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SUMMARY
The ubiquitin-proteasome system (UPS) is the primary route for selective protein degradation in human cells.
The UPS is an attractive target for novel cancer therapies, but the precise UPS genes and substrates impor-
tant for cancer growth are incompletely understood. Leveragingmulti-omics data acrossmore than 9,000 hu-
man tumors and 33 cancer types, we found that over 19% of all cancer driver genes affect UPS function. We
implicate transcription factors as important substrates and show that c-Myc stability is modulated by CUL3.
Moreover, we developed a deep learning model (deepDegron) to identify mutations that result in degron loss
and experimentally validated the prediction that gain-of-function truncating mutations in GATA3 and PPM1D
result in increased protein stability. Last, we identified UPS driver genes associated with prognosis and the
tumor microenvironment. This study demonstrates the important role of UPS dysregulation in human cancer
and underscores the potential therapeutic utility of targeting the UPS.
INTRODUCTION

Cancer is fundamentally a disease of the genome, where only

certain mutations drive a selective growth advantage for cancer

cells, with most mutations being benign passengers that accu-

mulate by chance. From the start of DNA sequencing studies

of human tumors (Barbieri et al., 2012; Cancer Genome Atlas

Research Network, 2008; Jones et al., 2008; Wood et al.,

2007), it quickly became clear that genes involved in protein

degradation are perturbed by mutations in cancer. For example,

mutated VHL leads to elevated HIF-1/2a protein abundance,

which allows cells to adapt to hypoxic conditions (Iliopoulos

et al., 1996; Ivan et al., 2001; Iyer et al., 1998; Jaakkola et al.,

2001). The ubiquitin-proteasome system (UPS) regulates degra-

dation of over 80% of proteins in cells (Collins and Goldberg,

2017). UPS dysregulation has been implicated in nearly all hall-

marks of cancer (Hanahan and Weinberg, 2011), such as
USP28 in the DNA damage response (Zhang et al., 2006),

KEAP1 in oxidative stress (Jaramillo and Zhang, 2013), and

FBXW7 in cell proliferation (King et al., 2013; Welcker and Clur-

man, 2008). Moreover, defects in the UPS have been linked to

a variety of other human diseases or disorders (Atkin and Paul-

son, 2014; Das et al., 2006; Nalepa and Clapp, 2018; Staub

et al., 1997); for example, loss-of-function mutations in UBE3A

are implicated in Angelman syndrome, a neurodevelopmental

disorder (Buiting et al., 2016). Despite the importance of UPS

in human disease and especially cancer, a systems-level under-

standing of the UPS is still lacking.

The UPS operates through covalent attachment of ubiquitin

(an 8-kDa protein) to lysine residues in substrate proteins, which

is achieved through a relay of steps by passing ubiquitin from E1

enzymes to E2 enzymes (Stewart et al., 2016) and, ultimately with

the help of E3 ubiquitin ligases, to substrates. Although ubiquiti-

nation can have many functions, polyubiquitination is often a
Molecular Cell 81, 1–17, March 18, 2021 ª 2021 Elsevier Inc. 1

mailto:selledge@genetics.med.harvard.edu
mailto:myles_brown@dfci.harvard.edu
mailto:xsliu@ds.dfci.harvard.edu
https://doi.org/10.1016/j.molcel.2021.01.020


Figure 1. Study overview

Somatic mutations from 33 cancer types in The Cancer Genome Atlas (TCGA) (left) were analyzed to reveal significantly mutated genes in the ubiquitin-pro-

teasome system (UPS) and its substrates with significant enrichment ofmutations at known degron-related sites (center). Amachine learningmodel, deepDegron

(bottom right), was then used to find additional degron sites and to determine the effect of additional mutations. Last, leveraging the significantly mutated genes in

the UPS pathway, we associated UPS pathway genes with protein abundance or inferred activity of TFs to implicate putative substrates (top right).
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signal for protein degradation by the 26S proteasome (Collins

and Goldberg, 2017). The key step of this process conferring

regulatory specificity is performed by E3 ubiquitin ligases, which

are thought to recognize short linear amino acidmotifs, known as

degrons, on substrate proteins (Mészáros et al., 2017). With over

600 E3 ubiquitin ligases encoded in the human genome, there

are more than 10 million possible E3 ligase-substrate pairs.

The transient nature of E3-substrate interactions makes experi-

mental detection of these interactions using co-immunoprecipi-

tation challenging (Ella et al., 2019; Mészáros et al., 2017). In

addition, deubiquitinating enzymes (DUBs) act in the opposite

direction, preventing degradation by removing ubiquitin from

proteins (Reyes-Turcu et al., 2009; Ronau et al., 2016). Although

many mechanistic steps of the UPS are well characterized, the

regulatory logic of how E3 ubiquitin ligases and DUBs selectively

recognize their target protein remains mostly unknown (De-

shaies and Joazeiro, 2009). Because it is unclear which genes

involved in ubiquitination act in a proteasome-dependent versus

-independent manner, we include all E1, E2, E3, and DUB en-

zymes in our subsequent analyses.

Many tumors (37%–57%) harbor potentially clinically action-

able mutations (Bailey et al., 2018; Zehir et al., 2017). Some of

these are in genes that encode the UPS components; for

instance, BRCA1 (an E3 ubiquitin ligase) mutant tumors are sen-

sitive to PARP inhibitors through a synthetic-lethal interaction

(Robson et al., 2017). Traditionally, clinical actionability has

been largely based on classic drug development of small mole-

cules or antibodies that bind to an enzyme or receptor. Recent

developments of protein degrader-based drugs, such as prote-

olysis-targeting chimeras (PROTACs) (Sakamoto et al., 2001;

Winter et al., 2015), have promised to expand the scope of drug-

gable targets in cancer through a novel mechanism of action.

PROTACs that act by co-opting the cell’s normal UPSmachinery

to degrade specific target proteins are in active development,

and early PROTAC drugs are undergoing clinical trials for breast

and prostate cancer (Scudellari, 2019). However, it is still not well

understood how the UPS is usually perturbed in cancer and how
2 Molecular Cell 81, 1–17, March 18, 2021
PROTACs or other UPS-targeting drugs could counteract this ef-

fect. Thus, a comprehensive characterization of which mutated

UPS genes may drive carcinogenesis and their corresponding

dysregulated protein substrates is not only important for under-

standing cancer biology but also of potentially significant thera-

peutic utility.

Prior studies have been underpowered to identify significantly

mutated genes within the UPS or lacked the capability to identify

previously unknown substrates. Although Ge et al. (2018) found

23 mutated genes in the UPS to be statistically significant, their

analysis mostly found already known genes and did not consider

the affected substrates. Martı́nez-Jiménez et al. (2020) attemp-

ted to identify substrates of E3 ligases in cancer, but they only

analyzed expression data for �200 proteins (Li et al., 2013)

and a handful of E3 ligases with already known degron motifs

(Gouw et al., 2018). In contrast, our study considered all compo-

nents of the UPS, including E1-activating enzymes, E2-conju-

gating enzymes, E3 ligases, and DUBs. In addition, we devel-

oped a machine learning method to systematically infer degron

sequences de novo and identify mutated substrates that escape

protein degradation. We aimed to provide the most systematic

assessment of the role of protein degradation in human cancer

to date, supported by experimental validation of our predictions.

In this study, to dissect the complex regulation of the UPS in

cancer, we divided the problem into several steps: identifying

mutated UPS genes, identifying mutated substrates, and linking

mutated UPS genes to substrates (Figure 1). We employed inte-

grative computational approaches to identify cancer driver

genes in the UPS, associated these with candidate substrates

through a multi-omics approach, and leveraged deep learning

to model the effect of mutations on degrons. While investigating

over 9,000 tumors in 33 cancer types, we found a significantly

larger role of UPS dysregulation in carcinogenesis than appreci-

ated previously, comprising approximately 19% of cancer driver

genes. Predictions of mutations leading to degron loss in GATA3

and PPM1D were then validated experimentally. Furthermore,

UPS alterations are associated with prognosis and immune
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Figure 2. Landscape of cancer driver genes in the UPS

(A) Driver gene analysis was performed by the 20/20+ method. A scatterplot for each UPS gene (dots) is shown with the maximum oncogene (OG) score (x axis)

and maximum tumor suppressor gene (TSG) score (y axis) across 33 cancer types and a pan-cancer analysis. Red indicates that the gene was found to be

statistically significant in at least one analysis.

(B) Fraction of putative cancer driver genes that occur in the UPS pathway (red bar). A dashed line indicates the median across all analyses.

(C) Venn diagram showing the overlap of putative cancer driver genes in this study (20/20+) with previous studies: TCGA PancanAtlas consortium, ubiquitin

pathway analysis by Ge et al. (2018), Davoli et al. (2013), and a curated list of cancer driver genes, in general, from the Cancer Gene Census (CGC).

(D) Pie diagram displaying the percentage of UPS driver genes in terms of molecular function.

(E) Lollipop diagram of CUL3 mutations in head and neck squamous cell carcinoma in TCGA. Exon-exon junctions are displayed as dashed lines. The colors of

circles distinguish the types of mutation, and colored rectangles are Uniprot domain annotations of the protein.

(legend continued on next page)
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infiltration of the tumor microenvironment (TME). Our results

could provide insights into rational selection of protein degrader

drugs to counteract the effects of UPS dysregulation in human

cancer.

RESULTS

Expanded landscape of putative cancer driver genes in
the UPS
An understanding of the UPS requires assessment of the genes

comprising the pathway and the protein substrates they regulate

(Figure 1). To establish a landscape of the former in cancer, we

evaluated whether UPS genes (Table S1) were somatically

mutated more often than expected by chance across a large

cohort of tumors from The Cancer Genome Atlas (TCGA). The

rationale is that driver mutations in a UPS gene would confer a

selective growth advantage to a clonal cell population, leading

to cancer, which leaves a statistically distinguishable signal

compared with mutations that happen by chance. Using the

20/20+ method we developed previously to identify mutated

cancer driver genes (Tokheim et al., 2016; STAR methods), we

found a total of 63 unique UPS genes as putative drivers (q <

0.05; Figure 2A; Table S1), covering 28 of 33 analyzed cancer

types (Figure 2B). The putative UPS drivers are enriched for

curated cancer driver genes in the Cancer Gene Census (p =

2e�11, two-tailed Fisher’s exact test) (Sondka et al., 2018),

driver genes defined by the TCGA consortium (p = 6e�25)

(Bailey et al., 2018), and biological processes relevant to cancer

(Figure S1D). Moreover, unlike a recent study (Martı́nez-Jiménez

et al., 2020), which only includes E3 ubiquitin ligases, our anal-

ysis includes E2-conjugating enzymes, E1-activating enzymes,

and deubiquitinases, which led to a greater number of putative

UPS driver genes with better agreement with prior literature (Fig-

ures S1A-S1C). Notably, compared with the results from the

TCGA consortium, the putative UPS drivers represented �16%

of all driver genes, including 33 genes not reported previously

(Figure 2C; Table S1), which suggests a substantial role of the

UPS in carcinogenesis. Reflective of their occurrence in diverse

cancer types, UPS driver genes showed substantial variability in

gene dependencies across cell lineages from CRISPR knockout

(KO) (Figures S1E–S1G) and contextually co-occurred with other

mutations (Figures S1H–S1J). Last, we stratified mutated

UPS genes by oncogene or tumor suppressor gene scores

from 20/20+ and observed the majority to be tumor suppressors

(Figure 2A). In some cases, a tumor suppressor gene may also

have a high ‘‘oncogene’’ score because of the presence of recur-

rent hotspot mutations in addition to truncating mutations, sug-

gesting that the hotspot mutations have a dominant-negative ef-

fect (Davis et al., 2014).

The 63 putative UPS driver genes spanned E3 ubiquitin ligases

(n = 46), E2-conjugating enzymes (n = 5), E1-activating enzymes

(n = 1), and DUBs (n = 11) (Figure 2D). Identified components of

E3 ubiquitin ligases represent not only target recognition sub-
(F) Kaplan-Meier curves of the relationship between UCHL1 expression and ove

(G) Lollipop diagram of UCHL1 mutations in the TCGA skin cutaneous melanom

one tumor.

See also Figure S1.
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units but also cullin scaffold proteins (n = 5). These included

CUL3, which exhibited widely distributed loss-of-function muta-

tions and a recurrent mutation (p.R709) near the activating ned-

dylation site (Figure 2E). Although DUBs were fewer in number,

expression of driver DUB genes had prognostic value in 16 of

33 analyzed cancer types (Figure S1L; STAR methods). For

example, high expression ofUCHL1was significantly associated

with worse overall survival in individuals with metastatic mela-

noma in the TCGA (Figure 2F), consistent with our prediction of

UCHL1 being an oncogene in melanoma because of a recurrent

H161Y mutation at its active site (Figure 2G). The UCHL1 gene

expression association was also replicated in an independent

metastatic melanoma cohort (p = 0.0002, Cox Proportional Haz-

ards model) (Jayawardana et al., 2015). We reasoned that

because UCHL1 expression is associated with a poor prognosis

in melanoma, it might also be relevant in recent immunotherapy

trials in melanoma. Indeed, UCHL1 expression was also associ-

ated with worse overall survival in a study of anti-PD-1 treatment

(p = 0.008) (Hugo et al., 2016) and approached significance in

another study with nivolumab for treatment-naive individuals

(p = 0.06) (Riaz et al., 2017). This underscores that E3 ubiquitin

ligases and DUBs might have important roles in cancer

progression.

Degron annotations limit the number of significantly
mutated UPS substrates
Although alterations affecting genes in the UPS pathway would

be expected to lead to multiple changes in downstream protein

substrates, mutations in the substrates themselves could pro-

vide greater specificity for cancer cells by affecting much fewer

proteins. We therefore hypothesized that we could identify sub-

strate mutations under positive selection in tumors by finding en-

riched missense mutations at known degron-related sites (STAR

methods). From the PhosphoSitePlus database (Hornbeck et al.,

2015), we found that mutations were enriched in annotated ubiq-

uitination sites in the SF3B1 gene in breast cancer and in the KIT

gene in cutaneousmelanoma (q < 0.1; Table S2). Mutations were

also enriched at annotated degron sites (Mészáros et al., 2017)

located in CTNNB1 (Figure S2A), SPRY1, NFE2L2 (Figure S2B),

and EPAS1 (Figure S2C) and phosphodegron sites located in

CTNNB1 and CCND1 (q < 0.1; Table S2; Figure 3A). An example

is CCND1-mutant endometrial tumors (Figure 3B), which as ex-

pected showed higher protein expression (Figure 3C, left) and

greater cell cycle progression than wild-type tumors (Figure 3C,

right). Surprisingly, mutations outside of the phosphodegron also

displayed a similar trend, largely consisting of truncating muta-

tions that also eliminate the phosphodegron (Figure 3B) while be-

ing predicted to escape nonsense-mediated decay (NMD) (Lin-

deboom et al., 2016). Likewise, CTNNB1-mutant tumors were

also associated with a functional effect, including altered tran-

scriptional activity (Figures S2D and S2E), activation of WNT

signaling (Figure S2F), and an altered TME (Figure S2G), consis-

tent with previous reports (Hatzis et al., 2008; Spranger et al.,
rall survival in 4 melanoma datasets.

a cohort. Numbered circles indicate that a mutation was found in more than
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Figure 3. Somatic mutations are enriched at

known degron sites

(A) Heatmap displaying genes that are enriched for

mutations at literature-annotated degron sites

(Mészáros et al., 2017), ubiquitination sites (Phos-

phositePlus), or phosphodegrons (PhosphoSite-

Plus). Red indicates significant enrichment (q < 0.1)

for a given gene (y axis) and cancer type (x axis) in

TCGA.

(B) Lollipop diagram of CCND1mutations in uterine

corpus endometrial carcinoma (UCEC) in TCGA.

(C) Boxplots showing the association of CCND1

mutations with Cyclin D1 protein abundance (p =

4e�8, Wald test) and a marker of cell cycle pro-

gression (MKI67, p = 0.003) in UCEC. The heatmap

shows t statistics of the association after adjust-

ment for RNA expression and tumor subtype. Tu-

mor subtypes: CN_LOW, copy number low; MSI,

microsatellite instable; POLE, POLE mutated gene.

RPPA, reverse-phase protein arrays. All boxplots

show the distribution quartiles with whiskers rep-

resenting the quartile ± 1.5 times the Interquartile

Range (IQR).

See also Figure S2.
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2015). In total, the significantly mutated genes affecting the

UPS, either in the pathway directly or on their substrates,

comprise 19% of all cancer driver genes relative to the TCGA

PancanAtlas consortium analysis (Bailey et al., 2018). However,

the smaller number of genes with mutations in degrons in cancer

is likely due to the considerable sparsity of known degron anno-

tations (Mészáros et al., 2017). Therefore, the true proportion of

cancer driver genes affecting the UPS is very likely to be higher

than 19%.

deepDegron infers degron sequences
Although a few UPS substrate mutations can be implicated in

cancer based on known degrons, systematic investigation re-

quires better degron annotation. To address this challenge, we

developed a protein sequence-based model, deepDegron, that

leverages data from recently published global protein stability

(GPS) analysis of N-terminal and C-terminal sequences from

the human proteome (Koren et al., 2018; Timms et al., 2019) to

predict degrons (Figure S3). GPS uses fluorescence-activated

cell sorting (FACS) to quantify protein stability based on the

abundance of a fluorescent reporter protein (GFP, green) fused

to a short peptide compared with a control reporter with no

fusion partner attached (DsRed, red) (Figure S3A). Because the

peptides consisted of known sequences and could contain de-

grons, we reasoned that deepDegron could learn the sequence
rules of the degron effect on protein stabil-

ity. deepDegron is a feedforward neural

network with one input layer, two hidden

layers with a rectified linear unit activation

function, and an output layer (Figure S3B;

STAR methods). Hyperparameters were

determined by performance on a leave-

out dataset, such as the number of units

in each layer, dropout rate, training
epochs, and peptide sequence encoding (Figure S3C). On a

held-out test set, deepDegron achieved high performance

when predicting the results of the GPS assay (Figures 4A and

4B). This was higher than the previously proposed rule-based al-

ternatives (Koren et al., 2018), such as the numbers of bulky

amino acids, acidic residues, or top 100 motifs, and better

than a combination thereof (logistic regression) (Figures 4A

and 4B).

Protein stability is likely affected by general biophysical char-

acteristics of the attached peptide in the GPS assay, such as hy-

drophobicity and intrinsic disorderedness (van der Lee et al.,

2014). However, we were most interested in understanding the

specific sequence motifs that might mediate degron recognition

by specific ubiquitin ligases. Therefore, to infer degrons, we

trained two deep learning models: one containing position infor-

mation from the primary sequence and another without position

information (‘‘bag of amino acids’’ representation; Figure 4C).

We hypothesized that the difference between these two models

could approximate a degron potential score, where high scores

demonstrate position-specific features to be more informative

than general degradation properties.

To identify the degron motifs learned by deepDegron, we per-

formed de novomotif enrichment analysis from the human N and

C terminomes (Table S4; STAR methods). Our analysis revealed

numerous previously known motifs (Figure S4), such as -GG
Molecular Cell 81, 1–17, March 18, 2021 5
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Figure 4. deepDegron accurately predicts the effect of primary sequence on protein stability

(A) Performance of deepDegron when predicting the stability of C-terminal peptides from the global protein stability (GPS) assay according to the area under the

receiver operating characteristic curve (AUC; maximum = 1.0, random = 0.5) (see deepDegron and Dataset in STAR methods).

(B) Receiver Operating Characteristic (ROC) curve for the N-terminal peptide GPS assay.

(C) Diagram showing that the degron potential score is computed based on the difference between a deepDegron model that uses the position of the amino acids

versus one that does not (‘‘bag of amino acids’’).

(D) Sequence logo visualizations of select motifs identified by deepDegron (q < 0.05, binomial test; STAR methods).

(E) DeepDegron-predicted change in degron potential (delta degron potential) for various mutations of the C-terminal peptide encoded by CHGA.

(F) Correlation between the change in degron potential and the protein stability index according to a saturation mutagenesis study of CHGA.

(G) GPS stability measurements of C-terminal (top) or N-terminal (bottom) peptides derived from the indicated genes, comparing wild-type (gray histograms) and

double-mutant (red) sequences. The x axis is proportional to the GFP/DsRed signal, as measured by flow cytometry (STAR methods); the y axis is normalized

cell count.

See also Figures S3 and S4.
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and GA- in C-end and N-end degrons, respectively, but also pre-

viously unknown motifs, such as C-terminal C[A/G]C[R] and

N-terminal [P]LxxR (Figure 4D). Although previous models have

emphasized the effect of di-amino acid motifs on C- and

N-end degrons (Koren et al., 2018; Timms et al., 2019), the

discovered motifs suggest that additional complexity might exist
6 Molecular Cell 81, 1–17, March 18, 2021
with a longer extended degron, albeit with partial degeneracy at

these residues, as evidenced by the sequence logo plots (Fig-

ure 4D). To assess whether deepDegron could accurately pre-

dict the effect of mutations on degrons, we evaluated its perfor-

mance relative to saturation mutagenesis experiments (Koren

et al., 2018; Timms et al., 2019). For example, the deepDegron
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Figure 5. deepDegron finds C-terminal degrons disrupted by mutations in cancer

(A) Scatterplot showing the results of the mutational enrichment for C-end degron loss across all analyses (33 cancer types and pan-cancer). The p value

resolution is limited to 0.0001.

(B) Example of GATA3 in breast cancer, which shows that the change in degron potential (red) is considerably more negative than the background model (blue).

(C) Lollipop diagram of TCGA mutations in GATA3 for breast cancer. Colored rectangles represent zinc-finger domains 1 (ZnF1) and 2 (ZnF2).

(D) Boxplot showing the association of GATA3 mutations with GATA3 protein abundance in TCGA breast cancer (top left). All boxplots show the distribution

quartiles with whiskers representing the quartile ± 1.5 times the Interquartile Range (IQR).

(legend continued on next page)

ll
Article

Molecular Cell 81, 1–17, March 18, 2021 7

Please cite this article in press as: Tokheim et al., Systematic characterization of mutations altering protein degradation in human cancers, Molecular
Cell (2021), https://doi.org/10.1016/j.molcel.2021.01.020



ll
Article

Please cite this article in press as: Tokheim et al., Systematic characterization of mutations altering protein degradation in human cancers, Molecular
Cell (2021), https://doi.org/10.1016/j.molcel.2021.01.020
model scored most mutations in the C-end -RGmotif as disrupt-

ing a degron in the CHGA protein (Figure 4E), as demonstrated

by a strong negative change in degron potential when the last

two amino acids are mutated. Indeed, compared with the exper-

imental results, the predicted change in degron potential was, as

expected, negatively correlated with protein stability (Figure 4F).

Moreover, this negative correlation was observed for all satura-

tion mutagenesis experiments performed on N-terminal and

C-terminal peptides (Figures S4E and S4F). These results sug-

gest that deepDegron is capable of capturing the sequence-level

rules of degrons.

To experimentally validate the new degron predictions by the

deepDegron model, we used the GPS stability assay. We

selected 21 significant degron motifs for testing, comprising 9

predicted N-terminal degrons and 12 predicted C-terminal de-

grons (STAR methods). GPS was used to examine the stability

of the terminal 23-mer peptide derived from each of the 21 pro-

teins, comparing the wild-type sequence with a mutant version

containing two point mutations in the putative degron motif.

The precise mutations were chosen to maximize the decrease

in degron potential, as determined by deepDegron (Table S4;

STAR methods). We found that mutation of 8 of 12 (67%) C-ter-

minal degrons and 8 of 9 (89%) N-terminal degrons resulted in

protein stabilization (Figures 4G, S4G, S5C, and S5N; Table

S4G). These results underscored the potential power of deepDe-

gron as a tool for degron discovery.

deepDegron identifies mutations likely disrupting
degrons in cancer
Given the strong concordance between deepDegron’s predic-

tions and the available experimental data, we reasoned that we

could systematically apply deepDegron to identify mutations

that may disrupt degrons in cancer. We thus computed the

change in degron potential between the mutated and wild-type

sequence in TCGA (delta degron potential) and assessed

whether there was enrichment for mutations predicted to disrupt

a degron in genes (STAR methods). Our analysis revealed that

mutations in GATA3 and PPM1D had the most significantly dis-

rupted degrons across all analyzed cancer types (q < 0.1, Fig-

ures 5A and S5A; Table S5). Indeed, for breast cancer, in which

GATA3was identified as significant, the change in degron poten-

tial (�23) had far more of an effect than expected by chance (Fig-

ures 5B and S4D).

GATA3 is an essential transcription factor (Figure S5B) that

regulates luminal differentiation of mammary tissue (Kouros-

Mehr et al., 2006) and cooperates with ESR1 to mediate estro-

gen response (Eeckhoute et al., 2007; Theodorou et al., 2013).

Heterozygous GATA3 mutations typically occur in the estrogen

receptor (ER)+ subtype of breast cancer (luminal A or luminal

B) and show a clear bias for frameshift and splice site mutations
(E) Western blot of the protein expression of GATA3 mutants compared with the

(F) Top: average read coverage profile for peaks. Bottom: overlap of upregulated

(G) Pathway enrichment analysis of upregulated peaks for GATA3 mutants.

(H) Distribution of expression for genes near upregulated peaks stratified by tum

(I) Western blot showing the effect of mutating the GATA3 degron on markers fo

(J) Western blot analysis of the PPM1D (WIP1) mutant versus the control. HA, he

See also Figure S5.
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near the 30 end of the gene (Figure 5C). Notably, the mutations

are clustered on the last exon-exon junction so that they are

not expected to cause NMD (Lindeboom et al., 2016). According

to the deepDegron model, the -AxG sequence (x = any amino

acid) at the C terminus of wild-type GATA3 is strongly predictive

of its degron potential, and frameshift or splice site mutations

would eliminate this motif. Consistent with the predicted loss-

of-degron effect for these mutations, we found that GATA3-

mutant tumors in TCGA had elevated protein abundance ac-

cording to reverse-phase protein arrays (RPPAs) (p = 9e–9,

Wald test; Figure 5D). To experimentally confirm the minimal de-

gron region, we generated a double point mutant in the C-termi-

nal -AxG motif of GATA3 and measured protein stability by GPS

assay. Similar to clinical tumor samples, we found that the dou-

ble point mutant of the GATA3 C terminus had significantly

higher protein expression compared with the wild-type

sequence (Figure S5C). Moreover, individual substitution of

either amino acid led to increased protein expression in the

context of the full-length GATA3 protein, as assessed by immu-

noblot, suggesting that both residues are critical for degron

recognition (Figure 5E). Given that GATA3 was also upregulated

substantially upon treatment with the proteasome inhibitor

MG132 (Figure S5D), the identified -AxG motif is likely a degron

that mediates protein degradation of GATA3 via the UPS. Addi-

tionally, RNA expression was not elevated substantially in the

mutants (Figure S5E), ruling out potential transcriptional effects.

These findings were further confirmed in a second cell line

(HEK293FT), underscoring the robustness of our finding that mu-

tations lead to degron loss in GATA3 (Figures S5F–S5H).

Next we sought to evaluate whether GATA3 mutations

mediate their effect on breast cancer through elevated protein

expression. If so, then these mutations should shift a basal-like

breast cancer cell line (MBA-MD-231) toward a gene expres-

sion program of ER+ breast cancer. We therefore compared

the genome-wide binding sites of mutated GATA3 with wild-

type GATA3 by chromatin immunoprecipitation sequencing

(ChIP-seq) (Figures S5I and S5J; Tables S5B–S5E). As a con-

trol, we createdGATA3 constructs that would be stable regard-

less of point mutation status by adding a FLAG tag to the C ter-

minus of GATA3 (Figure 5E). Addition of residues blocks the

function of the C-end degron because the location at the

extreme C terminus is required (Koren et al., 2018). Notably,

GATA3 mutations led to a consistent overall gain in binding

compared with wild-type GATA3 (p < 1e–16, Fisher’s exact

test), but only without a FLAG tag control (Figures 5F, S5K,

and S5L). Upregulated binding sites were preferentially near es-

trogen signaling genes (Figure 5G), but no pathway was en-

riched in the presence of a FLAG tag control (false discovery

rate [FDR] < 0.1). Moreover, genes closest to upregulated bind-

ing sites displayed substantially higher expression in ER+
control. F, FLAG tag.

ChIP-seq peaks for GATA3 mutants.

or subtype.

r luminal and basal-like breast cancer.

magglutinin.
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Figure 6. UPS-substrate inference finds associations with markers of the immune TME

(A) Diagram depicting the strategy for associating UPS genes with putative TF substrates.

(B) Scatterplot showing the significance of each transcription factor (TF) association for a particular UPS gene (x axis).

(C) Diagram of inferred substrate relationships of KEAP1 and CUL3.

(D) Western blot showing co-immunoprecipitation of CUL3 with c-Myc.

(E) Western blot showing increased c-Myc protein abundance in CUL3 KO cells.

(legend continued on next page)
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compared with basal-like subtypes of breast cancer (Fig-

ure 5H), which was not the case with the FLAG tag control (Fig-

ures S5K–S5M). Last, mutation of the GATA3 degron shifted

protein expression biomarkers toward an ER+ state in the

basal-like MDA-MB-231 breast cancer cell line (Figure 5I).

GATA3 mutations in breast cancer, at least in part, mediate

their effect by increasing protein stability through elimination

of a degron.

Similar to the GATA3 prediction, deepDegron also predicted

that truncating mutations in PPM1D will disrupt a C-terminal

-VC degron motif (Figure S5N). PPM1D encodes the Ser/Thr

phosphatase WIP1, which negatively regulates p53 (Bulavin

et al., 2002; Emelyanov and Bulavin, 2015) and has been re-

ported to be amplified frequently in breast cancer (Li et al.,

2002; Rauta et al., 2006). Consistent with an oncogenic role

through negative regulation of TP53, PPM1D is more essential

in TP53 wild-type compared with TP53 mutant cell lines from

CRISPR screens reported in DepMap (Figure S5O). Further-

more, PPM1D-truncating mutations observed in TCGA were

mutually exclusive with TP53 mutations (p = 0.04, one-sided

Mantel-Haenszel test), suggesting that they might redundantly

affect the same pathway. Supporting our prediction of a mech-

anism involving degron loss, a double point mutant of the -VC

motif in theWIP1 C-terminal peptide displayed elevated protein

stability by GPS (Figure S5P). Point mutation of either amino

acid residue also led to increased protein expression of full-

length WIP1, according to western blot analysis (Figure 5J),

suggesting that both amino acids are critical. Functionally,

the higher protein expression of mutant WIP1 resulted in

greater dephosphorylation of known downstream targets in

the DNA damage response pathway (Figure 5J), including p53

(Lu et al., 2005; Shreeram et al., 2006). Although in vivo evi-

dence of WIP1 protein expression is not available in TCGA,

similar truncating mutations have been reported to lead to

greater protein stability of WIP1 and to chemotherapy resis-

tance in acute myeloid leukemia (Hsu et al., 2018; Kahn et al.,

2018). Our finding of truncating mutations leading to C-end de-

gron loss in WIP1 (the PPM1D gene) is consistent with this clin-

ical phenomenon.

Integrative analysis of UPS driver genes identifies
putative transcription factor (TF) substrates
Having analyzed UPS substrates and UPS driver genes in isola-

tion, we next wanted to explore pairing of UPS genes with their

substrates. One approach is to correlate the presence of puta-

tive driver mutations in UPS components with protein abun-

dance measurements of potential substrates from RPPAs (Li

et al., 2013) after adjusting for RNA expression and other cova-

riates (STAR methods). Although we could confirm known

UPS-substrate relationships, such as targeting of CCNE1 by
(F) Quantification of c-Myc protein half-life upon CUL3 KO in Cal27 and Cal33 c

centration of 100 mg/mL. Error bar, ±1 SEM.

(G) Enrichment analysis for degron motifs in associated TFs for 4 E3 ubiquitin lig

(H) Heatmap displaying the association (t statistic) of mutations in UPS driver ge

(I) Z score measuring the relative abundance of cancer cells with a gene KO when

T cell killing.

See also Figures S6 and S7.
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FBXW7 (Koepp et al., 2001; Strohmaier et al., 2001), we could

only find a small number of associations (Table S6). This is un-

likely to be due to incorrect labeling of cancer driver mutations

(STAR methods) because our predictions were significantly

correlated with a previous saturation mutagenesis experiment

performed on the E3 ubiquitin ligase BRCA1 (Figure S6). Rather,

RPPA only contains abundance measurements for a limited

number of proteins (n = 198).

To expand our analyses (Figures S7A and S7B), we reasoned

that TFs might be a substrate particularly amenable for analysis

because RNA expression of a TF’s target genes might serve as a

proxy for TF protein activity (Figure 6A).We generated differential

expression profiles comparing tumor samples carrying wild-type

versus putative driver mutations in the UPS genes (STAR

methods). RNA expression of the TF was then adjusted as a co-

variate, presumably leaving effects of the TF based on the pro-

tein level. TF regulator analysis using RABIT (Jiang et al., 2015)

was then performed to infer substrate TFs based on their target

genes defined by thousands of uniformly processed TF ChIP-

seq profiles from the Cistrome database (Zheng et al., 2019).

As a proof of principle, we first tested whether a known TF,

NFE2L2, could be retrieved by analyzing its own degron muta-

tions. Indeed,NFE2L2was identified correctly as the top hit (Fig-

ure S7A) to explain the differentially expressed genes in tumors

containing NFE2L2 mutations. Applying the method globally to

UPS-substrate inference, we found 494 cancer-specific associ-

ations (Table S7) to be significant at a conserved family-wise er-

ror rate of 0.05 (Bonferroni method, corresponding to p <

7.8e�7). Because some could be downstream effects, we

decided to focus on the top 100 associations (Figure 6B), where,

at most, 5 associations per UPS gene are shown in Table 1.

Importantly, there was no indication of systematic differences

in ChIP-seq quality in our significant results (Figures S7C–S7F;

STARmethods), suggesting that technical artifacts are likely low.

Numerous UPS-substrate associationswe identified have been

validated previously, such as FBXW7 and c-Myc (encoded by the

MYC gene; King et al., 2013), SPOP and androgen receptor (AR)

(An et al., 2014), and BRCA1 and ERa (encoded by the ESR1

gene; Eakin et al., 2007; Ma et al., 2010). In some cases, although

not finding the direct target, our analysis found proteins that were

regulated by the direct target, such as the UPS gene CYLD and

downstreamRELA (Kovalenko et al., 2003), or interaction partners

in the same protein complex, such as VHL-ARNT, where ARNT

forms a dimer with the known VHL target HIF-1a (Tanimoto

et al., 2000). For example, as indicated by our results and previ-

ously (Shibata et al., 2008), KEAP1 directly regulates NRF2 (en-

coded by the NFE2L2 gene) and is known to form a complex

with CUL3, a scaffold protein for many substrate recognition sub-

units (Figure6C). Asexpected,CUL3mutationsalsoshowedmod-

ulation of NRF2, but, unlike KEAP1, were associated withMYC or
ells. Cycloheximide (CHX), a protein translation inhibitor, was given at a con-

ases that have a previously reported degron motif (Fisher’s exact test).

nes with 5 immune-related biomarkers, *, FDR < 0.1.

they are co-cultured with T cells, where negative values indicate sensitivity to



Table 1. Mutated UPS driver genes are associated with TF activity

UPS gene TF (Cancer Type)

FBXW7 EP300 (LUSC, CESC), KLF4 (HNSC, LUSC), MYC (READ, BLCA), GRHL2 (HNSC), XBP1 (UCS)

KEAP1 NFE2L2 (PANCAN, LUAD)

WWP2 EP300 (HNSC), KDM4C (HNSC)

BAP1 XBP1 (BRCA, CHOL, MESO), YY1 (LIHC, PANCAN), CDK9 (PANCAN), MITF (UVM), TAF1 (PANCAN)

CUL3 NFE2L2 (PANCAN, LUSC, KIRP), MYC (PANCAN, KIRP, HNSC), BRD4 (KIRP)

SPOP AR (PRAD), EP300 (UCEC), NKX3-1 (PRAD), ARRB1 (PRAD)

TBL1XR1 XBP1 (BRCA), BRD4 (BRCA), MBD2 (BRCA)

TRAF3IP2 MYC (BLCA), EED (BLCA)

CYLD RELA (HNSC), EP300 (HNSC), FOS (HNSC)

MYCBP2 PROX1 (COAD), MAX (COAD), MYC (COAD)

ZBTB11 EED (HNSC)

BIRC6 HNF4A (ESCA), FOS (HNSC), EP300 (HNSC), MAX (ESCA), KDM4C (HNSC)

RNF111 EP300 (HNSC)

MAP3K1 XBP1 (PANCAN), ESR1 (PANCAN), WDR5 (BRCA), EP300 (CESC), GRHL2 (CESC)

UBA1 RUNX1 (LAML)

LTN1 TTF1 (LUAD)

FUS EP300 (BLCA)

KMT2B STAT1 (HNSC), RFX1 (PANCAN), REST (COAD), CDX2 (COAD), HEY1 (PANCAN)

BRCA1 ESR1 (BRCA)

EP300 IRF4 (BRCA), XBP1 (HNSC, CESC), MAX (HNSC), SMARCA4 (PANCAN), KLF5 (CESC)

USP9X XBP1 (PCPG), GRHL2 (HNSC), GTF2B (BRCA), IRF2 (COAD)

CUL1 CDK8 (BLCA)

KMT2A FLI1 (LIHC), NR2F2 (LIHC), FOXO1 (BLCA)

SMURF2 FOXP1 (SKCM)

ZBTB7B MYOD1 (UCS), GABPA (UCS)

VHL STAT1 (KIRC), ARNT (KIRC)

CUL2 SUPT5H (BLCA)

CUL7 CTCF (BRCA)

ZBTB3 MYH11 (LAML)

CUL4B STAT1 (LGG)

See also Figure S7.
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BRD4 in our analysis. This would suggest an effect based on a

different substrate recognition subunit. Supportive of this hypoth-

esis, NFE2L2 showed co-essentiality with KEAP1 (p = 2.6e�7,

Wald test) and CUL3 (p = 0.02, Wald test) in cancer cell lines

from DepMap CRISPR screens, whereas MYC is co-essential

withCUL3 (p=0.0004,Wald test) but notwithKEAP1. Asexpected

for a direct regulatory relationship, CUL3 and c-Myc co-immuno-

precipitated (Figure 6D), and KOofCUL3 resulted in elevated pro-

tein expression (Figure 6E) and increased the protein half-life of c-

Myc in CAL27 cells (Figure 6F). The increased c-Myc protein half-

life was also reproducible in a second cell line (Figure 6F, right),

which suggests that the of role of CUL3 in degrading c-Myc is

robust. Although a direct assessment of the overall sensitivity or

specificity of our approach is not possible because of limited

known examples, we did find that, for the four E3 ubiquitin ligases

with reported degron motifs (Mészáros et al., 2017), there was a

significant enrichment of degronmotifs in our results (p= 0.03; Fig-

ure 6G). This suggests that, overall, our analysis is enriched for

direct targets.
UPS driver genes correlate with an altered immune TME
Wenoticed thatmanyof the TFs in our analysis are related to inter-

feron response (STAT1, IRF2, and IRF4) or are potentially immuno-

modulatory (RELA, XBP1, and MYC) (Cubillos-Ruiz et al., 2017;

Grivennikov et al., 2010; Kortlever et al., 2017; Wellenstein and

de Visser, 2018). We therefore sought to examine whether muta-

tions in our putative UPS driver genes are associated with an

altered immune TME. By correlating the tumor mutation status

with previous immune-related signatures from TCGA (Thorsson

et al., 2018), we found that 11 UPS genes had a significant corre-

lation (q < 0.1; Figure 6G; Table S3).Manyof the associationswere

related to interferon gamma (IFNG) response, so we examined

whether theywerehits in apreviousCRISPRscreenof cancercells

co-cultured with T cells (Pan et al., 2018). In this CRISPR screen,

KO of genes in cancer cells that regulate T cell-mediated killing

areexpected toaffect thefitnessof thosecancercells invitro, lead-

ing to altered representation of corresponding guide RNAs (STAR

methods). Indeed, guide RNAs targeting CUL3 (q = 0.0001) and

FBXW7 (q = 0.002) exhibited significant depletion in the CRISPR
Molecular Cell 81, 1–17, March 18, 2021 11
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screen (Figure 6H), suggesting increased sensitivity to T cell killing.

Because CUL3 mutations in human tumors are correlated with a

weak IFNG response, this would suggest that CUL3 mutations

mightonlybeadvantageous forcancercells ina low-IFNGenviron-

ment or that CUL3 mutations might attenuate the cancer cell

response to IFNG. In either scenario, we reasoned that an altered

cancer cell IFNG responsecould change the anti-tumor efficacy of

cytotoxic T lymphocytes (CTLs). Indeed, for head and neck squa-

mous cell carcinoma, we found that a proxy for CUL3-activitiy

based on NRF2 (encoded by NFE2L2) protein abundance altered

the association between aCTLbiomarker and overall survival (Fig-

ure S7H). Future experiments are needed to clarify which CUL3

substrate recognition adaptor protein and its corresponding sub-

strate mediate this effect. These analyses revealed a potential

immunomodulatory role of UPS in IFNG response in cancer.

DISCUSSION

Although the tumor transcriptome has been studied extensively

by RNA sequencing (RNA-seq), how dysregulated pathways

lead to altered proteomic states is far less understood. This is

in spite of early DNA sequence studies of human cancers impli-

cating driver genes that affect protein degradation through the

UPS (Barbieri et al., 2012). In this study, we addressed this issue

by performing a systematic analysis of the UPS and its corre-

sponding substrates in 33 human cancer types. This revealed

a much larger role of the UPS in cancer than appreciated previ-

ously, constituting over 19% of cancer driver genes. Moreover,

our study includes the technical innovation of modeling degron

loss by deep learning (deepDegron) and associating potential

TF substrates of UPS genes by their inferred activity from TF

ChIP-seq targets. By considering all components of the whole

UPS pathway, de novo degrons from machine learning, and TF

substrates, our study increased the significantly mutated UPS

genes compared with Ge et al. (2018) by �3-fold and expanded

analysis of UPS substrates by �4-fold compared with Martı́nez-

Jiménez et al. (2020). These approaches could also be leveraged

by researchers of other diseases to interpret the role of protein

degradation.

Our study has several limitations. First, although our analysis of

TF substrates of the UPS did identify bona fide direct targets, it

was unavoidable to also find TFs that are regulated by or reside

in the same protein complex as the actual substrate. Thus, careful

considerations should be given to the possibility of related pro-

teins when interpreting results. Second, although our analysis

had the power to identify UPS driver genes mutated at low fre-

quencies, for some of these genes, there were simply not enough

mutations to make confident associations with potential sub-

strates. Larger multi-omics studies or larger tumor profiling co-

horts will be better powered to make such connections in the

future. Last, although our study is an important advance in trying

to systematically understand the UPS in cancer, we are far from

having a complete landscape. One reason is that, because of

the lack of systematic protein stability assays, we were not able

to infer mutated degrons in the middle of proteins. The other

reason is that, because mass spectrometry-based proteomics

that can assess upward of 10,000 proteins have only been con-

ducted on limited samples for limited cancer types (Mertins
12 Molecular Cell 81, 1–17, March 18, 2021
et al., 2016; Zhang et al., 2016), we could only associate potential

substrates that are TF or on the RPPA panel (�200 proteins).

Although truncating mutations are commonly associated with

tumor suppressor genes and a loss-of-function effect (Vogelstein

et al., 2013), we found that truncating mutations may actually be

gain-of-function mutations in oncogenes for more cases than

appreciated previously. For example, CCND1, GATA3, and

PPM1Dhave truncatingmutationsclusterednear the30 endof their
respective genes, which are predicted to lead to degron loss and

showed evidence of higher protein abundance. This is somewhat

surprising because it has been suggested previously that trun-

cated proteins are degraded rapidly by protein quality control

mechanisms (Goldberg, 2003). Indeed, clinical databases such

as OncoKB (Chakravarty et al., 2017) have assumed GATA3-trun-

catingmutations as likelybeing loss-of-functionmutations, but our

evidence suggests otherwise. Experimental point mutants of the

GATA3 degron recapitulated the increased protein abundance

seen for truncating mutations. Notably, truncation of the N-termi-

nalpartofproteins that lead todegron loss isappreciated for fusion

genes, such as TMPRSS2:ETV1 (Vitari et al., 2011) and

TMPRSS2:ERG (Ganet al., 2015). It is alsopossible that truncation

of other types of inhibitory sequences could produce similar pro-

oncogenic phenotypes, so not all cases of clustered truncating

mutations may result in degron loss. Nonetheless, we expect

that, asmoredegronmotifs are discovered, therewill be a concor-

dant increase in identifying gain-of-function truncating mutations.

Our finding that most driver genes in the UPS are tumor sup-

pressors suggests that therapeutic targeting of upregulated sub-

strates may be amore efficacious strategy than targeting the UPS

driver genes themselves. Indeed,mutations in the E3 ligase SPOP

abrogate AR protein degradation (An et al., 2014), and targeted

therapies against (non-mutated) AR are effective in prostate can-

cer (Watson et al., 2015). The advent of PROTACs may be a key

advance because unaffected UPS genes could be co-opted to

replace the function of mutated tumor suppressor genes. More-

over, this approach conceptually could be applied to target sub-

strates that have escaped UPS recognition through mutations

that result in degron loss. Numerous questions about the UPS

remain to be answered. Are mutations in UPS driver genes

selected preferentially because of their effect on single or multiple

substrates? What are all of the substrates of each specific UPS

driver gene? Why are UPS genes drivers in one cancer type but

not in another? Future studies with increasing scales of tumor pro-

teome-wide profiles may resolve these questions and capture a

comprehensive picture of how the UPS modulates cancer initia-

tion and progression. A better understanding of the UPS will un-

doubtedly provide insights guiding the development of novel can-

cer therapies that target protein degradation.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-mouse/human GATA3 Cell Signaling Technology Cat# 5852; RRID:AB_10835690

Rabbit monoclonal anti-human PPM1D/WIP1 Abcam Cat# ab31270; RRID:AB_10585435

Rabbit monoclonal anti-human Phospho-p53 (Ser15) Cell Signaling Technology Cat# 9284; RRID:AB_331464

Rabbit monoclonal anti-human p53 Cell Signaling Technology Cat# 9282; RRID:AB_331476

Mouse monoclonal anti-human Phospho-ATM (Ser1981) Cell Signaling Technology Cat# 4526; RRID:AB_2062663

Rabbit monoclonal anti-human/mouse ATM Cell Signaling Technology Cat# 2873; RRID:AB_2062659

Mouse monoclonal anti-human c-Myc Santa Cruz Biotechnology Cat# sc-40 AC; RRID:AB_2857941

Rabbit monoclonal anti-human/mouse CUL3 Cell Signaling Technology Cat# 2759; RRID:AB_2086432

Rabbit monoclonal anti-human/mouse b-Actin Cell Signaling Technology Cat# 4970; RRID:AB_2223172

Rabbit monoclonal anti-human IgG XP Isotype Control Cell Signaling Technology Cat# 3900; RRID:AB_1550038

Mouse monoclonal anti DYKDDDDK Tag Cell Signaling Technology Cat# 8146; RRID:AB_10950495

Rabbit monoclonal anti-HA-tag Cell Signaling Technology Cat# 3724; RRID:AB_1549585

Goat anti-Mouse IgG Secondary Antibody, HRP Thermo Fisher Scientific Cat# 31430; RRID:AB_228307

Donkey anti-Rabbit IgG Secondary Antibody, HRP Thermo Fisher Scientific Cat# 31458; RRID:AB_228213

Rabbit monoclonal anti-human/mouse KIT Cell Signaling Technology Cat# 3074; RRID:AB_1147633

Rabbit monoclonal anti-human/mouse CDH1 Cell Signaling Technology Cat# 13116; RRID:AB_2687616

Rabbit monoclonal anti-human FOXA1 Cell Signaling Technology Cat# 53528; RRID:AB_2799438

Mouse monoclonal anti-human KRT18 Sigma Aldrich Cat# WH0003875M1; RRID:AB_1842192

Rabbit monoclonal anti-human/mouse TP63 Abcam Cat# ab124762; RRID:AB_10971840

Rabbit monoclonal anti-human/mouse JAG1 Cell Signaling Technology Cat# 70109; RRID:AB_2799774

Mouse monoclonal anti-human KRT14 Santa Cruz Cat# sc-53253; RRID:AB_2134820

Bacterial and virus strains

XL10-Gold Ultracompetent Cells Agilent Cat#200314

Endura ElectroCompetent Cells Lucigen Cat#60242-2

Chemicals, peptides, and recombinant proteins

PBS GIBCO Cat#14190250

DMEM, high glucose, pyruvate GIBCO Cat#11995065

Lonza BioWhittaker L-Glutamine (200mM) Lonza Cat#BW17605E

Fetal bovine serum VWR Cat#9706

Penicillin-Streptomycin GIBCO Cat#15140122

PolyJet In Vitro DNA Transfection Reagent SignaGen Laboratories Cat#SL100688

E-Gel Low Range Quantitative DNA Ladder Invitrogen Cat#NP0008

E-Gel EX Agarose Gels, 2% Life Technologies Cat#G402002

NuPAGE 3-8% Tris-Acetate Protein Gels, 1.5 mm, 10-well Life Technologies Cat#EA0378BOX

NuPAGE LDS Sample Buffer Life Technologies Cat#NP0008

Pierce ECL Western Blotting Substrate Thermo Fisher Scientific Cat#32106

Precision Plus Protein Dual Color Standards Bio-Rad Laboratories Cat#161-0394

X-tremeGENE HP DNA Transfection Reagent Sigma-Aldrich Cat#6366236001

Polybrene Sigma-Aldrich Cat#107689-10G

Puromycin dihydrochloride Thermo Fisher Scientific Cat#A1113803

BamHI-HF New England Biolabs Cat#R3136S

EcoRI-HF New England Biolabs Cat#R3101S

FastDigest Esp3I Thermo Fisher Scientific Cat#FD0454

Q5 DNA Polymerase New England Biolabs Cat#M0491L
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Nuclease-Free Water Ambion Cat#AM9938

Pierce Homobifunctional Cross Linkers Life Technologies Cat#20593

2-Mercaptoethanol Sigma Aldrich Cat#M6250-10ML

Dynabeads Protein A Thermo Fisher Scientific Cat#10004D

Dynabeads Protein G Thermo Fisher Scientific Cat#10002D

EDTA Sigma Aldrich Cat#E8008-100ML

Protease/Phosphatase Inhibitor Cocktail (100X) Cell Signaling Technology Cat#5872S

Quick-Load 1 kb Plus DNA Ladder New England Biolabs Cat#N0469S

LB Broth Mp Biomedicals Cat#244610

L-Broth Agar Large Capsules Mp Biomedicals Cat#MP 113001236

RIPA buffer Invitrogen Cat#R0278

Pierce 16% Formaldehyde (w/v), Methanol-free Life Technologies Cat#28906

Opti-MEM I Reduced Serum Medium, no phenol red Thermo Fisher Scientific Cat#11058021

Cycloheximide powder Cell Signaling Technology Cat#2112

Critical commercial assays

QIAprep Spin Miniprep Kit QIAGEN Cat#27106

RNeasy Plus Mini Kit QIAGEN Cat#74134

QIAquick PCR Purification Kit QIAGEN Cat#28104

QIAquick gel extraction kit QIAGEN Cat#28704

Gibson Assembly Master Mix New England Biolabs Cat#E2611L

iScript cDNA Synthesis Kit Bio-Rad Laboratories Cat#1708891

SsoAdvanced Univ SYBR Grn Suprmx Bio-Rad Laboratories Cat#1725272

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat#Q32854

Qubit RNA HS Assay Kit Thermo Fisher Scientific Cat#Q32855

GenElute HP Plasmid Maxiprep Kit Sigma-Aldrich Cat#NA0410-1KT

Ampure xp Beckman Coulter Cat#A63881

BCA Assay Kit Thermo Fisher Scientific Cat#23225

SMARTer� ThruPLEX� DNA-Seq Kit Takara Bio Cat#R400675

Experimental models: cell lines

Human: HEK293FT Thermo Fisher Scientific Cat#R70007

Human: MDA-MB-231 American Type Culture Collection Cat#ATCC-HTB-26

Human: CAL27 Ravi Uppaluri lab N/A

Human: CAL33 Ravi Uppaluri lab N/A

Deposited data

GATA3 ChIP-Seq This paper GSE162003

Original gel images This paper https://doi.org/10.17632/kgfzbpv2w4.1

Oligonucleotides

Primers for PCR, see Table S5 Invitrogen N/A

Recombinant DNA

hWIP1-FLAG Addgene RRID:Addgene_28105

pHAGE-GATA3 Addgene RRID:Addgene_116747

lentiCRISPR v2 puro Addgene RRID:Addgene_98290

pMD2.G Addgene RRID:Addgene_12259

psPAX2 Addgene RRID:Addgene_12260

pHAGE-CMV-DsRed-IRES-GFP Koren et al., 2018 N/A

pHAGE-SFFV-GFP-IRES-DsRed Timms et al., 2019 N/A

pLenti-EF1a-PGK-Puro Kai Wucherpfennig lab N/A

pLenti-EF1a-GATA3-WT This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pLenti-EF1a-GATA3-A442M This paper N/A

pLenti-EF1a-GATA3-G444E This paper N/A

pLenti-EF1a-GATA3-H400 This paper N/A

pLenti-EF1a-GATA3-WT-Fg This paper N/A

pLenti-EF1a-GATA3-A442M-Fg This paper N/A

pLenti-EF1a-GATA3-G444E-Fg This paper N/A

pLenti-EF1a-GATA3-H400-Fg This paper N/A

pLenti-EF1a-PPM1D-WT This paper N/A

pLenti-EF1a-PPM1D-V604Q This paper N/A

pLenti-EF1a-PPM1D-C605W This paper N/A

pLenti-EF1a-PPM1D-L450 This paper N/A

pLenti-EF1a-PPM1D-WT-HA This paper N/A

pLenti-EF1a-PPM1D-V604Q-HA This paper N/A

pLenti-EF1a-PPM1D-C605W-HA This paper N/A

pLenti-EF1a-PPM1D-L450-HA This paper N/A

Software and algorithms

GraphPad Prism 7 GraphPad Software https://www.graphpad.com

DeepDegron This Paper https://github.com/ctokheim/deepDegron

Transcription factor inference This Paper https://github.com/ctokheim/tf_association

Other

Corning Filter System (0.45um) Corning Life Sciences Cat#431096

milliTUBE 1 ml AFA Fiber Covaris Inc. Cat#520130

NITROCEL MEMB 0.45um Bio-Rad Laboratories Cat#1620115

Multiplate 96-Well PCR Plates Bio-Rad Laboratories Cat#MLL9601

QUBIT ASSAY TUBES SET Life Technologies Cat#Q32856

Microseal ‘B’ Adhesive Seals Bio-Rad Laboratories Cat#MSB-1001
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents (including code) should be directed to and will be fulfilled by the Lead

Contact, X. Shirley Liu (xsliu@ds.dfci.harvard.edu).

Materials availability
Materials associated with the paper are available upon request to Lead Contact, X. Shirley Liu (xsliu@ds.dfci.harvard.edu).

Data and code availability
Original data have been deposited to Mendeley Data: https://dx.doi.org/10.17632/kgfzbpv2w4.1. The accession number for the

GATA3 ChIP-seq reported in this paper is GEO: GSE162003. The DeepDegron code is available on github: https://github.com/

ctokheim/deepDegron. The code for associating UPS genes with putative transcription factor substrates is also available on github:

https://github.com/ctokheim/tf_association. Jupyter notebooks for data analysis are stored on github (https://github.com/ctokheim/

Tokheim_Mol_Cell_2021).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Human embryonic kidney 293FT cell line (HEK293FT) was obtained from Thermo Fisher Scientific. HEK293T cells were grown in

DMEM supplemented with 10% fetal bovine serum, 2% penicillin/streptomycin, 1% L-glutamine and 100 mM sodium pyruvate ac-

cording to standard protocol and maintained at 37�C with 5% CO2.
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Human breast cancer MDA-MB-231 cell line was obtained from American Type Culture Collection (ATCC). MDA-MB-231 cells

were grown in DMEM supplemented with 10% fetal bovine serum, 2% penicillin/streptomycin, 1% L-glutamine and 100 mM sodium

pyruvate according to standard protocol and maintained at 37�C with 5% CO2.

Human oral squamous cell carcinoma cell lines CAL27 and CAL33 were kindly provided by Ravi Uppaluri laboratory. Cells were

cultured in in DMEM supplemented with 10% fetal bovine serum, 2% penicillin/streptomycin, 1% L-glutamine and 100 mM sodium

pyruvate according to standard protocols and maintained at 37�Cwith 5%CO2. Cell lines were stored in liquid nitrogen at early pas-

sages and were cultured within 20 doublings.

METHOD DETAILS

Mutation dataset
We used somatic mutations from 33 cancer types called by the MC3 group in The Cancer Genome Atlas (TCGA) (https://gdc.cancer.

gov/about-data/publications/pancanatlas; v0.2.8), whichwere formed by the consensus ofmultiplemutation calling algorithms in a uni-

fied pipeline (Ellrott et al., 2018).We then filtered the dataset according to quality control metrics for bothmutations and tumor samples.

Specifically, the following filters were applied: 1) mutations should have passed all QC metrics by the MC3 group (i.e., ‘‘PASS’’ in the

‘‘filter’’ column), except for the allowance of whole genome amplified samples in ovarian cancer and AML where the majority of tumor

samples used a whole genome amplification step; 2) tumor samples which failed pathology review were excluded; 3) for statistical po-

wer reasons, we excluded hypermutated tumors (Lawrence et al., 2014; Tokheim et al., 2016), defined as having a greater number of

mutations than 1.5x the interquartile range above the 3rd quartile (Tukey’s condition) for the respective tumor’s cancer type. Because

this procedure also excludes outliers for cancer types with overall low tumor mutation burden, we also required the tumor sample to

have greater than 1,000 mutations to be excluded. These filters resulted in 1,457,702 mutations for final analysis.

Gene and Protein Expression Data
Gene expression estimates from RNA-seq were quantified from the RSEM v2 pipeline (Li and Dewey, 2011) of TCGA. The data was

downloaded from the Genomic Data Commons website (https://api.gdc.cancer.gov/data/3586c0da-64d0-4b74-a449-

5ff4d9136611). RNA expression values were log normalized (i.e., log2(RSEM+1)) and centered with median value of zero per

gene. Normalized protein expression from Reverse Phase Protein Arrays (RPPA) was also download from the Genomic Data Com-

mons website (http://api.gdc.cancer.gov/data/fcbb373e-28d4-4818-92f3-601ede3da5e1).

Ubiquitin-Proteasome System (UPS) pathway genes
We curated a set of UPS genes from two previous publications (Ge et al., 2018; Mészáros et al., 2017), which included E1 activating

enzymes, E2 conjugating enzymes, E3 ubiquitin ligases and deubiquitinating enzymes. We used only those annotated with literature

support fromGe et al. (2018) and the E3 ubiquitin ligases reported byMészáros et al. (2017). Additionally, we removed a gene,CDH1,

that was erroneously labeled as involved with ubiquitination due to conflicting symbols with a known UPS gene (FZR1, known at the

protein-level as Cdh1). This resulted in a set of 775 genes for further analysis (Table S1).

Driver gene analysis
To ascertain which genes in the UPS pathway might promote cancer development and progression, we analyzed whether genes in the

UPS were significantly mutated in human cancers by the method 20/20+ (Tokheim et al., 2016). 20/20+ was ran using default param-

eters except for usage of 100,000 simulations, as described previously (https://github.com/KarchinLab/2020plus; v1.2.0) (Bailey et al.,

2018), on each of the 33 cancer types individually and all cancer types aggregated together (known as a ‘‘pan-cancer’’ analysis). Briefly,

20/20+ is a random forest method that scores the propensity of a gene to be an oncogene, a tumor suppressor gene or, in general, a

cancer driver gene (scores range from 0 to 1). P values for each score are then computed based on aMonte Carlo simulation procedure

that generates a background distribution of mutations accounting for nucleotide sequence context (probabilistic2020 python package,

v1.2.0). Here, to increase statistical power to identify lowly mutated driver genes in the ubiquitin pathway, we performed a restricted

hypothesis test on only the 775 UPS genes annotated above. Genes were deemed significant at a false discovery rate of 0.05 (Benja-

mini-Hochberg procedure (Benjamini and Hochberg, 1995)) and those with high effect size (score > 0.5 out of 1.0).

Lollipop diagram visualization
Mutations on protein sequence were visualized using the ProteinPaint tool (https://pecan.stjude.cloud/proteinpaint; Zhou et al.,

2016). Mutations were submitted according to their genomic coordinates andmutations that do not match the default reference tran-

script used by ProteinPaint are not shown. Height corresponds to the number of mutations while the x axis represents the codon

position along the protein sequence. Protein domains are shown as colored boxes along the protein sequence.

Expression and essentiality analysis of putative driver genes
The putative UPS driver genes were characterized by their tissue expression from GTEx (Battle et al., 2017) and cancer cell line es-

sentiality in CRISPR screens from DepMap (�500 cell lines) (Meyers et al., 2017). The 63 driver genes were compared to both other

UPS genes not found as drivers and all other non-UPS genes using aMann-Whitney U test. Version 7 of TPM expression values from
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GTEx were used (https://gtexportal.org/home/). Additionally, CERES scores (Meyers et al., 2017), which quantify how essential a

gene is in CRISPR screens, were obtained from the 2019 Q1 data release of DepMap. Negative CERES scores indicate a gene is

essential in a particular cancer cell line.

Recent evidence suggests context-specific roles for UPS driver genes (Haigis et al., 2019), such as PARP inhibitors being selec-

tively effective in BRCA1mutant tumors in traditionally BRCA-associated cancer types (breast, ovary, prostate and pancreas) (Jons-

son et al., 2019). We therefore examined the specificity of UPS driver genes in both cell-lineage and genetic mutation contexts. Ac-

cording to the Genotype-Tissue Expression (GTEx) data (Battle et al., 2017), we noticed that putative UPS driver genes were

expressed in most normal tissues, andmore broadly expressed than other UPS genes or non-UPS genes (p < 0.05; Figure 2H). How-

ever, from CRISPR screens across �500 cancer cell lines from the DepMap (Meyers et al., 2017), UPS driver genes showed signif-

icantly higher variability in the gene dependency scores (CERES scores) across cell lines compared to other genes (p < 0.05), sug-

gesting substantial cell type-specific essentiality (Figure 2I). One possible explanation for the variable gene essentiality despite

widespread expression might, in part, arise from cells uniquely expressing or modifying certain important substrates of the UPS (Fig-

ure S1F). This is consistent with previous literature that substrate recognition by E3 ubiquitin-ligases, such as c-CBL and b-TrCP, can

depend on signaling pathways which mark degrons by phosphorylation (Zheng and Shabek, 2017).

Mutational co-occurrence
We analyzedwhether non-silent mutations in putative driver genes in the ubiquitin pathway would tend to co-occur in the same tumor

samples with mutations in 299 driver genes identified previously by the TCGA (Bailey et al., 2018). We used the Mantel-Haenszel test

to identify pairs of genes with an odds ratio significantly different from 1.0 at an FDR threshold of 0.25. To control for the confounding

effect of tumor mutation burden, we adjusted for high (> 500 mutations; half the hypermutator threshold) and low (%500 mutations)

tumor mutation burden samples in our analysis. In the pan-cancer analysis, we also adjusted for the cancer type of the tumor labeled

by TCGA.

Next, we sought to examine whether mutations in UPS driver genes would contextually co-occur or be mutually exclusive with

mutations in other driver genes in the same tumor. This revealed 13 of the UPS driver genes with an enriched co-mutational pattern

with other driver genes previously identified by TCGA (Bailey et al., 2018; Figure S1H; Table S1). For example, we found KEAP1-

KRAS-STK11 to be co-mutated in lung adenocarcinoma (LUAD) tumors, which have been reported to form a biologically distinct sub-

type of KRASmutant LUAD (Skoulidis et al., 2015). Previously, mutations in STK11 have been implicated in a T cell exclusion pheno-

type for these tumors and ultimately responsible for resistance to immune checkpoint inhibition (Hellmann et al., 2018). Instead, we

found thatmutation of the E3 ligaseKEAP1, regardless ofSTK11 status, correlateswith lower immune infiltration in TCGA (Figure S1I),

suggesting that KEAP1 has additional immunomodulatory roles. The interaction with other driver genes might be partially related to

UPS driver genes being preferentially situated centrally in a protein-protein interaction network (Figure S1J), a property previously

noted for other driver genes (Davoli et al., 2013). In summary, the 63 putative UPS driver genes we identified showed context-spec-

ificity with regard to both cell type and genetic mutations.

Global Protein Stability (GPS) Assays
GPS experiments were performed as described in Koren et al., 2018 and Timms et al., 2019. Individual sequences encoding example

23-mer peptides were PCR-amplified from either the N-terminome (Timms et al., 2019) or C-terminome (Koren et al., 2018) oligonu-

cleotide libraries and cloned into lentiviral GPS expression vectors. Lentivirus was packaged through the transfection of HEK293T

cells (ATCC� CRL-3216) grown in Dulbecco’s Modified Eagle’s Medium (DMEM) (Life Technologies) supplemented with 10% fetal

bovine serum (HyClone) and penicillin/streptomycin (Thermo Fisher Scientific). HEK293T at around 70%confluencywere transfected

with the GPS vector plus four packaging plasmids (encoding Gag-Pol, Rev, Tat and VSV-G) using PolyJet In Vitro DNA Transfection

Reagent (SignaGen Laboratories) as recommended by the manufacturer. The media was changed after 24 hours, and the viral su-

pernatant collected a further 24 hours later. Following centrifugation (800 x g, 5 min) to remove cellular debris, the viral supernatant

was applied to target HEK293T cells. After a further 48 hours, stability measurements were made by flow cytometry using a BD LSRII

instrument (Becton Dickinson); at least 10,000 DsRed+ cells were collected in each case. The resulting data were analyzed using

FlowJo software.

deepDegron
deepDegron is a feed forward neural network trained on theGlobal Protein Stability (GPS) assay (Yen et al., 2008), which at proteome-

scale measures the conferred stability or instability of peptides when attached to GFP in HEK293T cells. Importantly, the GPS assay

also contains an internal control DsRed (located on the same transcript) which does not contain an attached peptide. FACS is then

used to sort cells based on the red (DsRed) to green (GFP) ratio into separate bins and subsequently barcodes are sequenced to

quantify the representation of peptides in each bin.

Dataset
Data from the GPS assay related to N-terminal (Timms et al., 2019) and C-terminal (Koren et al., 2018) peptides were collected from

their respective publications and analyzed separately. In the case of the C-terminal data, we analyzed the full 23-mer peptide screen.

While for the N-terminal data, we only analyzed peptides with an initiator methionine (24-mer), but since the methionine was always
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the same at the first position, we did not include the methionine in our model (23-mer). To establish a classification task for the deep-

Degron model, we binarized each peptide into two classes based on the mode of the read count distribution across bins in the GPS

assay. If a peptide’s modal bin was in the lower half of the red to green ratio it was assigned as instable (class = 1) and the remaining

were assigned as stable (class = 0). If a gene had multiple peptides in the GPS assay, we only used the first occurrence for further

analysis.

Neural network
deepDegron, a two hidden-layer feed forward neural network, was trained using the Keras python package with the tensorflow back-

end (https://github.com/ctokheim/deepDegron). ReLu activation functions were used for hidden layers and the sigmoid function was

used for the final output node, which generally performs well for neural network models (He et al., 2016; Krizhevsky et al., 2012; Si-

monyan and Zisserman, 2014). Training was performed using the Adam optimizer using the default learning rate, given it has previ-

ously been suggested that Adam gives superior results compared to other optimizers (Kingma and Ba, 2014).

Training, validation and test sets
We randomly separated out 30% of the sequences for purpose of evaluation as a test set. For the remaining 70% of the data, we

randomly split again 70% (49% overall) of that data into a training set and 30% (21% overall) as a validation set for hyperparameter

selection.

Hyperparameters
Like most machine learning algorithms, neural networks benefit from fine tuning hyperparameters of the model. Here, we utilized grid

search over hyperparameters for both feature engineering and neural network parameters. For feature engineering, we considered

position-specific one-hot encoding of various lengths of the peptide from the terminal-ends (l = 6, 12, 18 or 23) with the remaining

portion of the peptide sequence encoded only in terms of the count of each amino acid type (i.e., position agnostic). This was in-

tended to limit the number of learned parameters of the model, if certain regions of the peptide were more important. Additionally,

given previous evidence of the importance of dimer amino acidmotifs at the very end of protein sequence (Koren et al., 2018), we also

allowed for the one-hot encoding of di-amino acid motifs (di = True or False). For neural network parameters, we considered different

number of nodes for each layer (n = 8 or 16). Additionally, we considered various levels of dropout regularization (d = 0, 0.25 or 0.5) for

connections between the input and 1st hidden layer since it contained the greatest number of parameters in themodel. Lastly, we also

considered the number of epochs used for training (e = 20, 40 or 60).

Evaluation
The optimal hyperparameters were selected according to the highest area under the Receiver Operating Characteristic curve

(auROC) on the validation dataset. The C-terminal deepDegron hyperparameters that were selected are: n = 8, d = 0.0, e = 20, l =

6 and di = True. While the N-terminal deepDegron hyperparameters that were selected are: n = 16, d = 0.5, e = 20, l = 6 and di = True.

The deepDegronmodels were then compared to a RandomForest model (scikit-learn with 1,000 trees as performance usually only

increases with this parameter (Oshiro et al., 2012)), which empirically performs well on many machine learning tasks (Caruana and

Niculescu-Mizil, 2006), and previously proposed rule-based alternatives (Koren et al., 2018), such as the number of acidic residues

(D, E), number of bulky hydrophobic residues (F, W, Y) or the number of top 100 motifs. Evaluations for all models were performed on

the held-out test set and compared using the auROC metric.

Degron Potential Calculation
We calculated a degron potential score to correct for protein stability likely reflecting both amino acid order effects (e.g., a degron

motif exists) versus general amino acid properties. To do this, in addition to the model outlined in the deepDegron section (Methods),

we trained a secondmodel (‘‘bag of amino acids’’) containing the same hyperparameters that only has the count of each amino acid in

the peptide sequence as features (20 features). We then calculated a degron potential score as the difference in prediction between

the position specific model and the ‘‘bag of amino acids’’ model.

Motif Analysis
Motif analysis was conducted by measuring enrichment for sequence motifs among top degron potential scored peptides from

deepDegron. First, we ranked all peptide sequences by degron potential score from high to low likelihood of containing a degron.

Second, we performed area auROC analyses to calculate at which point the top degron potential sequences would cease to

have meaningful enrichment. To determine this cutoff, we computed at various cutoffs a delta auROC score, which we defined as

the difference in auROC between the two deepDegron models (position specific versus ‘‘bag of amino acid’’ model) tested on se-

quences where the top-ranking X and bottom-ranking X sequences were removed. The delta auROC was calculated and plotted

over various cutoffs of X ranging from 0 to 8000 with an increment of 20. We then used the elbow-method (Goutte et al., 1999) based

on the point of maximal curvature to delineate the transition (X*) from a performance gap existing to nearly equivalent performance.

Since curvature is only well defined for continuous functions, we used an algorithmic approximation from the kneed python package

with default parameters (v0.4.1; https://github.com/arvkevi/kneed; V. Satopaa et al., 2011, IEEE, conference). Third, we calculated
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the background probability p that a particular peptide would contain particular motifs of length 2 (with or without gaps) and 3.We only

considered motifs within the proximal 6 amino acids to either the N terminus or the C terminus, as our performance evaluation above

suggested most gains were in this region. Additionally, since the number of possible motifs grows exponentially with motif length, we

only considered gapped and position-specific motifs for length 2 motifs. Fourth, using a binomial model with background probability

p, we measured whether motifs had significantly more motifs c than expected for the top X* sequences. Fifth, we corrected for mul-

tiple hypotheses by the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) and declared significant motifs at false dis-

covery rate threshold of 0.05. Lastly, to identify potentially extended motifs outside those identified by our analysis, we generated

sequence logo visualizations by compiling all the top sequences that contained themotif and inputting these sequences into theWe-

bLogo software (Crooks et al., 2004).

Monte Carlo simulations
To establish a background distribution of mutations, we performed Monte Carlo simulations as described previously (Tokheim et al.,

2016). Briefly, for single nucleotide variants, we moved mutations uniformly at random within the same gene but matched the same

nucleotide context as the observed mutation (C*pG, CpG*, TpC*, G*pA, A, C, G, T). Indels were moved within the same gene without

regard for the flanking sequence, as mutational signatures for indels are less known than for single nucleotide variants (Alexandrov

et al., 2013). Based on the simulated mutations, we then recategorized the effect of the variant. For example, a mutation may have

originally been a nonsense mutation but when moved to a new position it may be a missense mutation in a known degron site. Test

statistics for degron enrichment were then computed and this simulation procedure was repeated 10,000 times. P values were

computed based on the resulting empirical distribution, i.e., the fraction of simulations with test statistics that were as or more

extreme then the observed value.

Mutation enrichment at known degrons, ubiquitination sites or phosphodegrons
Known degron sites were collected from a recent literature review (Mészáros et al., 2017), while ubiquitination sites and phosphode-

grons (phosphorylation sites annotated as involved with ‘‘protein degradation’’) were obtained from the PhophoSitePlus database

(Hornbeck et al., 2015). For each cancer type, we analyzed whether the number of missense mutations found in annotated sites

of a gene were higher than expected based on an empirical background distribution established through Monte Carlo simulations

(see section above). In the case of the phosphodegron analysis, we also considered the flanking 3 amino acids on either side of

the phosphorylation site. Genes were deemed significant at a False Discovery Rate (FDR) of 0.1. Based on manual review of the liter-

ature, one significant result (BRAF, ubiquitination site enrichment due to K601Emutations) was excluded from further analysis due to

previously literature suggesting a distinct mechanism of action (Yao et al., 2017).

Calculation of degron impact bias
Because known degron sites are limited, we also assessed for genes containing a significant enrichment of mutations predicted to

lead to degron loss by deepDegron. First, we computed the change in degron potential (delta degron potential) between themutated

and reference protein sequence for each mutation in the 33 cancer types available from TCGA. Second, we computed a gene-wise

test statistic as the sum of delta degron potential for all mutations within a gene. Scores considerably less than zero indicate degron

loss. Third, to evaluate the statistical significance, we performed Monte Carlo simulations (described above) to compute a p value

corresponding to seeing a score equal to or lower than the observed value (i.e., degron loss). Like for the known degron case, sig-

nificant enrichment was defined at an FDR of 0.1 and, additionally, required the delta degron potential to indicate a preferential loss of

a degron (delta degron potential below �1).

Selection of deepDegron motifs for experimental validation
To validate deepDegron predictions for degrons, we selected 10 novel motifs for experimental validation. For this we used the GPS

assay to compare the protein stability of GFP fused to either the wild-type peptide, or one containing point mutations in the predicted

degron motifs. Since some motifs partially overlapped, we prioritized motifs based on statistical significance (q < 0.05) and indepen-

dence from other testedmotifs. Motifs were equally divided between predictedC-terminal (-LxRxx, -MxxxV, -CxxR, -VS, and -LxxAx;

x = any amino acid) and N-terminal degrons (GxL-, xPL-, RxR-, GxxxA- and RxxP-). To avoid introducing generally stabilizing amino

acids that are independent of a degron motif, point mutations were selected based on maximally decreasing the degron potential of

the sequence while maintaining the score of the ‘‘bag of amino acid’’ model within a range of 0.1 from the original sequence. The

selected double mutants for each motif are listed in Table S4G. The same selection procedure for point mutants was carried out

for the degron motifs of GATA3 and PPM1D.

Generation of lentiviral expression vectors
Plasmids (hWIP1-FLAG, pHAGE-GATA3) were obtained from Addgene. Overexpression vector pLenti-EF1a-PGK-Puro was kindly

provided by Kai Wucherpfennig laboratory. Different forms of wild-type or mutated GATA3/PPM1D sequence were amplified by

PCR and subcloned into a pLenti-EF1a-PGK-Puro empty vector via Gibson assembly to generate different overexpression vectors

(GATA3 and PPM1D). Next, small amount (1 ml) of the Gibson assembly reactions was transformed into competent cells. Competent

cells were incubated on ice for 30 minutes, then subjected to heat shock in a water bath or electroporated by a Gene Pulser Xcell
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Electroporator (Bio-Rad Laboratories) and returned to ice for 2 minutes. LB media (1 ml) was added to the competent cells and the

cells were allowed to recover at 37�C for 60minutes on a shaker; subsequently 30 mL of themixture (LB+ competent cells) was plated

on LB-agar plates containing 100 mg/ml ampicillin and incubated at 37�C overnight (12-16 hours).

Generation of CRISPR/Cas9 Knock-out cells
Construction of lenti-CRISPR/Cas9 vectors targeting AAVS1 (Control) or CUL3was performed following the protocol associated with

the backbone vector lentiCRISPR_V2 (Addgene). The sgRNA sequences used are listed in the Key resources table. CAL27 cells were

infectedwith lentivirus expressing sgRNAs targeting AAVS1 or CUL3. After puromycin selection for 3 days, cells were expanded for at

least 7 days and collected. CUL3 knockout was verified by western blot analysis.

Viral library production
The pLenti-EF1a-GATA3/pLenti-EF1a-PPM1D expression constructs and the empty pLenti-EF1a-PGK-Puro vector were trans-

fected into the 293FT cell line at 80%–90% confluency in 10 cm tissue culture plates. Viral supernatant was collected at 48 and

72 hours post-transfection, filtered via a 0.45 mm filtration unit (Corning). The supernatant was subsequently aliquoted and stored

in �80�C freezer until use.

Viral transduction of cells
Cells were cultured in complete growth medium according to standard protocols. For viral transduction, a total of 33 105 cells were

transduced with lentivirus containing gene cDNA construct described above at a high level of multiplicity of infection (MOI) in 10 cm

tissue culture plates. After puromycin selection for 3 days, surviving cells were allowed to grow for another 7 days to overexpress

specific genes. Immunoblotting and PCR were performed to confirm the expression of specific genes.

Co-immunoprecipitation of CUL3 protein
Human oral squamous cell carcinoma CAL27 cells were lysed in Tris buffer (50mMTris pH 7.4, 150mMNaCl, 1mMEDTA, 0.5%NP-

40, 5% glycerol, with protease and phosphatase inhibitors) for 30 min with gentle rocking at 4�C. Cell lysate was spun down by a

centrifuge in cold room at 12,000 rpm for 10minutes and then supernatant was collected and incubated with CUL3 antibody coupled

to Protein A/G agarose beads (Pierce Biotechnology) at 4�C overnight (12 hours). Beads were washed extensively in Tris lysis buffer

containing 0.5 M NaCl and then eluted in LDS-sample buffer (Invitrogen) containing 1% 2-mercaptoethanol. Cell lysate was supple-

mented with 4X SDS loading buffer (0.2 M Tris-HCl, 0.4 M DTT, 8.0% SDS, 6 mM Bromophenol blue, 4.3 M Glycerol) and heated at

95�C for 15 minutes before western blot analysis.

Western Blot of protein expression in human cells
Pellets from 53 106 cells were collected and digested by 500 mL RIPA Buffer (Invitrogen). Samples were incubated on ice for at least

15 minutes and centrifuged at 12,000 rpm for 10 minutes at 4�C, then subjected to BCA analysis (Thermo scientific). Approximately

40-60 mg of total protein from each sample was loaded for western blot analysis.

Measurement of protein half-life
Cancer cells (13 106) were seeded onto 100mmPetri dishes in complete growth medium according to standard protocols and incu-

bated in a CO2 incubator. After 24 hours incubation, remove the medium and add complete medium with 100 mg/ml cycloheximide

(CHX; dissolved in DMSO) into each dish. Cells were exposed to cycloheximide for 0, 4, 8 or 12 hours to inhibit the protein synthesis

according to the experimental design. Then, cell lysates were collected at different time points and MYC protein levels were exam-

ined by western blot using an anti-MYC antibody. Western bands of MYC and b-ACTIN were quantified in triplicates using ImageJ

software.

Real-time reverse transcription-PCR
RNA was extracted using RNeasy Plus Mini Kit (QIAGEN) from HEK293FT and MDA-MB-231 cells. Then, RNA was reverse tran-

scribed into cDNA using iScriptTM cDNA Synthesis Kit (Bio-Rad Laboratories). Approximately 50 ng cDNA from each sample

was mixed with gene-specific primers (Table S5) and SsoAdvancedTM universal SYBR� Green supermix (Bio-Rad Laboratories)

following the manufacturer’s protocol. Reactions were performed on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad

Laboratories).

ChIP sequencing of GATA3
MDA-MB-231 cells were plated in 15 cm tissue culture plates and cultured for 3 days. For GATA3 ChIP-sequencing, approximately

13 107 cells per condition were harvested and crosslinked by a two-step fixation, including 2mMdisuccinimidyl glutarate (DSG, Life

Technologies) treatment for 45 minutes and followed by 10 minutes fixation using 1%methanol-free formaldehyde at room temper-

ature (Eeckhoute et al., 2007; Singh et al., 2018). Cells were lysed in 1% SDS lysis buffer and sheared to 200-700 bp in size using the

Covaris E220 ultrasonicator (PIP 140, DF 5%, CPB 200). Approximately 50 mg of sheared chromatin per condition were diluted and

then incubated overnight with 5 ug GATA3 antibody (14074, Cell Signaling). Precipitates were then washed with following buffers:
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RIPA 0 buffer (0.1% SDS, 10 mM Tris-HCl pH 7.4, 1% Triton X-100, 1 mM EDTA, 0.1% sodium deoxycholate), RIPA 0.3 buffer (0.1%

SDS, 1% Triton X-100, 0.1% sodium deoxycholate, 10 mM Tris-HCl pH 7.4, 1 mM EDTA, 0.3 M NaCl) and LiCl buffer (250 mM LiCl,

1 mM EDTA, 5% NP-40, 0.5% sodium deoxycholate, 10 mM Tris-HCl). DNA sequencing libraries were prepared using the Smarter

Thruplex DNaseq kit (Takara Bio Inc.) according to themanufacturer’s protocol. Libraries were sequenced on an Illumina HiSeq 2500

with 150 bp paired-end reads.

Data analysis of GATA3 ChIP-seq
Chromatin Immunoprecipitation sequencing (ChIP-seq) of GATA3 was analyzed using the ChiLin pipeline (Qin et al., 2016). Briefly, the

Sentieon Bwa-mem aligner was used to map reads to the hg38 reference genome (https://support.sentieon.com/manual/). ChIP-seq

peak callingwas then performed usingMACS2 v2.1.4 (Zhang et al., 2008), with the following parameters: ‘‘-SPMR -B -q 0.01 –keep-dup

1.’’ Mapped reads were then down sampled to 4million for subsequent quality control analysis. Quality control consisted of fivemetrics

(Table S5): 1) the average read quality according to FastQC (Andrews, 2010); 2) the fraction of uniquely mapped reads; 3) a PCR bottle-

neck coefficient, which is the fraction of locations with one uniquely mapped read; 4) fraction of reads in peaks according to MACS2

(Zhang et al., 2008) (more, the better); 5) overlap of peaks with DNA hypersensitivity sites. All samples were of adequate quality.

To provide a consistent peak set across multiple samples for downstream analysis, we merged overlapping peaks using bedtools

v2.29.2 (Quinlan and Hall, 2010). Differential peak analysis between wild-type GATA3 and mutant GATA3 was then performed using

DESeq2 with the default Wald test (Love et al., 2014). Peaks were regarded as significant at Benjamini-Hochberg False Discovery

Rate of 0.1 (Table S5). A heatmap visualizing the peaks was then generated using the deeptools package (v3.3.0) (Ramı́rez et al.,

2016). KEGG pathway enrichment of the upregulated GATA3 peaks was then conducted using Cistrome GO (Li et al., 2019).

Labeling of driver mutations
Even implicated cancer driver genes contain a mixture of driver and passenger mutations when examined across multiple patients’

tumors (Torkamani and Schork, 2008). Therefore, we restricted our subsequent analysis of putative substrates or immune-related

biomarkers to likely driver mutations in the implicated set of 63 ubiquitin pathway genes. For tumor suppressor genes, we regarded

any loss-of-function mutation (frameshift insertions or deletions, nonsense mutations, splice site mutations, lost start mutations, or

lost stop mutations) as likely oncogenic, which is consistent with variant annotation guidelines from curated databases such as On-

coKB (Chakravarty et al., 2017). However, the interpretation of missense mutations is often more difficult. We therefore used

missense mutations that were previously reported to be drivers by CHASMplus at an FDR of 0.01(Tokheim and Karchin, 2019).

Comparison of CHASMplus to saturation mutagenesis
To understand the accuracy of the driver mutation labeling by CHASMplus, we compared predictions to a recent saturation muta-

genesis study (Findlay et al., 2018) of the functional effect of all BRCT and RINGdomain variants in BRCA1, an E3 ubiquitin ligase. The

study used a multiplexed functional assay in a homology-directed repair (HDR) sensitive cell line (HAP1) to measure the impact of

BRCA1 mutations. Scores for CHASMplus were obtained from OpenCRAVAT (https://opencravat.org/; Masica et al., 2017) and

then assessed for their spearman correlation with the functional HDR scores. Additionally, CHASMplus scores were assessed for

their performance at distinguishing ClinVar labeled pathogenic versus benign variants in BRCA1 based on the area under the

Receiver Characteristic Curve. ClinVar labels were obtained from Findlay et al. (2018) (n = 46).

Quality control of Cistrome ChIP-seq data
First, we examined the overall distribution of 5 quality control (QC) metrics for ChIP-seq from putative substrates identified by Rabit

compared to all transcription factors in the Cistrome database. The 5 QC metrics were: 1) the average read quality according to

FastQC; 2) the fraction of uniquely mapped reads; 3) a PCR bottleneck coefficient; 4) fraction of reads in peaks according to

MACS2 (Zhang et al., 2008) (more, the better); 5) overlap of peaks with DNA hypersensitivity sites. By kernel density estimation,

we observed that the putative substrates had a nearly identical distribution of QC scores across all 5 metrics (Figure S7), suggesting

that there is no systematic QC problem in our analysis.

Next, we wanted to investigate whether only a few transcription factors might appear as outliers. To do this, we analyzed the num-

ber of times a transcription factor appeared in the Rabit result and its corresponding median log-transformed p value. We reasoned

that poor-quality ChIP-seqmight consistently, acrossmany analyses, appear as highly significant, possibly due to technical artifacts.

Outlier analysis was carried out through robust covariance estimation (scikit learn python package) (Rousseeuw and van Driessen,

1999), assuming a Gaussian distribution and a significant contamination rate of 0.05 (Figure S7). After manual examination of the out-

liers, we identified the genesSCML2 and ZNF274 as having significantly worse ChIP-seq quality than compared to other transcription

factors in the Cistrome database (Figure S7). We therefore exclude these two transcription factors from further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Gene ontology enrichment analysis
We performed gene ontology enrichment analysis for putatively identified driver genes using DAVID (Huang et al., 2009) with the

775 UPS genes as the background. Biological process terms were deemed significant at an FDR of 0.25 (Figure S1).
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Overlap with previously implicated driver genes
We compared our putative UPS driver genes to a previous study that found significantly mutated UPS genes (Ge et al., 2018; Davoli

et al., 2013), the Cancer Gene Census (downloaded January 7, 2017) (Sondka et al., 2018), and the set of driver genes defined by the

TCGA PancanAtlas consortium (Bailey et al., 2018). Gene list enrichment was assessed using a one-tailed fisher exact test with a

background consisting of all UPS genes.

Boxplots
All boxplots show the distribution quartiles with whiskers representing the quartile ± 1.5 times the Interquartile Range (IQR).

Protein-protein interaction network and Betweenness Centrality
Protein-protein interaction network data was download from the BioGrid website (v3.5.178) (Oughtred et al., 2019). The betweenness

centrality measures how often a node in a network is situated on the shortest path between two other nodes in a network. Nodes with

higher betweenness centrality are often hubs within a network. Betweenness centrality was computed for the BioGrid (Oughtred

et al., 2019) protein-protein interaction network (downloaded 11/22/2019) using the networkx python package. Formally, for all

possible pairs of nodes (s and t) in a network with nodes V, the betweenness centrality of a node (n) is the fraction of shortest paths

(s) that go through that node (Equation 1).

Betweeness Centrality =
X

s;t˛V

sstðnÞ
sst

(Equation 1)

Where sstðnÞ is the number of shortest paths between node s and t that go through node n and sst is the total number of short-

est paths.

Association of mutations with protein abundance
Using linear regression, we correlated the mutation status of each of the 63 putative driver genes with protein abundance from

Reverse Phase Protein Arrays (RPPA) in TCGA. Only non-silent mutations were considered. A Wald test was performed after adjust-

ment for tumor purity by ABSOLUTE (downloaded from https://gdc.cancer.gov/about-data/publications/pancanatlas) (Carter et al.,

2012), tumor subtype (Sanchez-Vega et al., 2018) and RNA expression of the potential substrate (FDR < 0.1 and effect size > 0.25;

Figure S6). The adjustment for RNA expression of potential substrates is important because it helps distinguish between direct UPS

effects mediated through the protein-level from upstream effects at the transcriptional level.

Transcription factor substrate analysis
Conceptually, alterations in UPS genes should be able to explain the downstream target gene expression of a transcription fac-

tor by modulation through protein abundance or activity (Figure S7). To analyze this, first, we computed the differential expres-

sion between tumor samples containing putative driver mutations in a gene of interest versus those that did not (t test), while

adjusting for tumor purity by ABSOLUTE (downloaded from https://gdc.cancer.gov/about-data/publications/pancanatlas)

(Carter et al., 2012) and tumor subtypes (Sanchez-Vega et al., 2018). The generated differential expression profile was then

analyzed by Rabit (Jiang et al., 2015) to associate top transcription factor (TF) regulators. Rabit infers transcriptional regulators

based on TF binding sites using thousands of ChIP-seq profiles from the Cistrome database (Zheng et al., 2019) while adjusting

for background covariates such as CpG density. For computational tractability reasons, we then corrected for transcription fac-

tor RNA expression only for the top 10 hits according to p value, by repeating the above analysis but with the TF RNA expres-

sion included as a covariate. A second round of Rabit analysis was then conducted using the TF adjusted differential expression

profiles. While results were only carried out for the top 10 hits in each analysis, multiple testing correction (Bonferroni method)

was carried out with consideration of all TFs as possible (family wise error rate < 0.05). Note, analysis was only performed for

the cancer types implicated by driver analysis for the specific UPS gene. Code used for this analysis is available on GitHub

(https://github.com/ctokheim/tf_association).

Gene co-essentiality analysis from DepMap
The correlation between two gene’s dependency scores (CERES score) from CRISPR screens in DepMap was analyzed through a

linear regression model. The cell culture type (adherent, suspension, etc.) and a CRISPR quality control metric (SSMD of control

genes) was added as covariates. The statistical significance of the correlation was assessed by a Wald test.

Correlation with immune-related gene expression signatures
Using a linear regression model, we correlated the mutation status (see section: labeling of driver mutations) of each identified UPS

driver gene or significantly mutated substrate with at least 5 putative driver mutations to several immune-related gene expression

biomarkers from Thorsson et al. (2018) (signatures: leukocyte fraction, IFNG response, TGFB response, macrophage regulation

and wound healing). A t test was used to assess significance after adjusting for tumor subtypes and the non-silent mutation rate

of a tumor. Associations were deemed significant at an FDR threshold of 0.1.
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Correlation with T cell co-culture CRISPR screen
Data from a previous T cell co-culture CRISPR screen (Pan et al., 2018) across two conditions were used to assess whether UPS

genes correlated with immune-related gene expression signatures might affect T cell mediated killing of cancer cells. The two con-

ditions used in the screen were: 1) Pmel T cells which recognize endogenously expressed gp100 antigen on a B16melanoma cell line

while in the presence of IFNG compared to a non-antigen-specific T cell; 2) OT1 T cells that recognize B16 cells with media supple-

mented with or without the ovalbumin antigen. The log fold change of the single guide RNA (sgRNA) and the estimate of significance

(z-score) were obtained through the TIDE website (http://tide.dfci.harvard.edu/; Jiang et al., 2018). The z-scores from the two con-

ditions (Pmel and OT1) were combined using Stouffer’s method to generate a meta-analysis z-score and corresponding p value.

Association with overall patient survival
Curated overall survival information for TCGA was obtained from the genomic data commons (https://gdc.cancer.gov/about-data/

publications/pancanatlas; Liu et al., 2018). Using a Cox proportional-hazard model, a Wald test was used to assess the statistical

significance of any association with survival. Tumor purity and subtype were included as covariates. Kaplan-Meier curves were

generated using the TIDE website (http://tide.dfci.harvard.edu/; Jiang et al., 2018).
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