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Next-generation sequencing technologies have expanded the experimental possibilities for study-
ing the genome-wide regulation of transcription by nuclear receptors, their collaborating tran-
scription factors, and coregulators. These technologies allow investigators to obtain abundance
and DNA sequence information in a single experiment. In this review, we highlight proven and
potential uses of next-generation sequencing in the study of gene regulation by nuclear recep-
tors. We also provide suggestions on how to effectively leverage this technology in a collaborative
environment. (Molecular Endocrinology 26: 1651–1659, 2012)

NURSA Molecule Pages†: Nuclear Receptors:ER-� � ER-� � GR � AR � VDR; Ligands: 17�-estradiol �
Progesterone � Dexamethasone � Dihydrotestosterone � 1�,25-dihydroxyvitamin D3.

Next-generation sequencing (NGS) technologies,
which yield large numbers (20–200 million) of short

(25–100 bp) DNA sequences, create a broad variety of
research possibilities for experimental and computational
biologists. This flexibility arises through a combination of
the two complementary aspects of NGS data: sequence
characterization and sequence read counting. Figure 1
summarizes the NGS-based experiments that capitalize
on these two aspects. Here we review the applications of
NGS technologies to the study of transcriptional and epi-
genetic gene regulation by nuclear receptors. This review
does not cover every application of NGS, but focuses on
those with demonstrated applications in this field or, in
our view, those that hold the greatest potential.

Gene Expression Profiling

The flexibility derived from mRNA sequencing (RNA-
seq) leads to experimental considerations previously not

encountered in microarray studies. RNA-seq allows an
investigator to obtain higher accuracy through deeper se-
quencing, although at a higher cost. A tradeoff therefore
arises: whether to sequence many samples at a low cov-
erage or to sequence fewer samples at a greater depth.
Interestingly, this choice has a strong influence on the
results, because longer or more abundant transcripts are
more likely to be detected as differentially expressed, es-
pecially at low sequencing depth (1, 2). The representa-
tion of short genes expressed at lower levels will increase
with sequencing depth. Although this bias is evident in
RNA-seq data, systematic biases also occur in DNA-mi-
croarray technologies. Discrepancies in differentially ex-
pressed gene sets found in RNA-seq and microarray ex-
periments (3) are therefore common. Differences in
systematic biases or batch effects in microarray and NGS
place microarray studies at an advantage in terms of le-
veraging the abundance of microarray gene expression
profiles and data analysis methods that have became
available over the last decade.
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NGS is superior (4, 5) for experiments examining the
sequence aspect of transcription, such as identifying splic-
ing events and allelic differences. Paired-end sequencing,
in which both ends of each RNA fragment are sequenced,
is particularly effective for discovering alternatively
spliced mRNA isoforms. In this way, even though only
short stretches of cDNA are sequenced, it is possible to
map pairs of fragments over a longer span. In cancer gene
expression studies, this approach allows for the detection
of fusion genes that may have special relevance to disease
(6). For example, Chinnaiyan’s group (5) used paired-end
RNA-seq to detect BCR-ABL1 and TMPRSS2-ERG fu-
sion genes as well as several novel ETS gene fusion events
in prostate tumors. Allele-specific expression analysis us-
ing NGS raises the prospect of integrating population-
based discoveries with laboratory-based experiments (8),
linking the association of genetic variants with disease to
the molecular biology basis of disease.

The choice of NGS protocol used for mRNA analysis
can be crucial to the success of an experiment. The RNA-
seq protocol that is most similar to expression microarray
experiments is polyA-select, strand-specific, single-end
sequencing (9). An NGS-centered experimental design
optimized for one aspect of biology will probably not be
optimal for others. Designing an experiment to under-
stand one key biological question is likely to be more
successful than generating data with multiple objectives
in mind. For example, NGS using paired-end sequencing
effectively identifies splicing events (10), allowing for a
survey of isoforms but usually not a quantitative compar-
ison of isoform abundance between conditions. Splicing

information comes at a cost because paired-end sequenc-
ing is more expensive per read than single-end sequenc-
ing. If the objective is to identify differentially expressed
genes and to use the abundance information on these
genes to understand a biological process, the better choice
is single-end sequencing. Compatibility of newly gener-
ated data with archival data, which permits better data
reuse, is another consideration. In this respect, RNA-seq
is not different from platform considerations in expres-
sion microarrays.

Instead of sequencing mRNA from the whole tran-
script, it is possible to reduce the complexity of the se-
quence population by targeting sequence near restriction
enzyme recognition sites. This is the principle of Serial
Analysis of Gene Expression (SAGE)-seq. SAGE-seq of-
fers several advantages over RNA-seq: SAGE-seq does
not suffer from the gene length bias and at the same se-
quencing depth quantifies rare transcripts more accu-
rately (11). In addition, SAGE-seq can be carried out with
smaller sample aliquots. On the other hand, SAGE-seq
contains less information than RNA-seq techniques in
terms of detection of allele-specific transcription and
splice variants.

Global Run-On (GRO)-seq, a high-throughput adap-
tation of the nuclear run-on experiment, is an assay that
measures the orientation and density of transcriptionally
competent RNA polymerase, serving as a proxy for the
rate of RNA transcription rather than mRNA concentra-
tion (12, 13). This technique is important in dissecting
different aspects of the RNA life cycle (14), in genome-
wide studies of transcriptional regulation (12), and in the

development of quantitative mathe-
matical models linking transcription
factor (TF)-binding events and tran-
scription. A time course of GRO-seq in
estrogen-stimulated breast cancer cells,
when viewed together with estrogen re-
ceptor (ER) chromatin immunopre-
cipitation (ChIP)-seq data, confirmed
several features of ER� transcription
regulation that had been discovered by
microarray measurements of mRNA
concentration (15). Interestingly, anal-
ysis of binding and transcription indi-
cated that ER binding was more
strongly associated with GRO-seq
than with microarray measurements.
Moreover, this time course revealed
rapid and heterogeneous dynamics of
hormone-induced RNA transcription
that could not be detected through
measurements of mRNA concentra-

FIG. 1. Next-generation sequencing applications in studies of transcriptional regulation.
Applications in red make use mainly of the quantification of abundance, whereas applications
in blue make use of sequence-based observations.
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tion. GRO-seq has also been used to detect enhancer
RNA, nascent noncoding RNA at putative enhancer re-
gions (16). These enhancer RNA may serve as good mark-
ers of enhancers that are interacting with promoters to
induce RNA transcription.

A drawback of the GRO-seq technique is that the nu-
clear run-on assay is carried out ex vivo. An alternative
approach to measuring the rate of RNA production is to
use in vivo mechanisms to label the nucleotides that have
been incorporated into newly transcribed RNA. In the
4-thiouridine-seq technique, 4-thiouridine is used as the
label. Total RNA is separated through thiol-specific bi-
otinylation into previously accumulated RNA and newly
transcribed RNA that is assayed using RNA-seq (17). In a
study of the response of immune dendritic cells to patho-
gens, 4-thiouridine RNA was compared with total RNA
(18) to impute transcription rate and degradation rate,
and the former was found to be the main determinant of
total RNA levels.

Some applications of NGS were carried out exclusively
using microarray technologies in the past. Although NGS
approaches do offer advantages to microarrays, depend-
ing on the objectives of the study, microarrays may, in
some cases, still be the better technology choice. When
studying gene expression changes in annotated genes, the
standardization in manufacturing, extensive experience
with protocols in core laboratories, and well-established
computational approaches make microarrays a good
choice. Furthermore, large databases of gene expression
microarray experiments can be exploited in combination
with emerging genomic data sets to help interpret new
biological data.

NGS in the form of RNA-seq has several advantages
over microarrays in its greater coverage of transcripts,
treatment of alternative splicing, and its potential for
greater dynamic range and accuracy. RNA-seq is some-
times claimed to be a superior platform due to its digital
nature; the result of NGS can be counts of short sequence
reads that map to annotated transcripts. However, there
is no intrinsic advantage to having discrete numbers
rather than continuous ones. Most importantly, NGS
technologies do not eliminate biology-related sources of
variance that are usually greater than the technical
sources in both microarray and NGS. Consequently,
many of the experimental considerations that are impor-
tant in microarray studies also apply to NGS, in particular
the need for biological replicates, suitable controls, and
measures to reduce batch effects and enable the measure-
ment of such effects (19).

Transcription Factor Cistrome Mapping

Gene expression profiling provides invaluable informa-
tion about which genes are associated with conditions,
disease outcome, or phenotype. However, the key to un-
derstanding how mRNA levels are controlled lies in the
elucidation of transcription regulation by transcription
factors (TFs). A large number of drugs, including contra-
ceptives, antiinflammatories, and cancer treatments,
modulate transcription by targeting nuclear receptors.
Understanding transcriptional regulation would contrib-
ute to our understanding of which patients will respond to
drug therapies, the optimization of these therapies, and
avenues for treatment by drug combinations.

ChIP-seq is a broadly used technology that can be ef-
fective in profiling genome-wide TF-binding sites, pro-
vided a good antibody and sufficient biological material
are available. A fundamental question that arises in the
analysis of any ChIP-seq dataset is why binding sites are
found in some regions of the genome but not others. Al-
though ChIP-seq experiments have shown that TFs bind
in a highly tissue- and condition-specific manner (20–23),
they have also shown that within a cell type, multiple TFs
often share common binding loci. Cooperation between
TFs are likely to be a central cause of this phenomenon.
One TF may facilitate the binding of another through a
variety of mechanisms, including the following: 1) het-
erodimerization of factors that bind DNA together
through heterodimer DNA sequence recognition (24, 25);
2) physical interaction between the primary bound factor
and the second factor, where only the primary factor is
bound to the DNA (26, 27); 3) stabilization of the nucleo-
some position, exposing nucleotides for binding by the
second factor (28); 4) cooperative effects in which several
TFs, binding close to each other but not physically inter-
acting, compete with a nucleosome for occupancy of a
genomic locus (29, 30); 5) recruitment of chromatin re-
modelers that reorganize nucleosome positioning or com-
position in a way that allows the second factor to bind to
DNA (31); and 6) recruitment of factors that modify the
tails of histones in a way that facilitates binding at the
locus (32).

Recent studies suggest that TF binding is a complex
dynamic process where many of the above processes play
essential roles (33–35). Although, taken in isolation, TF
DNA-binding motifs have little power to predict in vivo
binding sites, motif analysis of ChIP-seq data can provide
important clues to how binding sites are defined. For ex-
ample, motif analysis of the liver X receptor (LXR) cis-
trome by the Glass group showed PU.1 and AP-1 motifs
to be enriched, along with the LXR motif (32). PU.1 and
CCAAT/enhancer-binding protein (C/EBP) ChIP-seq and
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gene knockdown experiments in macrophage precursors
demonstrated how PU.1 and C/EBP support the binding
of each other, creating chromatin that later enables LXR
binding in mature macrophages. This study exemplifies
how a combination of facilitating mechanisms involving
several TF interactions over the developmental history of
a cell lineage can be fundamental to understanding the
definition of one cistrome (32). Numerous other nuclear
receptor ChIP-seq studies have found nuclear receptor
binding to occur in conjunction with other TF that facil-
itate their binding: for example, forkhead box A1
(FOXA1) with ER and androgen receptor (AR) (15, 36),
AP-1 with glucocorticoid receptor (GR) (37), and C/EBP
with peroxisome proliferator-activated receptor-� (38).

Although motif analyses can be used to discover fac-
tors that collaborate to define TF-binding sites, such anal-
yses are often confounded by factors such as GC content,
repetitive DNA elements, and binding hotspots. Match-
ing controls is one way of accounting for confounders;
control sites are selected in such a way that they sample a
similar distribution to the TF cistrome in terms of GC
content, distance from the transcription start site (TSS),
and other factors. Another way of dealing with this issue
is to exploit the high accuracy of ChIP-seq in defining the
precise locations of TF-binding sites. Significance of as-
sociation between TF binding and a motif can be assessed
using statistics on the position of the motif relative to the
predicted location of TF binding as implemented in the
BINOCh software (39). Because multiple members of a
TF family often have similar DNA-binding motifs, com-
plementary methods need to be used to narrow down the
target. Work by the Brown laboratory (40) revealed the
important role of FOXA1 in defining a large subset of
ER-binding sites in the MCF7 breast cancer cell line. This
association was initially realized through a motif analysis
of ER ChIP-chip data that revealed forkhead motifs to be
strongly associated with the ER cistrome. FOXA1 was
identified as the primary forkhead candidate because it
was the most highly expressed forkhead and most highly
correlated with ER in panels of breast cancer gene expres-
sion microarray data.

Genome-wide ChIP-chip and ChIP-seq experiments
have shown that usually there is no clear one-to-one re-
lationship between TF-binding sites and regulated genes.
There are usually many more TF-binding sites than regu-
lated genes, most of which lie far from any TSS. Some
speculate that many of these distant sites might be non-
functional and exist simply because of the combinatorial
sequence possibilities that inevitably arise in a large ge-
nome. Although some studies fail to identify an associa-
tion between genome-wide gene expression and TF bind-
ing, we find using a simple model that TF binding is

usually statistically associated with regulation, even if not
highly predictive. In our model, the regulatory potential
of each TF-binding site is a decreasing function of the
genomic distance between the site and the TSS, and the
regulatory effect on the TSS is a sum of the influence of the
individual sites (41).

Frequently, when a TF is activated, there are genes that
are differentially expressed without any TF-binding site
being detected sufficiently close to the TSS to have a reg-
ulatory effect. One explanation is that not all the regula-
tory sites have been determined by ChIP-seq. Another is
that the gene is regulated by secondary factors. A third is
that the cell line of use has genomic structural variations
not considered when ChIP-seq reads are mapped to the
reference genome. Last but not least, although a gene may
have no TF-binding site near the TSS in genome sequence
space, specific three-dimensional interactions may be
bringing the regulatory enhancers closer to the gene pro-
moters over a long genomic distance. The opposite also
occurs; certain genes have one or more TF-binding sites
near the TSS and ought to be regulated, but are not. The
status of the promoter, functionality of the observed bind-
ing sites, or repressive factors may all contribute to this.
ChIP-seq predictions of regulated genes can be highly spe-
cific at low levels of sensitivity; however, much needs to
be done to understand genome-wide regulation. As data
accumulate, it will become necessary to incorporate all
relevant TF-binding data into quantitative statistical
models before drawing conclusions about the role of a
particular factor. Otherwise, it will be hard to understand
how new data add to the old. Computational genome-
wide models will become indispensible to nuclear recep-
tor biology.

A broad range of tools for ChIP-seq data analysis is
available via the cistrome web interface at http://cistrome.
org/ap/ (42). This allows users to carry out many of the
common ChIP-seq data analysis tasks such as determining
where sites lie relative to genomic annotations and the de-
gree of overlap between TF cistromes.

Epigenome Profiling

Posttranslational histone modifications have been corre-
lated with diverse functional categories of genomic loci.
For example, H3K4me3 is found mainly at the promoters
of actively transcribed genes (43, 44), H3K27me3 is as-
sociated with genes repressed by polycomb complex pro-
teins (45), and acetylation marks are often linked to ac-
tively transcribed genes (43). H3K4me1 and -2 are
strongly associated with the binding of many TFs and are
more predictive of TF binding than TF DNA motifs them-
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selves (46). A broad sense of genome-wide chromatin
state in a particular cell type can be obtained by profiling
a small set of histone modifications (47). Because histone
modifications are often highly correlated with each other
and antibodies vary greatly in efficacy (44, 48), the most
effective strategy for delineating epigenomic domains re-
quires careful selection of target modifications and anti-
bodies, starting with H3K4me3 for active promoters,
H3K27me3 for polycomb repressed domains, and
H3K4me1/2 for enhancers. Although nuclear receptors
are recruited to the genome at regions enriched in specific
histone modifications, they also recruit histone-modifica-
tion enzymes that modify the epigenome in a targeted
way. FOXA1 binds genome-wide to H3K4me2-enriched
regions in prostate and breast cancer cell line-specific re-
gions to facilitate ER and AR binding (49).

In addition to helping identify TF-binding sites, some
histone modifications may be used as a readout of enzy-
matic activity to determine TF-binding sites that actively
regulate genes. For example, the presence of H3K27ac at
putative enhancer sites in a variety of cell types has been
shown to boost the association of transcribed genes with
those binding sites (50, 51). p300 and CREB-binding pro-
tein histone acetyltransferases are known to deposit this
histone modification (44, 51) and may also help identify
active enhancers (52, 53). Although H3K27ac appears to
be generic, associating with a broad spectrum of active
enhancers, some histone modifications appear to be more
TF specific. For example, marks of coactivator-associated
arginine methyltransferase 1 activity, including H3R17me2,
appear to be highly associated with ER binding in MCF7
and to discriminate between active and inactive ER� en-
hancers (49). O’Malley and colleagues (54) carried out a
genome-wide ChIP-seq study of steroid receptor cofactor
steroid receptor coactivator 3 binding. The results showed
that steroid receptor coactivator 3 binds frequently in asso-
ciation with ER and that the ER sites with the cofactor are
significantly more active than those without. It is puzzling
why these factors are recruited to some sites and not others.
Studies of the genome-wide location of histone-modifying
enzymes can add further insight into nuclear receptor activ-
ity. Elegant studies by Lazar (55) and Evans (56) groups
used ChIP-seq to demonstrate the involvement of histone
deacetylase histone deacetylase-3 and Rev-erb� in control-
ling the circadian rhythm of hepatic metabolism.

High-resolution analysis of nucleosome occupancy in
the vicinity of TF-binding sites has shown that TF-binding
sites frequently occur in nucleosome-free regions (21, 46).
Nucleosome occupancy data near TF-binding sites can be
most efficiently obtained by micrococcal nuclease diges-
tion followed by H3K4me2 or H3K27ac ChIP-seq. In an
experiment examining changes in H3K4me2 nucleosome

occupancy before and after testosterone stimulation (46),
we observed a pattern in which nucleosomes flanking the
binding site were stabilized, whereas a nucleosome desta-
bilization was observed in the vicinity of the binding site
itself. This method allows for the inference of TF-binding
events from nucleosome occupancy data and TF-binding
DNA motifs (21, 57, 58).

Deoxyribonuclease (DNase) I-hypersensitive sites
(DHS) are short regions of the genome that are highly
sensitive to deoxyribonuclease I enzymatic cleavage. Such
sites frequently occur at loci that are bound by TFs and
provide a universal map of chromatin sites accessible to
TF binding. Together with DNA motif analysis, DHS can
be used to infer the binding sites of specific TFs (59, 60).
DHS studies have shown that there is a high degree of
overlap between genome-wide GR, C/EBP, and peroxi-
some proliferator-activated receptor-� binding and DHS
sites (61). The differences in the degree of overlap be-
tween DHS sites and TF-binding sites may be due to data
quality and sequencing depth, although differences in
DHS intrinsic to the TF-chromatin interaction are also
possible. DHS can also provide insight into the biology of
TF binding. For example, DHS and ChIP-seq experiments
carried out by the Hager group (62) showed that, al-
though GR had previously been recognized as a factor
that is capable of binding condensed chromatin, in a
mouse mammary epithelial line, DNase I-accessible chro-
matin is evident before GR activation and predetermined
the majority of activated GR-binding sites. Follow-up
work, including motif analysis, gene knockdown, and
ChIP-seq demonstrates the importance of AP-1 in defin-
ing these open chromatin regions (37).

In addition to being used to characterize DNA as ac-
cessible or inaccessible, DHS can be used as a quantitative
measure of chromatin accessibility. Using changes in DHS
between hormone-stimulated and unstimulated condi-
tions, we were able to accurately identify ER- and AR-
binding sites (63). DHS is an efficient way of character-
izing the static and dynamic aspects of the chromatin
landscape and complements both TF-binding and his-
tone-mark data.

DNA itself is subject to epigenetic modifications in the
form of 5-methyl-cytosine and 5-hydroxy-methyl-cyto-
sine (64). DNA methylation plays crucial roles in normal
transcription regulation in development and aberrant
gene expression in cancer (65, 66). NGS techniques for
profiling genome-wide DNA methylation include bisul-
fite sequencing (MethylC-seq) (67) and reduced-represen-
tation bisulfite sequencing (68), immunoprecipitation of
methylated DNA [MeDIP-seq (69), and MBD-seq (70)],
and DNA cleavage using methylation-specific restriction
enzymes followed by fragment size selection (71, 72).
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Each of these techniques has its own cost, coverage and
quantitative characteristics and should be chosen to ad-
dress specific hypotheses (73).

Interactions in Three Dimensions

Several studies have revealed that chromosomes form
loops in a site-specific way (74–77). These observations
are based on the chromosome conformation capture (3C)
technique in which chromatin that has been fragmented
in vivo is ligated so as to reveal DNA fragments that are in
close proximity in three-dimensional space even if distant
in genomic sequence space (78). The 3C technique is a
locus-specific technology that has been generalized to as-
say multiple interactions in 4C (79), 5C (79–81), 6C (82,
83), and Hi-C assays (84, 85). Hi-C is a NGS-based assay
that can, in principal, be used to detect all genomic inter-
actions. In practice, Hi-C coverage of interactions in the
human genome is sparse using current NGS technologies,
and the resulting maps of genomic interactions are still of
low resolution.

Selecting only the genome-wide regions that are of spe-
cial interest is a way of ameliorating the genome size
problem. A technique called ChIA-PET does this by ex-
amining interactions between sites associated with a par-
ticular TF or histone modification, using ChIP to target
specific protein-DNA complexes. NGS is used to se-
quence paired-end tags (PET). Mapping the resulting
ChIA-PET sequences to the reference genome reveals re-
lationships between chromosomal regions brought into
close proximity by the interaction of the ChIP target fac-
tor (7). ChIA-PET is useful for regulatory studies but
needs to be interpreted carefully. The method is depen-
dent on ChIP enrichment that is highly variable between
sites. Although ChIA-PET uses ChIP to enrich for a spe-
cific TF, this does not necessarily mean that the interac-
tion is directly mediated by that TF. It is possible that
other proteins are responsible for the formation of stable
looping interactions.

Looping is likely to be stochastic and may differ be-
tween cell types and conditions. An observation that is
consistently made in looping experiments is that the fre-
quency of interaction decays with distance between sites,
and strong interactions become less frequent between
sites that are remote from each other. Genomic distance
between sites has been well characterized and is largely
consistent with three-dimensional interactions and is
therefore a baseline on which three-dimensional interac-
tions data can elaborate. Although isolated cases of dis-
tant three-dimensional interactions have been observed to
be important for transcriptional regulation, the generality

of this looping phenomenon and its importance in regu-
lating genome-wide transcription remain unanswered
questions.

Future Directions

NGS technologies have provided unprecedented experi-
mental opportunities for probing the mechanisms that
regulate transcription. Hypothesis-driven experiments
using NGS approaches will deepen our understanding of
key molecular interactions. Gene regulation, however, in-
volves numerous factors that interact in quantitative,
time- and context-specific ways. Genome-wide data on
chromatin status, TF binding, and gene expression in a
broad array of cell types and conditions will be needed to
develop models describing the roles of the large number of
factors known to influence transcription. Technological
innovation, systematic data organization, process auto-
mation, and protocol optimization can all be used to in-
crease the generation and utility of NGS data. Although
DNA-sequencing technologies are steadily improving
throughput in terms of sequencing depth, sample process-
ing is currently a bottleneck in data generation. Extensive
use of robotic systems, batch processing, and multiplex-
ing as well as techniques to reduce required starting ma-
terial will be needed to provide sufficient data to model
this complex biological process.

Better data management, dissemination, and analysis
methods will be needed to make use of current and future
NGS data. As part of a project to organize TF ChIP-seq
data, we have created a nuclear receptor cistrome data-
base (http://cistrome.org/NR_Cistrome/) (41). Making
NGS data available to the research community is impor-
tant, because genome-wide data from one study can pro-
vide useful insights in other studies. To improve the use of
publicly available NGS data, low-level analysis pipelines
need to be put in place to systematically assess data qual-
ity and to summarize data in a consistent way. If done
well, this will enable data sets to be meaningfully com-
pared and integrated. In addition, mechanisms need to be
put in place to allow users to search for data sets by
flexible criteria.

Effective use of genomic technologies requires close
collaboration between computational and experimental
biologists. A common model of collaboration is one in
which an experimental plan is developed and executed by
an experimental biologist before consulting a computa-
tional biologist. Although useful findings can emerge in
this way, a better model of collaboration is one in which
experimental and computational biologists are involved
at every step. This requires computational biologists to
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understand some details of the genomic techniques and
the biological questions of interest. It also requires exper-
imental biologists to have an appreciation of the statisti-
cal and computational modeling issues that may arise. We
propose that experiments be performed in a staged man-
ner. For example, if several genomic experiments are pro-
posed, the most important one should be conducted first,
and some data analysis should be done to determine
whether information acquired at this stage might change
the overall experimental design. Staging may also be used
to explicitly define genome-wide follow-up experiments.
To elucidate the complexities of nuclear receptor biology
and its impact on disease, genomic and computational
technologies need to be used in synergy with human
understanding.
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