. For example, human skin cells called melanocytes, when exposed to
direct sunlight, respond by producing the proteins that produce the pigment melanin. When
your skin cells are exposed to direct sunlight, they respond by expressing the genes that code
for the proteins involved in producing the pigment melanin. Once you get out of the sun, the
cells no longer receive the signal and so the gene expression is turned off.

In bacteria, environmental stimuli play an even greater role in gene regulation because, as
unicellular organisms, bacteria are in direct contact with the external environment. Bacterial

cells have to be poised to respond to environmental changes quickly so as to optimally match



the environmental conditions. For example, bacteria need iron since it is essential for many
metabolic processes. However, since free iron is always in short supply, bacteria are equipped
with iron scavenging proteins. The genes that code for these proteins are turned off, or repressed,
when iron levels are adequate, but activated when iron levels decrease.

During development of a multicellular organism, cells become specialized in a process called
differentiation. Differentiated cells acquire a specific complement of proteins suitable to its
activities. For example, although every cell contains a full copy of the genetic information, the
photoreceptor protein rhodopsin is produced only in the retina. Genes that are not needed
are silenced — the photoreceptor protein rhodopsin is only expressed in the retina and other
light-sensitive cells (like in the pineal gland, where circadian rhythms are regulated), and you

will not be able to detect rhodopsin in you skin cells or anywhere else where it is not needed.

2.1 Transcriptional regulation

While there are several levels of regulation of gene expression, the dominant mechanism is
the transcription regulation. Specific sequence signals upstream of each gene provide a target,
called the promoter, for RNA polymerase to initiate the polymerization of an exact copy of the
gene in the from of a "messenger” RNA. When transcription factors (TFs) bind directly in the
promoter region of a gene, they interfere with the function of RNA polymerase and, thus, inhibit
its expression. When a TF binds further upstream (sometimes downstream) it can attract RNA
polymerase and enhance gene expression. TF's identify the genes they are intended to regulate
and their specific binding sites based on sequence specific binding preferences that arise through
the energetic interactions of the atoms of the TF and the atoms a sequence of DNA bases. The
strength of binding varies with the specific DNA sequence of these sites. Cells capitalize on such
variations to quantitatively regulate transcription.

Transcription regulation in multicellular organisms often involves multiple TFs that bind in
to form regulatory modules. These modules may involve combinations of several transcription
factors and other proteins. During development, the expression of transcription factors is also
regulated to produce combinations appropriate to specific cell types. The inference challenge
addressed here is to simultaneously identify the parameters of a model describing the base type
preference and the specific locations of a transcription factor’s binding sites given only sets of
sequences upstream of genes that are expected to be regulated together.

The different TFs have different target sequences. These target sites are generally 10-20 nu-
cleotide base pairs long, and many have a palindromic pattern that enables dimeric transcription
factors to clamp onto the DNA at the target site and read it from both strands. A sequence
is said to be palindromic if the reverse of its complementary strand is the same as the original
sequence. For example, the “iron box” GATAATGATAATCATTATC is the target site for the
transcription factor Fur (ferric uptake regulator). Its complement CTATTACTATTAGTAATAG

reads identically as the original sequence from backward.



2.2 Experimental methods for identifying TF binding sites

The initial determination of the binding of a specific TF to a site is achieved using a gel shift
assay. In these experiments the DNA fragment and the TF are incubated together under favor-
able conditions. Then the DNA-protein mixture is placed in a gel. When and electric current is
applied to the gel, molecules are sorted by size. In this gel mobility shift assay, DNA fragments
with the TF attached run more slowly than do naked fragments. The DNA protection assay,
DNAse footprinting, is employed to identify the specific binding site within a fragment. Again
the DNA and TF are incubated together under favorable conditions. Then, the DNA is chem-
ically degraded in a controlled manner by DNAse I, and enzyme. The degraded DNA is then
sorted on a gel by size. All size fragments are represented on the gel except those that were
protected from degradations by the binding of the TF at its cognate site. The specific action
stemming from this binding is determined using deletion experiments, in which either the gene
that codes for the TF is mutated or deleted and the effect be determined, or the binding site is

mutated or deleted and the effect on gene expression assessed.

2.3 Revealing gene regulation information by cross-species comparisons and
microarray analyses

Multiple sequences that are likely to be coregulated (i.e., regulated by the same TF or a small
number of common TFs) are required for computational identification of transcription factor
binding sites. Since microarrays identify genes that are coexpressed (i.e., the sets of genes that
behave similarly in response to various treatments), they also provide information on coregu-
lation. However, since multiple regulatory events may be imitated under any given condition,
coexpressed genes are not necessarily coregulated. In spite of this difficulty data from microar-
rays has been used successfully as input for the computational identification of transcription
factor binding sites [6, 11, 15].

Cross-species comparison provides another means to identify multiple genes that are likely to
be regulated similarly. This approach capitalizes on the fact that the genes that code for the
same protein in related species are likely to be similarly regulated. Since this approach obviates
the need to assay for coexpression, it can be applied on a genome wide scale using only the
sequences from a set of related species. For example, using this approach McCue et.al. [12]
showed in a study set of 184 genes that 80% of such predictions correspond with known sites

and proceeded to predicted over 2,000 transcription factor binding sites in E. coli.

2.4 Sequence data used for DNA motif discovery

From either the cross-species comparison or the microarray clustering analysis, one can at best
end up with a set of DNA sequences of hundreds or thousands of base pairs believed to contain

some common TF binding sites. Figure 1 displays a typical dataset of this nature, first given



by [18], from which one wishes to infer the locations and patterns of the TF binding sites.
It contains 18 UTRs, each of 105 base pairs long, corresponding to 18 genes in E. Coli that
are all regulated by the cyclic-:AMP receptor protein (CRP), an important TF for controlling
metabolism. The CRP-binding sites are about 22 base pairs long, two of which are indicated by
the capital letters in Figure 1.

taatgtttgtgctggt TTTTGTGGCATCGGGCGAGAATagcgegtggtgtgaaagactgtttttttgatcgttttcacaaaaatggaagtccacagtcttgacag
gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgaTTATTTGCACGGCGTCACACTTtgctatgccatagcatttttatccataag
acaaatcccaataacttaattattgggatttgttatatataactttataaattcctaaaattacacaaagttaataactgtgagcatggtcatatttttatcaat
cacaaagcgaaagctatgctaaaacagtcaggatgctacagtaatacattgatgtactgcatgtatgcaaaggacgtcacattaccgtgecagtacagttgatage
acggtgctacacttgtatgtagecgcatctttctttacggtcaatcagecatggtgttaaattgatcacgttttagaccattttttcgtcgtgaaactaaaaaaacc
agtgaattatttgaaccagatcgcattacagtgatgcaaacttgtaagtagatttccttaattgtgatgtgtatcgaagtgtgttgeggagtagatgttagaata
gcgcataaaaaacggctaaattcttgtgtaaacgattccactaatttattccatgtcacacttttcgecatctttgttatgetatggttatttcataccataagece
gctccggeggggttttttgttatctgcaattcagtacaaaacgtgatcaacccctcaattttcecctttgetgaaaaattttccattgtecteccctgtaaagetgt
aacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgettccggetcgtatgttgtgtggaattgtgageggataacaatttcac
acattaccgccaattctgtaacagagatcacacaaagcgacggtggggcgtaggggcaaggaggatggaaagaggttgecgtataaagaaactagagteegttta
ggaggaggegggaggatgagaacacggecttctgtgaactaaaccgaggtcatgtaaggaatttcgtgatgttgettgcaaaaatcgtggegattttatgtgegea
gatcagcgtcgttttaggtgagttgttaataaagatttggaattgtgacacagtgcaaattcagacacataaaaaaacgtcatcgecttgcattagaaaggtttct
gctgacaaaaaagattaaacataccttatacaagacttttttttcatatgecctgacggagttcacacttgtaagttttcaactacgttgtagactttacatcgece
ttttttaaacattaaaattcttacgtaatttataatctttaaaaaaagcatttaatattgctccccgaacgattgtgattcgattcacatttaaacaatttcaga
cccatgagagtgaaattgttgtgatgtggttaacccaattagaattcgggattgacatgtcttaccaaaaggtagaacttatacgecatctcatccgatgeaage
ctggcttaactatgecggecatcagagcagattgtactgagagtgecaccatatgeggtgtgaaataccgecacagatgegtaaggagaaaataccgecatcaggegetce
ctgtgacggaagatcacttcgcagaataaataaatcctggtgtccctgttgataccgggaagecctgggecaacttttggegaaaatgagacgttgatcggeacg
gatttttatactttaacttgttgatatttaaaggtatttaattgtaataacgatactctggaaagtattgaaagttaatttgtgagtggtcgcacatatcctgtt

Figure 1: The upstream regions of length 105 for 18 genes, all regulated by the transcription fac-
tor CRP, in E. Coli. The capitalized segments in the first two sequences are two experimentally
determined CRP-binding sites.

Scientists have identified by experimental methods the locations of 24 TF binding sites in
these 18 sequences, so this dataset serves as a good testing case for computational motif finding
algorithms. An alignment of these sites is shown in Figure 2(a). A sequence logo plot for the
alignment is shown in Figure 2(b), which uses a color scheme to display the conservation pattern
of each position [17] of the binding motif. As a comparison, Figure 2 (c) displays the alignment
logo for the 18 binding sites found by our algorithm described in Section 4.

From the alignment as well as the sequence logos, one can determine not only the consensus
sequence but also the relative frequency of bases and the information content (measured in bits)
at every position of the motif. It is also seen that the conservation of the pattern at some
positions of the motif can be very low, which is often due to some good biological reasons and
can be further exploited in statistical modeling. As indicated in the logo plot, a highly conserved
pattern is ***TGTGA(6) TCACA***| a perfect palindrome, whereas the 6 middle positions are
much less conserved. Further biological analyses reveal that the middle 6 positions are buried in

the minor groove of the double strand DNA helix so that CRP cannot “see” them clearly (and



(a) (b)

24 CRP Binding sites

TTTTGTGGCATCGGGCGAGAAT

TTTTTTGATCGTTTTCACAAAA
T
A

AAAAGTGTCTATAATCACGGCA *
TTATTTGCACGGCGTCACACTT
AACTGTGAGCATGGTCATATTT
GTATGCAAAGGACGTCACATTA /\
TGGTGTTAAATTGATCACGTTT T 11y vJ\
TTATTTGAACCAGATCGCATTA A L~V Y& A
AATTGTGATGTGTATCGAAGTG SNoSwLe~oagY
TAATTTATTCCATGTCACACTT

AAACGTGATCAACCCCTCAATT

TAATGTGAGTTAGCTCACTCAT

GAATTGTGAGCGGATAACAATT (c)
TTCTGTAACAGAGATCACACAA

TTCTGTGAACTAAACCGAGGTC

TTTCGTGATGTTGCTTGCAAAA
AATTGTGACACAGTGCAAATTC
ENEN

bits

O

GATTGTGATTCGATTCACATTT 1

bits

ATGCCTGACGGAGTTCACACTT
TGTTGTGATGTGGTTAACCCAA

CGGTGTGAAATACCGCACAGAT

CTGTGACGGAAGATCACTTCGC T
AAATGAGACGTTGATCGGCACG A OLIVL <
ATTTGTGAGTGGTCGCACATAT O N& ST nen®s

Figure 2: (a) The alignment of the 24 CRP-binding sites in the dataset of Figure 1 found by
experimental methods; (b) the sequence logo [17] for the alignment in (a); and (c) the sequence
logo for computationally predicted CRP-binding sites. The height of each letter is proportional
to its frequency, and the letters are sorted so the most common one is on top. The height of the

entire stack is then adjusted to signify the information content of the sequences at that position.

does not care much about them either). This feature was taken into consideration in [5] and is

now an option for the user to specify in the Gibbs motif sampler and BioProspector [10]

3 The Block-Motif Models

As depicted in Figure 3, this model treats the unknown motif as a contiguous block and describes

its pattern by a product-multinomial distribution [9]. This model was first used in [5] via an EM
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Figure 3: A schematic plot of the block-motif model used for our pattern finding.

algorithm and is the basis for the popular Gibbs sampler for motif discovery [4, 7]. Compared
with the more general HMM as employed by [3], this model does not allow insertions and

deletions in the middle of the motif. We show in Section 4.5 that this constraint can be relaxed



easily.

3.1 A single-site model

Here we assume that each of the K DNA (or protein) sequences (of lengths ni,...,ng, respec-
tively) contains exactly one motif element. More precisely, each sequence is assumed to be gener-
ated by i.i.d. draws from the alphabet {A, C, G, T} with the frequency vector 8y = (6oq, - - - , Oot),
except for a segment, as illustrated by the blackened region in Figure 3, which is a motif element
of length w. The motif is a frequency matrix @ = (01,...,60,), also called a weight matriz in
the bioinformatics literature [18], where each 0? is a probability vector of length 4 representing
the preference of the nucleotide types at position j of a motif element. Thus, position j of a
motif element (or an occurrence of the motif) is a draw from the alphabet with frequency vector
0;. Both the motif matrix ® and the positions of the motif elements are not observed and must

be inferred.

Gibbs site sampler. An intuitive solution (for a statistician) to the motif discovery problem
just described is to use a missing-data formulation: The position of the motif element, a; in
particular, can be treated as missing data. Then, one can design an EM algorithm [5] or a data
augmentation (DA) algorithm [19] to iterate between imputing the a; and estimating the 6;. A
slight modification [7] of the DA algorithm gives rise to the so-called site sampler [4].

In the site sampler, the motif locations (sites) are initialized at random; that is, position a,(co)
(for k = 1,...,K) is a randomly chosen position of the kth sequence. For t = 1,...,m, the

algorithm iterates the following steps:
e Select a sequence, say the kth sequence, either deterministically or at random.

e Draw a new motif location a; according to the predictive distribution

P(ay | agt),...,agctzl,a,gtil,...,ag?) (1)
and update the current motif location a,(ct) to a,(cH_l) = ag.
o Let ag-H_l) = agt) for j # k.
Although there are many choices of the distribution (1) [e.g., one can let P(ax | ...) be

proportional to certain fitness measure of the segment indexed by a, to the current multinomial
(t)
J

derived from a complete Bayesian statistical model.

profile resulting from the a;”’, j # k|, those that make the foregoing iteration coherent must be

A theoretical calculation. To understand the nature of the problem, we consider an
analogous problem. Consider K sequences of coins (not necessarily fair) of length L each. For
each sequence Si, we assume that starting from an unknown position aj, there is a segment of w

special coins, each has probability € to show head. The remaining coins has a known probability



0y to show head. Our questions are two: (a) Can we estimate 6 consistently? (b) How accurately
can we predict the locations of these special coins? To answer these questions, we start with the
basic likelihood analysis. Let Y = (Si,...,Sk) be the sequence data. Then

roeio= (5 (2) (20 ™).

k=1 i=1

where Ny ; is the number of heads in segment (sg;,..., Sk itw—1). When w = 1, the observed

Fisher information is )

K Ng _ L—Ng
. 9 —0
Lovs = ) (ﬂgﬁﬂ& f_9)> '
00 ].—0

1
k=1 0
If both K and L are large, we have

K

Ix N o
P Loy (1 — 6p)

implying that K/L needs to go to infinity for the estimation of 8 to be consistent.

When w > 1, the expression for the Fisher information is too messy to give any insight.
We thus resort to a method-of-moment (MOM) approach. More precisely, we solve € from the
moment equation

K(wb + (L — w)6y) = Np,

where Ny is the total number of heads in the data set, we obtain the method-of-moment estimate

of 0 as
Ny — (L —w)Kb

0=
wK

It is easy to see that

var (6) = var(Ni) _ (0= 60)(1 — 0 —60) | Lol o)

wiK?2 wK Kw?

Hence we need L/(Kw?) — 0 so as to have a consistent estimate for §. It is interesting to note
here that the effect of motif width w is quite substantial, consistent with our observations based

on simulations and real applications.

3.2 Repetitive Block-Motif Model

For the purpose of motif discovery, it is also insightful to view the whole sequence dataset S
as consisting of a single long sequence of length n, although in this way one will not be able
to capture the global evolutionary relationship among the individual sequences. In order to
find repetitive motif elements in such a sequence, we propose a simple model as illustrated by
Figure 4. Compared with the single-site model in the previous section, the new view here can
accommodate the case when some sequences in the dataset contain multiple copies of the motif

element whereas others do not contain any. This single-sequence repetitive-motif model was first



developed in [9] and has been employed to find subtle repetitive patterns, such as the helix-turn-
helix structural motif [13] and gene regulatory binding motifs [15], in both protein and DNA
sequences. The repetitive patterns as represented by the shaded rectangle occur irregularly in
the dataset. The total number of occurrences of the motif is unknown. A simple first model is to
assume that at any sequence position %, there is a small probability py that a motif pattern starts
from i. A more sophisticated prior based on biological knowledge (e.g., physical properties of the
DNA compositions, the distance to the translation start site, etc.) can be used to improve the
model. Similar to the single-site model, we need w + 1 probability vectors to describe the motif
and the background if the motif’s width is w: 6y = (6gq,- . -, 0:) describe the base frequencies
in the background; and each @} describes the base frequency at position k£ of the motif. Thus,
the motif weight matrix is @ = (64,...,0y).

w

Figure 4: A graphical illustration of the repetitive motif model.

Scoring the motif candidates. A Bayesian solution to the foregoing alignment problem
was derived in [9]. With a Dirichlet(a) prior distribution for all the 8;, we can obtain the Bayes
estimates of the 8; very easily if we know the positions of the motif. To facilitate analysis, we
introduce an indicator vector I = (Iy,...,I,) and treat it as missing data. An I; = 1 means
that position ¢ is the start of a motif pattern, and I; = 0 means otherwise. We assume a priori
each I; has a small probability py to be equal to 1 independently, with the restriction that the

motif elements cannot overlap. With this setup, we can write the joint posterior distribution:
p(007 ®a I | S) X p(S | Ia 001 G))p(I | 005 ®)f0(007 9) (2)

Suppose that the alphabet size is d (=4 for DNA sequences), motif length is w, and the
motif pattern can be described by a d x w weight matrix ®. Assume also that the background
of non-motif regions can be described by a multinomial vector 83, which is assumed known in
advance (this can be relaxed). Let |I|=I + --- + I, i.e., the total number of sites. Then,

logp(S,I) = log/p(S | I,0,00)p(0)p(I)dO®

w . é
~ logp(I)+logp(S|6y) + |I] Z <0j,log 0—;> .
j=1

Since P(S | 6y) is constant for all I, the Gibbs motif sampler developed in [9] optimizes the

score function

$(8) = || [logpo + ZIent(éjHGO)] ; 3)

=1



where pq is the prior probability for any position to be the start of the binding site, and the
entropy distance Iens between two discrete distributions p = (p1,...,pq) and ¢ = (q1,---,4qq), is
defined as

p d
I(pllg) = <p, log E> = > pilos(pi/a)

If we assume that py is unknown and give it a prior distribution f(py) (say, a Beta(ag, bg)
distribution), then

p(I) = /pl)I‘(l—po)N’w'I‘f(po)dpo

I|tap—1 - —
P‘o |[+ao (1 N—w|I|+bo ldpo

— Do)

(] + ao)l'(N — w|I| + bo)
ao)r(bo F(N — (w — 1)‘I| +ag + b())

Then the new score function becomes

w
/() = logp(I) + I eut(8160)- (4)
j=1

In many biological problems, people focus on finding the mazimum a posteriori (MAP) align-
ment I according to either (3) or (4). A main reason for this “point-estimate” approach is that
the space of I is discrete and enormous, which makes it extremely difficult to characterize the
posterior uncertainty. In fact, there are two related difficulties in the analysis: (a) finding the
true mode (the mixing issue of the algorithm), and (b) deciding whether the mode we find is
a “chancy” one or the one corresponding to the true motif (the posterior uncertainty). The
next paragraph discusses some approaches for coping with (a). For question (b), we resort to
the frequentist “null” hypothesis analysis. That is, suppose all the data are generated from the
background model (no motif elements at all), we find the distribution of the optimal scores by
Monte Carlo simulation. Another related question is whether we can find a scoring function that

can better discriminate the true motifs from the spurious ones. For example, we may consider
w
¢(S) = log(|1]) Z ent (8160)- (5)

This scoring function allows the total number of sites |I| to play a role when |I| is relatively
small, but its role decreases as |I| increases. Some recent simulations showed that this scoring

function performed quite well [10, 11].

3.2.1 Search strategy

Popular motif search strategies include the progressive comparison method employed by CON-
SENSUS [18], the EM-based method in MEME [5, 1], and the MCMC-based Gibbs Motif Sam-
pler (GMS [9], renamed as AlignACE in [15]). Other word-frequency based approaches do not

10



seem to be as sensitive to detect subtle patterns as these statistical-model based methods. The
GMS employs a predictive updating approach: At each iteration, one uses the current weight
matrix for the motif pattern to score every segment of width w of all the sequences in the whole
dataset and select those “significant” candidates to form a collection of possible motif sites.
Then a new weight matrix is computed based on these candidate motif sites. In order to avoid
being trapped in a local mode, GMS uses a probabilistic rule to decide whether a sequence
segment being examined should be included as a potential motif site or not.

A new search strategy as implemented by BioProspector (BP) [10], called the “threshold
sampler,” outperformed the GMS in many cases. BP starts by giving each sequence a high
threshold and a low threshold. When using the current weight matrix to scan the sequence, all
segments whose scores are above the high threshold are automatically called a motif site and all
those that are below the high threshold but above the low threshold are given a chance to be
sampled into the set of motif sites. The low-threshold is started as 0 and increased gradually
to a suitable level. Other major differences between the BP and the GMS are (a) a Markov
background model (up to 3rd order) is used, (b) the scoring function is changed to be (5), and
(c) motifs consisting of two blocks with flexible gaps in between are allowed.

An important question, then, is how to judge “significance” and how to incorporate additional
information revealed by, say, cross-species comparisons, gene expression clusterings, or data
from the chromatin-immunoprecipitation and microarray hybridization (ChIP-array, see [6]). A
natural route is to build an appropriate statistical model to reflect these information and to
construct a search algorithm accordingly. For example, if a sequence segment is located in a
region where a cross-species comparison shows that it is highly conserved, then it is highly likely
that the segment corresponds to a protein binding site. Otherwise, such a prior probability
would be small. In ChIP-array experiments, the intergenic DNA segments with the highest
enrichment scores based on differential expression values [14, 6] are most likely to contain the
targeted binding sites, and maybe multiple copies of them. Hence, it is essential to direct the
GMS to search these few sequences more thoroughly before it wanders off to other less likely
sequences. Our new method MDscan [11] was designed to capture these features. This method
is especially suitable for discovering novel motifs in a set of intergenic sequence segments that
are ranked according to certain scores derived from ChIP-array experiments or comparative

hybridization experiments.

4 Motif, Dictionary, and Segmentation

The motif discovery problem as revealed by Figure 4 can also be viewed as a segmentation prob-
lem. That is, the problem is equivalent to segmenting the sequences into two types of contiguous
pieces, one described by the block-motif model (with a fixed length of w), and the other by an iid

model (flexible length). This view can be further generalized into a dictionary model as proposed

11



in [2]. One first assumes the availability of a dictionary counsisting of a list of d known words
D = {M;,M,,...,M}. The observed sequence S (as a mathematical abstraction, we treat
the whole dataset as a single-sequence) is assumed to be generated by randomly drawing words
from the dictionary according to a probability vector p = (p(My),...,p(My)) and sequentially
concatenating them together.

We can write down the likelihood of § for this simple model:

N(TT) d
P(S|6) = ZHpS[P = 5" T lp(a) MM, (6)
n j=1
where II = (Py,..., Pg) is a partition of the sequence so that each part P; corresponds to a

word in the dictionary, N(II) is the total number of partitions in II, and Ny, (II) is the number
of occurrences of word type M; in the partition. Clearly, this can be viewed as a missing data
problem where the partition II is missing. The summation over all IT can be achieved recursively,
as shown in [8]. Let L;_1(p) be the sum of all legitimate partitions for partial sequence S|y.(;_1y-
Then

w

Li(p) = Z P(S((i—j):) Li—js (7)

j=
where W is the length of the longest word in the dictionary. In other words, we check whether
the last segment of length is a word from the dictionary for all possible word length j. To avoid
minor complications, we assume that all the single letters (i.e., A, C, G, and T) are contained
in the dictionary (if not, the above recursion needs to be modified slightly).

Estimating p from this model is conceptually simple. There are a few approaches: One can
directly optimize (6) via a Newton-type algorithm [2]. Alternatively, one can employ an EM
algorithm or a Gibbs sampler. The Gibbs sampler is conceptually simplest, but is perhaps
slow in comparison with the Newton-type method. In particular, we can derive an estimating

equation from (6) by taking derivative with respect to p(M) as

p(M) = Eg[Np (I)/N (IT)].

This is also derived in [2] from a physics viewpoint.

Since the nature’s “dictionary” for the genome construction of a species is unknown to us, the
authors in [2] adopted a recursive strategy to estimate it. Briefly, one starts with the simplest
dictionary consisting only of the 4 single-letter words, D) = {A,C,G, T} and estimates the
frequencies of these four words from the dataset (e.g., all the intergenic regions of the yeast
genome). Then one considers whether any pair of the letters, AT, say, is over-represented
comparing to what is expected by chance. All over-represented pairs are added into the initial
dictionary to form a new one D). This strategy can be applied recursively. Based on the
current dictionary D™, one considers all the concatenations of the pairs of words in D™ and

n+1)

forms the new dictionary Df by including those new words produced from concatenations

that are significantly more abundant than that expected by chance.
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4.1 Connection with the block-motif model

Suppose our dictionary consists of only five words, D = {A,C, G, T, M, }, where M; is a motif
sequence of length L. For example, M1 can be TGAC A. Then, one can estimate in the dataset
the frequency of word M, with the consideration of its chance-occurrence. In other words, even
if the dataset is generated entirely from the four single letters, there is still a chance of observing
M. Due to this ambiguity, the frequency estimation of M is not as straightforward as counting.

Now let us assume that M; is a fuzzy word in which each position is not a letter, but a
probability vector on the four letters (e.g., the second position of the word has 85% chance to
be T, 10% to be A, 5% chance to be C and 0% chance to be G). Then, the computation of the
segmentation becomes a motif scan algorithm. That is, it is equivalent to scan the whole dataset
to see whether there are matches to the postulated pattern represented by M;. What differs
from the usual pattern scanning is that the “threshold” for considering a candidate segment as
the occurrence of M; is not given in advance, but determined by the dataset.

We can further relax the model by assuming that the weight matriz of the word M; is
completely unknown. Then the dictionary model is equivalent to the repetitive block-motif
model subject to minor modifications. A serious statistical question concerning this model
is whether and when the parameters can be estimated consistently. Since the motif pattern
(weight matrix) is assumed unknown, the only source of information for its inference is its over-
abundance in comparison with those “motif-like” patterns occurred by chance under the “null”

model.

4.2 Finding the unknown word via Gibbs sampling

As with the previous subsection, we let D = {A,C,G, T, M1}, where M; a fuzzy word of length
w. Let the usage frequencies of these words be p = {p(«); a € D} and let the stochastic word
matrix (weight matrix) for M; be ® = [01,...,0,]. If the missing partition II were known,

according to (6), we have
N = (N,,...,N¢, Ny | IT) ~ Multinom(N, p)

where N = ) .p N,. For M7, we use the same product multinomial model as in Section 3. The
prior for © is a conjugate product Dirichlet distribution, PD(B), where B = (84, 35,---8,) is
a 4 x w matrix with 8; = (B4, - ..Bt;)T. The prior on p is p ~ Dir(y), ¥ = (Ya,---,y). Under
these assumptions, the posterior distribution of O, conditional on II, is the product Dirichlet
PD(B+ C), i.e., the pseudo-counts B, updated by the column counts matrix C = (e, ..., ¢cy),
where each c¢; is the vector of counts of the four nucleotides at the jthe position of the multiple
occurrences of the fuzzy word. The posterior distribution of p is Dir(IN + ). In the following,
we use the notation 6 to denote the collection of parameters (p, ®), and R to denote (N, C).
Under this framework, with II = (P,,..., Py) representing the missing data relating to the
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correct partitioning of the sequences, we can write the joint posterior distribution as
P@O,I1| R)=P(II|6,R)P(6 |R)

Now the Bayes estimate of @ can be approximated by the Gibbs sampler using the full conditional
distributions P(II | §,R) and P(@ | R,II). The initial step samples a segmentation of the
sequence conditional on the current value of the weight matrix ® and word frequencies p. Then
it updates the weight matrix ® given the current partition.

Sampling for partitions given the word weight matrix can be done efficiently by using the
dynamic programming technique, as in [16]. This initially involves recursive summation of
probabilities as given in (7) over all legitimate partitions of all sequences. This is followed by
“backward sampling” for words, starting from the end of the sequence and progressing back-
wards. Let A; denote the set of words (sampled partitions) from position ¢ onward to position
n, where n is the length of the current sequence. At position 4, we sample for a word o of size
J, (j = 1,...w) according to the conditional probability (given words occurring positions i + 1

and beyond),

0(Sia—p))Li—j _ O(S[e—ga)Li—j i=1,..
521008 (i—j):a) Lij Li(0) ’ ’

Py | Aisr) = w

After the step of segmentation sampling it is easy to update the stochastic word matrix from
its posterior Dirichlet distribution conditional on the current segmentation. It is not difficult to
generalize this idea for the case of more than one “word”, with differing lengths. It would mean
expanding the dictionary to include {Mj,..., My} with associated stochastic word matrices
{©; : 2 < i < d}. Two unsolved statistical questions are (a) whether the parameters remain
distinguishable and (b) whether there are sufficient conditions that guarantee that two words
are unconfounded.

Many real biological sequences demonstrate a certain degree of serial correlations and the
presence of short nucleotide repeats (of lengths 2 or 3). These are often biologically insignificant
but tend to trap motif-searching algorithms. An attempt to get around this problem is by using
a Markovian background structure instead of a random background. In the dictionary model,
a comparable background structure may be introduced by including over-represented dimers or
trimers as known words in the dictionary, to account for first and second order dependence. An
interesting point to note here is that we are using short polymers to “discount” from the motif
signal, whereas in the [2] the dictionary is built up by successive concatenating over-represented
short oligomers.

It is useful to note here the that the segmentation model is equivalent to the repetitive block
motif model in Section 3. The Gibbs motif sampler (GMS) progressively looks at the sequences
and decides whether the segment focused on is more likely to come from the motif model or the
background. In this sense its inference is based on the conditional probability P(I; | Ij_;, M)

where I; is the indicator variable for the start of a motif pattern at ¢, and I ;) refers to the
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other motif sites sampled under the motif model M. The segmentation model focuses on the
joint likelihood of all motif sites in order to update its knowledge of motif site and composition,
i.e.,, P(I | M). It is of interest to study how much the segmentation-based Gibbs sampler can
improve over the previous GMS.

As with the original Gibbs sampler [4, 7], the new algorithm just described can be easily
trapped in a suboptimal “shifted” mode. For example, let z = (z1,...,2x) be the set of starting
positions of the target motif of length w. Then z + §, for a small integer J, are local modes
of the distribution, differing from the true mode by a common shift, since w — § positions are
still correctly aligned. In order to encourage global shifting, we insert a Metropolis step, after
a certain degree of stability has been reached in the Gibbs algorithm. A shift-move entails to
check either of the two positions flanking the motif element for a higher degree of nucleotide
conservation. Similar to [7], we also marginalize out the nuisance parameter € in this step and
get the unconditional likelihood for the current set of motif start positions P(z | S) < [ P(S, z |
0)p(60)dl. The Metropolis adjustment is carried out in the following steps:

e Choose § = £1 with probability 1/2 each;

e Update the motif positions to z + § with probability min {1, %‘?}.

4.3 Influence of the prior

An important question in a Bayesian analysis Bayesian analysis is how to choose a prior distri-
bution so that it would not unduly influence our results yet not fail to use potentially important
knowledge we have regarding the data. The prior information in the segmentation model is
incorporated in the form of pseudo-counts for the Dirichlet prior over the word probabilities
in the starting dictionary. To see the effect of prior parameters on our results, we applied the
algorithm on the CRP data set as shown in Figure 1. The degree of correct detection of binding
sites, (the total number of experimentally determined sites is 24) under different degrees of prior
strength for the presence of motif, can be seen in the table below (TP and FP denote true and
false positives occurring more than 20% in the posterior draws, PC denotes pseudo-counts of

motif as a fraction of base pseudo-counts):

Motif PC(%) 0.25 1.25 2.5 5 10
Average TP: mean (s.e.) | 17 (0.99) | 17.3 (1.21) | 17.8 (0.35) | 18 (0.45) | 18.8 (0.37)
Average FP 1.3 2 4.3 7.2 11.2

Even though some of the “FPs” may not be real FPs (i.e., it is not known for sure that these are
NOT CRP-binding sites), it appears that there is a trade-off between the percentage of correct
sites sampled and the number of false detections. For this example, it seems that a stringent
prior is preferred. It is the true motif frequencies for this dataset is about 1.27 per hundred

bases.
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4.4 Finding gapped motifs through segmentation

Another interesting aspect of this motif finding problem is to deal with motifs that may have one
or more insertions of nucleotides, gaps, within them. The segmentation model can be extended
to allow for this new possibility. A mathematical question of interest is, how far these gaps can
extend, beyond which the original pattern becomes indiscernible.

The problem of searching for gapped motifs can be thought of as trying to align a d x w weight
matrix with a segment of length (w + g), where ¢ is the maximum number of gaps allowed in a
motif. Thus, in such an alignment we should not penalize the gaps that occur at the beginning

or end of the sequence segment. Our probability model for segmentations now is:
P(IL,G | 6,R) = P(IT | 6,R)P(G | T1,6,R),

where G denotes the collective set of gap positions within all motifs. Here we need to additionally
sample from the full conditional distribution of G, given the current set of sampled partition
IT and weight matrix ®@. At this stage, we introduce additional probability parameters, py,,
probability of a match between a nucleotide of the segment with the weight matrix, pg,, gap-
opening penalty, pge, gap-extension penalty (typically lower than gap-opening penalty, as a motif
is more likely to have few but longer gaps within it than a series of numerous small gaps). At
this stage we assume there are no deletions in the motif, hence no gaps in the weight matrix, an
assumption which may be later relaxed.

Now we need to deal with an alignment problem, basically sampling for gaps within a segment
@ = (£1,...,Tyyg)- This may also be done recursively. Let us assume, without loss of generality,
that the motif is aligned exactly with the weight matrix at the end, i.e., the last position is not
part of a gap. Let M; denote the number of matches before position j. Let P (x) denote
probability of nucleotide z if it lies in a gap (i.e., under the background model), and Pg(z,1)
denote the probability of = being realized from the i-th column of the weight matrix. Denote
the probabilities of the j-th position being the i-th match, or belonging to a gap after the i-th

match, as, respectively,
Fij(M)=P(z; €G°| Mj=1—1), and  F;(H)=P(z; €G|M;=1)

Then we can calculate the above quantities recursively, (with initial conditions Fpo(H) =
11F1,1(M) = me@(xla 1))5

Fop(H) = Fop_1(H)Py,(rx), 2<k<g

Fin(H) = [Fjp_1(H)pge + Fjp—1(M)pgolPpy(zx) j+1<k<g+j, 1<j<w-—1
Fip(M) = [Fjp_1(H)+ Fjp1(M)pmPo(zk,j) j<k<g+j 1<j<w-1

Then, for the segment x,
P(‘B) = Fw,w+g(M) = [Fw—l,w+g—1(H) + Fw—l,w+g—1(M)]me® ($w+g; w)
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Sampling for gaps can now be accomplished by sampling a two-dimensional pathway from the
aligned ends of the segment & and the weight matrix @, up to the starting point of the segment.

In summary, it appears that using the segmentation model provides an elegant Bayesian
tool for motif-finding that can be modified without excessive complications to suit different
biological contingencies. The model makes use of minimal assumptions about the composition
and profusion of the motif and updates these aspects based only on the information contained
in the sequence data. A potential problem of this approach is the possibility that it might fail
to yield significant results in situations where the motif signal is comparatively faint, as the
only source of information it uses in inference is over-abundance of patterns in comparison to
chance occurrences under the background (null) model, but this requires further study before
conclusions can be made. Additional efforts can also be made to refine the characterization of
the motif sites, e.g., the mutual distances, relationships among different motifs, and palindromic

patterns.

5 Further Topics

As we mentioned in Section 2, an effective strategy for motif discoveries [15] is to (a) use
microarray data to find clusters of coregulated genes, (b) extract parts of the upstream regions
of these genes, and (c) use the Gibbs sampler or a comparable algorithm to find the binding
sites. However, this “stepwise” approach is not as desirable as an approach that combines the
motif analysis and the microarray analysis under a unified model. However, there has not been
such an approach with demonstrated success. Intuitively, the two analyses should enhance each
other in a biologically meaningful way: The gene clusters inferred from the microarray analysis
often reveal genes involved in related biological pathway or genes that are regulated by the same
TF. If the motif analysis can indeed reveal some significant motifs for these genes, it not only
confirms the clustering result, but also suggests future experimental directions.

More recently, a new protocol called the chromatin-immunoprecipitation followed by microar-
ray hybridization (ChIP-array) has been developed for discovering protein-DNA interaction loci
in vivo [14, 6]. In these experiments, DNA is cross-linked in wvivo to proteins (i.e., covalently
bonded) at sites of DN A-protein interactions, and sheared to 1-2kb fragments. The DNA-protein
complexes are precipitated by antibodies specific to the protein of interest. The precipitated
protein-bound DNA fragments are amplified, labeled fluorescently, and hybridized to microar-
rays containing every ORF and intergenic region of the organism’s genome. DNA fragments that
are consistently enriched by ChIP-array over repeated experiments are identified as containing
the protein-DNA interacting loci. The DNA fragments selected by the ChIP-array experiments
have an average size of 1-2kb determined by the shearing process, which is still difficult for
the biologist to determine the actual binding sites and pattern. The motif discovery methods

discussed in this article can all be applied here to further pinpoint the exact sites [6]. After
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finding the motif weight matrices from these ChIP-enriched segments, [6] plotted the logarithm
of the “motif-score” for each segment in the dataset (i.e., how likely the segment contains cer-
tain motif) against the median percentile rank of the expression levels and found a significant
monotone relationship. This observation confirms that the motif found by the BioProspector, a

variation of the Gibbs sampler, is very likely to be authentic.
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