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Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation

that can arise at different anatomic sites but have strong histological and clinical similarities.

Here we report the chromatin landscapes of a range of human NECs and show convergence

to the activation of a common epigenetic program. With a particular focus on treatment

emergent neuroendocrine prostate cancer (NEPC), we analyze cell lines, patient-derived

xenograft (PDX) models and human clinical samples to show the existence of two distinct

NEPC subtypes based on the expression of the neuronal transcription factors ASCL1 and

NEUROD1. While in cell lines and PDX models these subtypes are mutually exclusive, single-

cell analysis of human clinical samples exhibits a more complex tumor structure with sub-

types coexisting as separate sub-populations within the same tumor. These tumor sub-

populations differ genetically and epigenetically contributing to intra- and inter-tumoral

heterogeneity in human metastases. Overall, our results provide a deeper understanding of

the shared clinicopathological characteristics shown by NECs. Furthermore, the intratumoral

heterogeneity of human NEPCs suggests the requirement of simultaneous targeting of

coexisting tumor populations as a therapeutic strategy.
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Neuroendocrine carcinomas (NECs) are high-grade tumors
that can arise in the lung, colon, prostate, or bladder
among other anatomic sites. NECs are characterized by

aggressive clinical behavior and poor prognosis1. Histomorpho-
logically, NEC comprises a group of tumors that can have features
of small-cell carcinoma and show expression of neuroendocrine
(NE) markers including SYP, CHGA, and INSM12. Given
these common characteristics, NECs constitute a unique clin-
icopathological entity despite their distinct anatomical origins1.
From a genetic standpoint, NECs are often characterized by
genomic aberrations in RB1 and TP533. The association of these
genetic alterations with NEC etiology is exemplified in Merkel
Cell Carcinoma (MCC). MCC is frequently caused by clonal
integration of Merkel cell polyomavirus DNA, which causes
persistent expression of viral T antigens that interfere with RB14

(MCC Polyomavirus-positive). Gastrointestinal NEC (GINEC)
also typically harbor TP53 and RB1 alterations, and are clinically
aggressive and highly proliferative in contrast to the well-
differentiated GI carcinoids that, while also showing a NE phe-
notype, are typically clinically indolent1 and not associated with
TP53 and RB1 alterations.

NEC can emerge either de novo or as a result of therapeutic
pressure5,6. Small-cell lung cancer (SCLC) most often occurs de
novo but can emerge after treatment of EGFR mutant lung ade-
nocarcinoma (AD)6. SCLC has been subclassified based on the
differential expression of the basic helix-loop-helix (bHLH)
transcription factors (TFs) ASCL1 and NEUROD17. These neu-
ronal lineage TFs (LTFs) have been implicated in the maturation
of resident NE cells of the lung8,9. They are also involved in the
carcinogenic process as shown in mouse models of SCLC where
ASCL1 is required for tumor formation10. NE prostate cancer
(NEPC), in contrast, arises most frequently as a treatment-
emergent phenotype from prostatic ADs after treatment to
repress Androgen Receptor (AR) pathway activity5 and only
rarely arise de novo. NEPC has poor prognosis, very limited
therapeutic options, and is currently treated as a homogeneous
disease.

Here we show the chromatin profiles of a range of NECs and
identify convergence to a common epigenetic state. We show the
existence of subtypes in treatment-emergent NEPC concordant
with what has been described in de novo SCLC. These subtypes
co-exist as separate subpopulations with distinct chromatin states
within the same human NEPC specimens. The observed intra-
tumoral heterogeneity of clinical NEPC samples has therapeutic
implications.

Results
NECs share a common landscape of DNA-accessible regions.
Histomorphologically, NECs show similarities that could result
from activation of common transcriptional regulators11. To
investigate the impact of chromatin accessibility in determining
the NEC phenotype, we profiled the epigenetic landscape of NECs
arising in various anatomic locations using assay for transposase-
accessible chromatin with high-throughput sequencing (ATAC-
seq) and RNA sequencing (RNA-seq) applied to patient-derived
xenograft (PDX) models of NEPC12, SCLC13, and MCC, as well
as GINEC clinical samples (Supplementary Table 1). As NEC can
emerge from a preexisting AD, as typified by NEPC5 and occa-
sionally by SCLC6, we hypothesized that those histologies are
extremes of a spectrum of tumor progression. To determine how
the chromatin state differs between NE and AD by ATAC-seq
analysis, we also generated data from metastatic prostate AD
(PRAD) PDX models and used The Cancer Genome Atlas data
for primary PRADs and non-small-cell lung ADs14. We obtained
high-quality data with the fraction of reads in peaks (FrIP) scores

in the range of 10–35 and peak numbers in the range of 25–75k
(Supplementary Table 1). Replicate profiling of samples showed
high concordance (Supplementary Fig. 1a). Unsupervised prin-
cipal component analysis (PCA) performed on the ATAC-seq
data revealed that the NECs cluster together, indicating a con-
vergent chromatin state, in contrast to the ADs that are segre-
gated by anatomic site (Fig. 1a). To test this result, we have also
analyzed previously published ATAC-seq results from engineered
cells that express defined sets of oncogenic drivers to reprogram
normal basal prostate cells to an NE state15. The close proximity
in the PCA plot of the cluster of terminal NEPC engineered cells
(“PARCB,” expressing dominant-negative TP53, myrAkt1, RB1-
shRNA, c-MYC, and BCL2) to the clinical NECs illustrates the
functional impact of those genetic alterations to reprogram
the chromatin state from the basal epithelial prostate cells
toward the NEPC phenotype (Supplementary Fig. 1b). The
sample–sample correlation of the ATAC-seq peaks for our data
set also supports the result that NECs are more similar to each
other than to their AD counterparts from the same tissue
(Fig. 1b). These analyses also clustered prostate PDXs and pri-
mary human tumors together emphasizing, in terms of the
chromatin state, the value of the prostate LuCaP16 PDXs to model
human prostate cancer, as previously validated by histological
and molecular characterization16.

To investigate epigenetic drivers involved in the NE chromatin
state, we performed a supervised analysis of the DNA accessibility
between ADs and NECs, and found a high number (n:16517,
Padj < 0.001, log2(FC) > 2) of NE-specific accessible sites shared
across all NE tumor types (Fig. 1c and Supplementary Fig. 1c).
The NEC-specific chromatin signature is also represented in the
engineered prostate cells15 (Supplementary Fig. 1d), which show a
clear progression towards increasing signal at the NE-specific
accessible sites, while showing little to no signal at the AD-specific
sites in the heatmap (Supplementary Fig. 1d). We also
determined the nearest gene to each site and translated the
ATAC signature into an RNA-seq signature and found that we
can distinguish castration-resistant prostate cancer (CRPC) from
NEPC in patient cohorts (Supplementary Fig. 1e) further
validating the signatures from our PDX models. The major
differences in chromatin organization between ADs and NECs
were further investigated by Genomic Regions Enrichment of
Annotations Tool (GREAT) analysis17 associating genomic
regions with nearby genes and then examining the enrichment
of Gene Ontology (GO) pathways. Genes near NE-specific DNA-
accessible regions showed a significant enrichment in pathways
for neural differentiation, development, morphology, and axo-
genesis (Fig. 1d). Next, we used HOMER18 to investigate NE-
specific sites for enrichment of TF DNA-binding motifs. This
analysis revealed significant enrichment for motifs of the basic
bHLH TF family, specifically for ATOH1, ASCL1, and NEU-
ROD1, as well as motifs for NFIB, SOX2, and NKX2-1 (Fig. 1e
and Supplementary Table 2). ATOH1 has been implicated as a
LTF in MCC19,20, whereas ASCL1 and NEUROD1 have been
suggested to have a corresponding role in SCLC10,21. NFIB is a TF
previously implicated in rewiring the chromatin structure in
SCLC22, whereas SOX2 and NKX2-1 are also known to be
associated with SCLC23,24. Examining what motifs co-occur in
the ATAC-seq peaks, we observed that the module of the main
three motifs (ASCL1, ATOH1, and NEUROD1) occurs very
frequently combined with either SOX2 or NFIB, or with both of
them simultaneously (Supplementary Fig. 1e).

By comparing the NE-specific sites to published chromatin
immunoprecipitation sequencing (ChIP-seq) profiles compiled in
CistromeDB25, we identified TFs whose published binding sites
have the highest overlap with the NE-specific ATAC-seq peaks as
quantified by GIGGLE score26. Consistent with the observed
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shared epigenetic program among NECs, the top overlapping
ChIP-seq data sets were generated from SCLC, MCC, or neural
lineages (Fig. 1f). In particular, binding profiles of ASCL1 (SCLC),
NEUROD1 (SCLC and medulloblastoma), and MAX (MCC)4

had the highest overlap scores with NE-specific accessible
chromatin (Fig. 1f). We next analyzed the expression of these
TFs and other NEC-associated factors within our study samples.
As expected, we observed a strong commonality in the expression
of NE markers (SYP, CHGA, and INSM1) and the stemness TF
SOX2 (Fig. 1g) across NECs. We also observed a more mutually
exclusive expression pattern of bHLH TFs including ASCL1 or
NEUROD1 in both NEPC and SCLC, ASCL1, and ASCL2
expression in GI-NECs and ATOH1 expression in MCC (Fig. 1g).
Overall, our results suggest tumor and organ-specific bHLH TFs
maintaining the common NE epigenetic state.

Treatment emergent NEPC can be subclassified based on the
expression of ASCL1 and NEUROD1. To explore heterogeneity
in the TF regulation of the NEC epigenetic state, we performed an
unsupervised analysis of the ATAC-seq data restricted to the
NECs. Regardless of tissue of origin, NECs expressing ASCL1
and/or ASCL2 were tightly clustered together and were separated
from NECs expressing ATOH1 or NEUROD1 (Supplementary
Fig. 2a). Furthermore, the similarity in terms of the DNA
accessibility shown by SCLC and NEPC depends on the status of
ASCL1 or NEUROD1 expression but not on the tumor type
(Supplementary Fig. 2b). Unsupervised analysis of the DNA
accessibility in just prostate samples (Fig. 2a) showed clear
grouping associated with the expression of AR (all ADPCs),
ASCL1, or NEUROD1, with the same clustering being apparent by
analysis of RNA-seq data of those same prostate samples

(Supplementary Fig. 2c). Although NE subtypes based on the
expression of those TFs have been previously described in
SCLC7,10, the existence of these subtypes in treatment-emergent
NEPC was unanticipated, as ASCL1 and NEUROD1 have been
specifically associated with lung NE cells8,9,27, the putative cell of
origin of the de novo SCLC.

Next, we aimed to identify the differential DNA accessibility
associated with the ASCL1 and the NEUROD1 NEPC subtypes.
Supervised analysis comparing ASCL1 and NEUROD1 expressing
NEPC samples identified 8950 ASCL1- and 12,751 NEUROD1-
specific accessible regions (false discovery rate (FDR) < 0.01,
log2(FC) > 1) (Fig. 2b). We next interrogated the NEPC subtype-
specific sites in SCLC and observed similar patterns of chromatin
accessibility at these TF-specific genomic regions that, in
addition, displayed an association between the chromatin state
and the differential expression of ASCL1 and NEUROD1
(Supplementary Fig. 2d). Notably, SCLC cases that coexpress
ASCL1 and NEUROD1 showed combined accessibility at the two
sets of regions (Supplementary Fig. 2d). This result underlines the
striking similarity in the chromatin state of the tumor subtypes,
both in SCLC and in NEPC. It is important to note that despite
the clear differences in accessibility associated with the subtypes,
still a large number of open chromatin sites (36,493) are shared
between these two subtypes as expected, given the NE
characteristics in common for both subtypes (Supplementary
Fig. 2e).

To further characterize the chromatin differences between the
subtypes, we investigated the relationship between TF subtype-
specific chromatin accessibility and the ASCL1 and NEUROD1
genomic binding. To that aim, we performed ChIP-seq analysis
for each of the two TFs in NEPC models that expressed ASCL1 or
NEUROD1 (Supplementary Table 3). This analysis identified
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thousands of highly conserved binding sites with both over-
lapping and differential sites for each of the two TFs
(Supplementary Fig. 2e, f). Importantly, although the vast
majority of the 36,493 shared regions show overlapping binding
sites for both TFs (Supplementary Fig. 2e), the differential
chromatin-accessible sites were bound by the corresponding TF,
but not by the other (Fig. 2b). This result is consistent with a role
for ASCL1 and NEUROD1 in maintaining the chromatin state in
their respective subtypes. We next performed de novo motif
analysis at the specific ASCL1- or NEUROD1-binding sites that
yielded the expected consensus motifs for ASCL1 and NEU-
ROD1, respectively (Supplementary Fig. 2g), validating the
underlying differences between both the TFs. To further
investigate the differences between the two TFs and identify
potential co-operating factors, we compared the motifs enriched
at the shared and the differential ASCL1- and NEUROD1-
binding sites (Supplementary Data 1). The results for the shared
binding sites showed enrichment for essentially the same motifs
identified in the motif analysis of the ATAC-seq sites shared for
all NECs in Fig. 1e (Supplementary Table 2). The highest
enrichment was for a broad range of bHLH motifs including
NEUROD1, ATOH1, and ASCL1, as well as the NFIB motif
supporting that they constitute the basic transcriptional module
that maintains the chromatin state. The results of the ASCL1-
specific binding sites revealed a strong enrichment for NKX2
motifs. As NKX2-1 is around 16-fold more highly expressed in
the ASCL1 subtype and has been previously reported as specific

for the ASCL1 subtype in SCLC10, it is likely responsible for this
enrichment. For the NEUROD1 sites, we found enrichment for
EBF and LHX motifs, which could correspond to the neurogenic
TFs EBF3 and LHX8 that show higher expression in the
NEUROD1 subtype. Supporting the shift in the transcriptional
programs activated in NEPC as compared to CRPC, all these TFs
showing enriched motifs at either ASCL1 or NEUROD1 are
exclusively expressed in NEPC compared with CRPC. Finally, we
noted that the NFIB motif is enriched at the differential sites of
both TFs and the shared ones, suggesting that this factor is
recruited to the bHLH-binding sites regardless of the specific TF
being expressed.

We next sought to confirm that the enhancers specific to the
ASCL1 and NEUROD1 subtypes are associated with expression
of nearby genes by using the expression data generated from the
same samples (Fig. 2c). As expected, differential expression
analysis showed that ASCL1 was one of the most upregulated
genes in the ASCL1 set, whereas, conversely, the NEUROD1 set
showed upregulation of several NEUROD family members
including NEUROD1/2/4/6 (Fig. 2c). Consistent with these
differentially accessible regions being functional, we observed a
substantial association between differential DNA accessibility and
differential gene expression (Fig. 2c). Gene set enrichment
analysis to identify pathways differentially over-represented in
each of the two subtypes showed that ASCL1-associated gene
expression was enriched in GO pathways of response to
cytokines28, whereas the NEUROD1-associated expression was
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Fig. 2 NEPC shows tumor subtypes based on the differential expression of the transcription factors ASCL1 and NEUROD1. a Principal component
analysis of ATAC-seq data from NEPC and ADPC PDXs. Samples are color coded by the dominant TF expressed in that sample. b The left side of the
heatmap (red) displays the differential ATAC-seq regions identified between NEPC subtypes. There are 12,751 NEUROD1-specific regions (top) and 8950
ASCL1-specific (bottom) ATAC sites. The right side of the heatmap shows the ChIP-seq data at the same sites for ASCL1 (green) and NEUROD1 (blue) for
the indicated samples. c Association between differential ATAC-accessible sites and differential gene expression. Each volcano plot depicts RNA-seq log2-
fold change (x-axis) and p-value adjusted for multiple hypothesis testing calculated by DESeq2 using a Wald’s test (y-axis). Each dot represents one gene:
green indicates a differential ATAC peak is within 50 kB of the gene and orange indicates there is no such peak. Left: ASCL1-specific accessible regions and
genes upregulated in ASCL1 subtype; (right) NEUROD1-specific accessible regions and genes upregulated in NEUROD1 subtype. d GSEA pathway analysis
of genes enriched in the ASCL1 subtype (green) and the NEUROD1 subtype (blue) (**q-value < 0.001, *q-value < 0.05). e Signal distribution of H3K27ac
marked enhancers from representative cases of the ASCL1 subtype (top) and NEUROD1 subtype (bottom). The bars in the lower right of each plot identify
the subset of enhancers known as super-enhancers defined by the ROSE algorithm; 693 were identified in LuCaP 93 (ASCL1) and 766 in LuCaP 173.1
(NEUROD1). Super-enhancers nearby selected genes are indicated by the arrows. f Representative IGV tracks at the ASCL1 and NEUROD1 gene loci.
ATAC-seq tracks are in red, ASCL1 ChIP-seq in green, NEUROD1 ChIP-seq in blue, and H3K27ac in gray. The loci are marked by subtype-specific super-
enhancers with preferential binding of their respective TF. g Circuits of lineage transcription factors specific for the ASCL1 subtype (green) and
NEUROD1 subtype (blue). Source data are provided as a Source Data file.
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enriched in brain development pathways (Fig. 2d). Specifically
enriched in the ASCL1 subtype are carcinoembryonic antigen-
related cell adhesion molecules (CEACAM1,5,6,7). Interestingly,
CEACAM5 has been investigated to target NEPC using an anti-
CEACAM5-SN38 antibody–drug conjugate29. In addition, the
ASCL1 subtype shows a relatively higher expression of major
histocompatibility complex I-related genes (human leukocyte
antigen genes, NLRC5) as compared to the NEUROD1 subtype,
which could be contributing to the enrichment in immune
pathways associated with ASCL1. However, the expression is still
very low relative to the expression in CRPC. Therefore, similar to
other NECs, both subtypes of NEPC show a relatively low
expression of antigen presentation pathways.

The binding of ASCL1 and NEUROD1 TFs to their own
promoters and nearby enhancers suggests they are working as
LTFs in NEPC. LTFs are known to auto-activate their own
expression by binding to super-enhancers (SEs) establishing a
positive feedback loop. In addition, LTFs form circuits of core
TFs driven by the activation of SEs promoting the transcriptional
program required to maintain the lineage30. Both ASCL1 and
NEUROD1 are known to be lineage transcriptional factors in
neuronal systems31,32. To investigate a potential LTF behavior of
both TFs in NEPC, we performed SE analysis by H3K27ac
profiling of ASCL1 and NEUROD1 NEPCs, and found that all
models showed SE activation in common at a number of TFs
(INSM1 and NFIB) regardless of the tumor subtype (Fig. 2e,
Supplementary Table 3, and Supplementary Data 2). In addition,
we found differential SEs at either ASCL1 or NEUROD1 (and
other family members) in accordance with their expression status.
Based on those characteristics, both ASCL1 and NEUROD1 can
be considered as LTFs in NEPC with binding to SEs and

activation of their own expression (Fig. 2c, f). We next identified
the core circuit of TFs associated with each of the two subtypes
applying a previously described method to identify intercon-
nected auto-regulated loops30. We identified distinct but highly
overlapping sets of TF circuits in these two subtypes (Fig. 2g).

Taken together, our results provide clear evidence of the
existence of two molecular subtypes in NEPC model systems.
These subtypes share NE phenotypic characteristics but differ in
the expression of ASCL1 and NEUROD1, which is associated with
distinct chromatin landscapes and gene expression profiles.

Analysis of tumor heterogeneity in NEPC liver metastases.
Next, we aimed to determine whether the results from the model
systems can be extended to human clinical NEPC. First, we
interrogated expression levels of ASCL1 and NEUROD1 in tumor
tissues from two cohorts of NEPC metastases16,33. In contrast to
the mutually exclusive expression of the two TFs that we observed
in NEPC PDXs (Fig. 1g), clinical samples showed a range of
coexpression. The ASCL1 expression was higher in the majority
of the metastases accompanied by a lower and more variable
expression of NEUROD1 for almost all the cases (Fig. 3a and
Supplementary Fig. 3a). The differential expression of the TFs in
the clinical NEPC samples was associated with enrichment in the
corresponding gene signatures identified in our analysis com-
paring the ASCL1 and NEUROD1 NEPC models (Supplementary
Fig. 3b).

To investigate whether these TFs are co-expressed in the same
tumor cells or in distinct tumor sub-populations, we studied five
distinct fragments of liver metastasis (FLMs) obtained at autopsy
from a patient diagnosed with NEPC available as both Optimal
cutting temperature compound (OCT compound) frozen and

Fig. 3 Single-cell analysis reveals that NEPC subtypes co-exist in human metastasis and contribute to inter- and intra-tumoral heterogeneity. a Plot of
ASCL1 and NEUROD1 expression in NEPC tissues from a clinical cohort16. TPM: transcripts per million. b Representative immunostaining of FLM3
(ASCL1 staining in the top panel and NEUROD1 staining in the middle panel) showing intratumor heterogeneity. c Hematoxylin and eosin staining of the
same field illustrates the distinct histologies for the two subpopulations. d Combined analysis of the scATAC-seq and snRNA-seq in FLM3 (left). Markers
specific for normal cell populations enabled assignment of clusters: 1, vascular cells; 2, stromal cells; 3, hepatic cells; 4, monocytes. Accessibility at the top
30 differential ATAC-seq regions between ASCL1 and NEUROD1 subtypes identified by bulk analysis (top right). Analysis of ASCL1 and NEUROD1
expression in the snRNA-seq analysis (bottom right). This analysis matches cells with TF expression and the corresponding differential DNA accessibility
for each subtype. e tSNE analysis of the combined FLM3 (blue) and FLM5 (black) scATAC-seq data (left). The other three plots show accessibility at
INSM1 promoter (NE marker) and the differential accessibility at ASCL1 promoter and NEUROD1 promoter. f Projection of the aggregated scATAC-seq
clusters for FLM3 and 5 (light brown dots) within the PCA space defined in Fig. 2a. Source data are provided as a Source Data file.
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formalin-fixed paraffin-embedded material, and performed RNA-
seq to assess expression levels of ASCL1 and NEUROD1. These
levels showed a range of coexpression of the two TFs with
FLM3 showing the highest relative expression of NEUROD1 to
ASCL1 (Supplementary Fig. 3c). We next performed immuno-
histochemical (IHC) analysis for ASCL1 and NEUROD1 protein
expression on FLM3. The ASCL1 and NEUROD1 staining
showed intra-tumoral heterogeneity that defined two separated
tumor populations, which are present at different foci across the
tumor section (Fig. 3b and Supplementary Fig. 3d). Both subtypes
show an NE phenotype as characterized by the expression of the
NE marker INSM1 and absence of AR expression (Supplemen-
tary Fig. 3e). Correlation with histomorphological features
showed that the two distinct cell populations also differ in their
histological characteristics. ASCL1-positive cells had a sheet-like
growth pattern and spindle cell morphology, whereas
NEUROD1-positive cells appeared to grow in smaller cell clusters
with pronounced nuclear molding and focal pleomorphic giant
cells (Fig. 3c). We next performed double staining of ASCL1 and
NEUROD1 by immunofluorescence (IF) in FLM3, to investigate
potential coexpression in tumor cells, and observed that the vast
majority of the cells showed an anticorrelated expression of the
two TFs (Supplementary Fig. 3f). We extended the IF analysis to
six additional NEPC samples and also observed the existence of
the same type of intratumor heterogeneity with no ASCL1 and
NEUROD1 coexpression (Supplementary Fig. 3g).

We next investigated the two observed intra-tumoral popula-
tions by single-cell chromatin (scATAC-seq) and expression
(single nucleus RNA sequencing (snRNA-seq)) analysis. We
selected FLM3 that showed the highest NEUROD1 expression
and FLM5 that had the lowest, almost 200-fold lower than ASCL1
(Supplementary Fig. 3c). We isolated nuclei from frozen sections
of FLM3 and performed scATAC-seq and snRNA-seq to assign
the ASCL1 and NEUROD1 expression with the corresponding
chromatin state. The unsupervised t-distributed stochastic
neighbor embedding (tSNE) clustering of the scATAC-seq
resulted in multiple clusters that we analyzed for differential
accessibility at SOX2 promoter to distinguish tumor and normal
cells. Based on accessibility to SOX2, the fraction of the tumor
cells represented around 80%. In accordance with their NE
phenotype, the tumor cells showed accessibility at the promoter
for the NE marker INSM1 (Supplementary Fig. 3h). Notably, we
could distinguish the clusters that correspond to the two tumor
subtypes based on the differential accessibility to the ASCL1 and
NEUROD1 promoters (Supplementary Fig. 3h). The ASCL1 and
NEUROD1 clusters also show differential accessibility at the top
ATAC differential regions identified by bulk analysis (Supple-
mentary Fig. 3i). An additional cluster was composed of cells that
displayed accessibility at either the ASCL1 or the NEUROD1
promoter but were intermixed; we labeled that cluster as “mixed”
(Supplementary Fig. 3h). We next analyzed the snRNA-seq to
identify the tumor cells that express ASCL1 and NEUROD1, and
then integrated this data set with the scATAC-seq using
SEURAT34 (Fig. 3d). This integration enabled the assignment
of normal cells based on the expression of specific markers.
Crucially, we observed that cells with either the ASCL1 or
NEUROD1 accessibility signature developed from bulk data
preferentially express the corresponding TF (Fig. 3d). Thus, our
results show that ASCL1 and NEUROD1 subtypes exist as
separate subpopulations possessing similar epigenetic features as
in their respective model systems.

We next investigated the FLM5 sample, which has the highest
expression of ASCL1 by scATAC-seq analysis. In accordance with
the RNA-seq, the tSNE analysis showed a single cluster of the
FLM5 tumor cells with accessibility at ASCL1 promoter but not at
NEUROD1 (Supplementary Fig. 3j). The integrated scATAC

analysis of FLM3 and FLM5 revealed that 99% of the FLM5
tumor cells overlap the FLM3 ASCL1 cluster (Fig. 3e), indicating
that those cells have identical chromatin accessibility. We next
plotted the aggregated scATAC-seq by TF cluster from FLMs in
the PCA space defined by the model systems in Fig. 2a, which
further validated the chromatin state of the two subtypes in the
primary tissue (Fig. 3f).

All together, these results demonstrate subtype heterogeneity in
human NEPC metastases and that these subtypes show distinct
epigenetic characteristics similar to those observed in model
systems.

In the patient metastasis, the NEPC subtypes are distinct but
still related clones. We next sought to investigate the genetic
characteristics of the NEC samples using whole-exome sequen-
cing (WES) and copy number variation (CNV) inferred from the
ATAC-seq data35. Inference of RB1 genetic status from the bulk
ATAC-seq data showed a biallelic loss in all the NEPC PDX
models but not in the adenocarcimona prostate cancer (ADPC)
models (Supplementary Fig. 4a) as previously reported12. The
same approach was applied genome-wide to the scATAC-seq
clusters identified by the tSNE analysis on FLM3 and FLM5. The
results show an overall similarity in the CNVs across these
clusters (Fig. 4a). For instance, we observed heterozygous losses in
all of chr16 and parts of chr2 and chr13 in both ASCL1 and
NEUROD1 clusters. In addition, we found a focal heterozygous
loss at PTEN on chr10 in both clusters. However, clear
CNV differences existed, including a 20MB amplification on
chr14p and a chr7p amplification that are only present in the
NEUROD1 cluster. Notably, CNVs of the ASCL1 component in
FLM3 showed almost identical characteristics with the ASCL1
cluster in FLM5 (Pearson’s correlation= 0.97), whereas showing
a lower correlation to the NEUROD1 cluster within the same
fragment (Pearson’s correlation= 0.81) (Fig. 4b). WES analysis of
the FLM samples, although derived from bulk tissue, validated the
scATAC-seq-inferred CNV alterations including amplifications
on chr14p and chr7p (Supplementary Fig. 4b).

Finally, we extended the CNV analysis of FLM3 to the single-
cell level35,36. K-means clustering of the cells based on the CNVs
distinguished three clusters: one that corresponds to normal cells,
with no alterations, and two additional clusters showing
alterations. Another cluster of cells had amplifications in chr7p
and chr14p, and was associated with the NEUROD1 type and a
third cluster without those alterations that was associated with the
ASCL1 type (Fig. 4d). We next marked the identity of the cells
from the three clusters defined in the genetic analysis within the
scATAC-seq tSNE plot from this sample and showed a strong
correspondence to the groupings defined by the epigenetic
analysis (Fig. 4e). Importantly, this single-cell analysis reinforces
the interpretation of the mixed cluster identified in the scATAC-
seq analysis, showing that it corresponds to intermixed ASCL1
and NEUROD1 clones instead of an independent clone
(Supplementary Fig. 4c, d). Altogether, our results show the
existence of distinct genetic clones associated with each of the two
NEPC epigenetic subtypes in this patient, likely derived from a
common ancestor given their substantial CNV profile overlap.

Discussion
Poorly differentiated NECs are a class of high-grade tumors that
arise at different anatomical sites and typically express markers of
NE differentiation (CHGA, NCAM1, and SYP). Our results build
considerably on previous work with RNA-seq and cell lines11,15,
and provide a molecular rationale for the shared histopathological
behavior of these tumors based on a common epigenetic state
regardless of anatomic origins or the distinct tumor-initiation
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mechanisms. This epigenetic convergence is associated with the
expression of distinct members of the bHLH family, suggesting
that a variety of TFs can maintain the NE state.

The similarity in the chromatin state across NECs is particu-
larly pronounced between NEPC and SCLC, which is surprising
given the distinct cells of origin in these neoplasms. We observed
that treatment-emergent NEPC shows subtypes based on the
expression of ASCL1 and NEUROD1 as seen in de novo SCLC.
This was unexpected, as those TFs have been previously asso-
ciated with lung development8,9,27. Importantly, we show a fun-
damental difference between the representation of the subtypes in
the PDX models as compared to human clinical samples. In
contrast to the mutually exclusive expression of ASCL1 and
NEUROD1 in model systems, tissues from NEPC clinical cohorts
show coexpression of ASCL1 and NEUROD1 at varying levels.
Single-cell analyses of a set of metastatic samples from the same
patient revealed the presence of two distinct tumor populations
that co-exist within the metastasis. This observation emphasizes
that PDXs, despite being good models of the human disease, still
offer limitations to illustrate the complexity observed in primary
tissues. In fact, those limitations could have precluded a better
characterization of subtype coexistence in SCLC37, which has
mainly been described as homogeneous subtypes7. Our results
show the existence of subtypes in clinical samples of NEPC and
demonstrate heterogeneity in terms of the chromatin state.

The genetic and epigenetic characteristics of NEPC tumors and
the newly revealed intra-tumoral heterogeneity of the subtypes can
have direct clinical implications for the design of novel treatment
strategies. Currently, the standard treatment based on platinum-
containing combinations38,39 is applied to all patients and typi-
cally shows a short duration response. In this respect, our results
showing the convergence to a NEC-specific chromatin state

underlines the potential value of chromatin remodelers as pro-
mising therapeutic targets. Examples of chromatin remodelers
already being targeted include enhancer of zeste-homolog 2
(EZH2)40 based on preclinical results reporting an effect of EZH2i
to re-sensitize tumors to AR-signaling inhibitors in CRPC33,41.
Notably, alterations in EZH2 have been implicated in de-
repression of the TF SOX2 as a consequence of the functional
loss of RB142,43, suggesting EZH2 inhibitors as potential agents for
NEPC treatment. Another strategy is the targeting of the bro-
modomain and extraterminal (BET) family. The activity of BET
inhibitors regulating the expression of MYC family genes suggests
them as candidates for targeting the specific MYC members
associated with NEPC44. In particular, BRD4 inhibitors have
already entered clinical testing based on preclinical data, sug-
gesting that BRD4 could be involved in the transcriptional
reprogramming of CRPC45,46. The strong similarity in the chro-
matin state between NEPC and SCLC, and the existence of similar
subtypes provides a rationale to extrapolate the previously iden-
tified ASCL1- and NEUROD1-specific vulnerabilities in SCLC. In
the ASCL1 subtype, e.g., DLL3 is a target for bi- and tri-specific T-
cell engager antibodies47,48, which are in early phase trials
(NCT03319940 and NCT04471727). AURKA is a target for small-
molecule inhibitors such as alisertib, which may be more effica-
cious in the NEUROD1 subtype49. Our results also support the
potential of targeting CEACAM proteins in ASCL1+NEPC29.
We note the possibility that therapeutic strategies that target one
but not the other subtype might rapidly succumb to the outgrowth
of the resistant subpopulation. Altogether, this new understanding
of subtype heterogeneity based on NEUROD1 and ASCL1 illus-
trates the epigenetic complexity that exists in clinical tumors and
provides a rationale for targeting the inter- and intra-tumoral
heterogeneity as a therapeutic strategy in NEPC.
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Methods
Clinical samples and cell lines. Tissue samples were collected within 8 h of death
from patients who died of metastatic CRPC. All patients signed informed consent
for a rapid autopsy, under the aegis of the Prostate Cancer Donor Program at the
University of Washington. Hematoxylin and eosin-stained slides from each case
were reviewed by a pathologist, to confirm the presence of tumor cells. All relevant
ethical regulations for work with human participants were followed and informed
consent was obtained. The Institutional Review Board of the University of
Washington (IRB #2341) approved this study. For the PDX models, all relevant
ethical regulations for animal testing and research were followed.

NEPC cell line MSKCC EF1 (contributed by Leigh Ellis laboratory) was
maintained in RPMI medium supplemented with 10% fetal bovine serum (FBS).
NCI-H660 (ATCC catalog number CRL-5813) cells were maintained in HITES
medium supplemented with 5% FBS, 0.005 mg/ml Insulin, 0.01 mg/ml Transferrin,
30 nM Sodium selenite, 10 nM Hydrocortisone, 10 nM β-estradiol and, 4 mM
L-glutamine. Our cells are routinely assessed for Mycoplasma contamination. In
addition, we analyzed all of our sequenced libraries for the presence of mycoplasma
DNA and all the samples showed the absence of contamination.

Nuclei preparation. Fragments of frozen tissues (PDX models) or 50 μm sections
(liver metastases) were cut and resuspended in 300 μl of cold 3-detergent-ATAC-
Resuspension Buffer (RSB) containing 0.1% NP40, 0.1% Tween-20, and 0.01%
Digitonin. Tissues were dounced ten times each with a loose and a tight pestle each
until homogenization was complete. The homogenate was then transferred to a
1.5 ml pre-chilled microfuge tube and incubated on ice for 10 min. For cell lines, we
started from 150,000 cells, washed with 1× phosphate-buffered saline (PBS) and
performed lysis in 50 μl of cold RSB containing 0.1% NP40, 0.1% Tween-20, and
0.01% Digitonin. After lysis, 300 μl of ATAC-RSB containing 0.1% Tween-20 was
added and the tubes were inverted to mix. Lysates were filtered through a 40 μm
cell strainer and nuclei were centrifuged for 10 min at 1500 relative centrifugal
force (RCF) in a pre-chilled (4 °C) fixed-angle centrifuge. Nuclei were resuspended
with 300 μl of ATAC-RSB containing 0.1% Tween-20 and counted with a hemo-
cytometer using Trypan blue stain.

ATAC sequencing. Here, 100,000 nuclei were resuspended in 50 μl of transposi-
tion mix (25 μl 2× TD buffer, 2.5 μl transposase (100 nM final), 16.5 μl PBS, 0.5 μl
1% Digitonin, 0.5 μl 10% Tween-20, 5 μl H2O)50. Transposition reactions were
incubated at 37 °C for 30 min on a thermomixer. Transposed DNA was purified
using Qiagen columns. Libraries were amplified as described previously51. Thirty-
five basepair paired-end reads were sequenced on a NextSeq instrument (Illumina).

ChIP sequencing. Nuclei isolated as previously described were crosslinked with 1%
formaldehyde for 10 min for H3K27Ac ChIP-seq. For ASCL1 and NEUROD1,
ChIP-seq nuclei were crosslinked in two steps with 2 mM of DSG (Pierce) for
45 min at room temperature, followed by 1 ml of 1% formaldehyde for 10 min.
Crosslinked nuclei were then quenched with 0.125 M glycine for 5 min at room
temperature and washed with PBS. After fixation, pellets were resuspended in
500 μl of 1% SDS (50 mM Tris-HCl pH 8, 10 mM EDTA) and sonicated for 5 min
(H3K27ac) or 10 min (ASCL1 and NEUROD1) using a Covaris E220 instrument
(setting: 140 peak incident power, 5% duty factor, and 200 cycles per burst) in 1 ml
adaptive focused acoustics (AFA) fiber millitubes. Chromatin was immunopreci-
pitated with 1 μg of H3K27Ac antibody (Diagenode catalog number C15410196),
10 μg of ASCL1 antibody (Abcam ab74065), or 10 μg of NEUROD1 antibody (Cell
Signaling mAb #4373). Five micrograms of chromatin was used for H3K27Ac
ChIPs and 40 μg of chromatin was used for ASCL1 or NEUROD1 ChIPs. ChIP-seq
libraries were made using Rubicon kit and purified. Seventy-five basepair single-
end reads were sequenced on a Nextseq instrument (Illumina).

Single-nuclei ATAC-seq and RNA-seq. Nuclei were prepared as described pre-
viously. For scATAC-seq, nuclei were transposed according to the OMNI-ATAC
protocol50. Approximately 7000 cells were targeted for each sample and processed
according to the 10× Genomics scATAC-seq sample preparation protocol (Chro-
mium Single Cell ATAC Library & Gel Bead Kit, 10× Genomics). For snRNA-seq,
nuclei prepared the same way were used directly in the 10× Genomics snRNA-seq
protocol (Chromium Single Cell 3′ v2 Reagent Kit, 10× Genomics).

RNA sequencing. A fragment of frozen tissues (PDX models) or 50 μm sections
(liver metastases) were cut and homogenized in 1 ml of AllPrep DNA/RNA Mini
Kit (Qiagen) using a plastic pestle (Cole-Palmer #44468-23). DNA and RNA were
simultaneously isolated. Five hundred nanograms of RNA was used to prepare
libraries using the NEBNext Ultra™ RNA Library Prep Kit for Illumina. RNA
quantity and quality were assessed on an Agilent 2100 Bioanalyzer. For all RNA-
seq, reads were sequenced on a NextSeq 500 instrument (Illumina).

Whole-exome sequencing. DNA extraction on frozen human FLMs and adjacent
normal tissue was performed using the AllPrep DNA/RNA Mini Kit (Qiagen).
WES sequencing was performed by Novogene using their standard protocols.
Briefly, 1000 ng of genomic DNA were used as input to generate sequencing

libraries using the Agilent SureSelect Human All Exon Kit. Captured libraries were
enriched by PCR, purified, quantified using the Agilent Bioanalyzer 2100 system,
and subsequently sequenced using the NextSeq 500 instrument (Illumina).

Immunohistochemical analysis. IHC and IF studies using ASCL1 (clone
24B72D11.1, catalog number 556604, BD Biosciences, San Jose, CA) and NEU-
ROD1 (clone EPR17084, catalog number ab205300, Abcam, Cambridge, MA)
specific antibodies were carried out on archival formalin-fixed paraffin-embedded
tissues. In brief, 5 μm paraffin sections were de-waxed and rehydrated following
standard protocols. Antigen retrieval consisted of steaming for 40 min in Target
Retrieval Solution (S1700, Agilent, Santa Clara, CA). Slides were then washed and
equilibrated in TBS-Tween buffer (Sigma, St. Louis, MO) for 10 min. Primary
antibodies were applied at a dilution of 1:25 at 37 °C for 60 min. For chromogenic
studies, immunocomplexes were visualized by applying secondary detection
reagents of the UltraVision™ Quanto Detection System (catalog number TL-060-
QHD, Thermo Fisher, Waltham, MA) following the manufacturer’s instructions.
Sequential dual-IF labeling studies were carried out using Tyramide SuperBoost
kits (Thermo Fisher, Waltham, MA). All bright-field slides were imaged using a
Ventana DP200 system (Roche Diagnostics, Indianapolis, IN). Fluorescence images
were acquired on a Cytation 5 Cell Imager (Biotek, Winooski, VT). All the slides
have been evaluated by an expert pathologist and the stainings have been replicated
a minimum of three times.

Computational and statistical analysis
Analysis of ATAC-seq and ChIP-seq data. A modified version of the ChiLin pipeline
was used for quality control and pre-processing of the data52,53. We used Burrows-
Wheeler Aligner (BWA Version: 0.7.17-r1188) as a read mapping tool to align to
hg19 using default parameters. Unique reads for a position for peak calling were
used to reduce false-positive peaks and statistically significant peaks were finally
selected by calculating a FDR of reported peaks. ATAC peaks were called using
MACS2 (v2.1.2) with a cutoff of FDR < 0.01. H3K27ac, ASCL1, and NEUROD1
peaks were called using MACS2 using the same cutoff. DESeq2 was used within the
COBRA pipeline54 to identify differential peaks in ATAC-seq and ChIP-seq, where
gained or lost peaks were defined with the threshold of log2-fold change of 1 or 2
and an adjusted p-value < 0.0554. PCA was performed using princomp in R.

Cis-regulatory Element Annotation System (CEAS) analysis is used to annotate
resulting peaks with genome features. Cistrome Toolkit (dbtoolkit.cistrome.org)
was used to probe which factors might regulate the user-defined genes. GREAT was
used to annotate peaks with their biological functions. Conservation plots were
obtained with the Conservation Plot (version 1.0.0) tool available in Cistrome52,53.

For all motif analyses, HOMER was used to generate a list of the most enriched
motifs. Subsequently, K-means clustering is applied based on the correlation
coefficients of position-specific weight matrix for each motif and the final results
are ranked based on the smallest p-value in each cluster.

Analysis of SEs. Bed files for H3K27ac peaks created by MACS2 were used as input
to by ROSE52 to call SEs in H3K27ac ChIP-seq data.

Visualization of ChIP-seq and ATAC-seq data. Read depth-normalized profiles
corresponding to read coverage per one million reads were used for heatmaps and
for visualization using the integrative genomics viewer55. Heatmaps were prepared
using deepTools (version 2.5.4) and aggregation plots for ChIP-seq signals were
generated using Sitepro in CEAS56. In the volcano plots, ATAC-seq peak summits
were associated with the nearest transcription start site (TSS) within a distance of
±50 kb and incorporating DESeq2 output from RNA-seq, with the final plot
generated using ggplot2 in R.

Analysis and visualization of RNA-seq data. For RNA-seq data, read alignment,
quality control, and data analysis were performed using VIPER57. RNA-seq reads
were mapped by STAR58 to hg19 and read counts for each gene were generated by
Cufflinks. Differential gene expression analyses were performed on absolute gene
counts for RNA-seq data using DESeq2. The top 50 genes scored by multiplying the
log2-fold change by the −log(p-value) that were near ATAC-seq peaks were used as
signatures for the ASCL1 and NEUROD1 subtypes. These were applied to the Beltran
et al.33 and Labrecque et al.16 NEPC cohorts to get signature scores by GSVA
software59 for each subtype. The difference in these scores was plotted against a
normalized ASCL1/NEUROD1 expression ratio in Supplementary Fig. 3b. Specifi-
cally, the x-axis shows the differential enrichment of GSVA signature scores calculated
using a Kolmogorov–Smirnov (KS) rank statistic yielding single-sample enrichment
scores that are dependent on the sample set59. The y-axis is the ratio of ASCL1/
NEUROD1 expression levels normalized by subtracting the mean and dividing by the
SD. The rank correlation (Spearman) between these values was 0.57 (p-value of 0.01).

Single-cell ATAC-seq and RNA-seq. Single-cell RNA-seq data generated by 10×
Genomics were preprocessed using the Cell Ranger (https://www.10xgenomics.com/
) to obtain the UMI (unique molecular identifier) counts for each gene. To get a
reliable single-cell transcriptome data set, we excluded the cells with <200 genes
expressed (UMI > 0) or the cells with >80% UMIs from mitochondrial genes. The
filtered data were then normalized and scaled by using Seurat34 to remove unwanted
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sources of variations. tSNE was performed on the normalized data to visualize the
single cells in two-dimensional space by using the top ten dimensions of PCA.
Unsupervised clustering was performed by using the “FindClusters” function in the
Seurat package with parameter of resolution= 0.8. Cell cycle phases of all single
cells were assigned by using the cyclone function in scran package60. Genes with
differential expression between clusters were obtained by using Wilcoxon rank-sum
test. FDR was then calculated to correct for multiple testing.

Single-cell ATAC-seq data were processed using the Cell Ranger ATAC pipeline
v1.1.0, which provides quality control (QC) and clustering. Any cell that had
FrIP <0.2 or total fragments <1000 was removed from the analysis. The tSNE
analysis was performed using the implementation from the Loupe Cell Browser
3.1.0.

scATAC-seq and scRNA-seq data integration was performed by Seurat. The
scATAC-seq peak matrix provided by 10× was loaded and collapsed to a “gene
activity matrix.” The processed data was then scaled and normalized. To help
understand the internal structure of the ATAC-seq data, the “RunLSI” function
was run. “FindTransferAnchors” function identifies “anchors” between the ATAC-
seq and RNA-seq data sets, and finally ATAC-seq and RNA-seq data are able to be
co-embedded in the same tSNE plot.

Single-cell CNV. By modifying an existing method used for bulk ATAC-seq data,
we created a way to use off-target scATAC-seq reads to infer DNA copy number
amplifications. This approach first breaks the genome into many large intervals and
finds the coverage of each window. The coverage of 100 GC-matched intervals are
then averaged together as background. The coverage of each interval will be
compared to each GC-matched background to estimate CNV fold change. The size
of each interval was set to 1–2Mb, to account for the sparsity of the scATAC-seq
data with “ChunkGRanges” function in GenomicRange. For each window, the
“GCcontent” function of biovizBase was used to calculate the percentage GC
content. The coverage was compensated for removed peaks by using the effective
window size in coverage calculation.

Whole-exome sequencing. Reads were aligned using BWA v0.5.9 and somatic
mutations called using a customized version of the Getz Lab CGA WES Char-
acterization pipeline (https://portal.firecloud.org/methods/getzlab/
CGA_WES_Characterization_Pipeline_v0.1_Dec2018/). We used ContEst61 to
estimate cross-sample contamination, MuTect62 v1.1.6 to call single nucleotide
variants, and Strelka63 v1.0.11 to call indels. MuTect2.164 was used to confirm
Strelka indel calls. We applied DeTiN65 to rescue true somatic variants that were
removed due to tumor-in-normal contamination. Variant calls were filtered
through a panel of normal samples to remove artifacts from miscalled germline
alterations and other rare error modes. Variants were annotated using VEP,
Oncotator, and vcf2maf v1.6.17 (https://github.com/mskcc/vcf2maf). Allelic copy
number, tumor purity, and ploidy were analyzed using ABSOLUTE66.

Prior to characterizing somatic mutations and copy number profiles from PDX
samples, we removed potentially confounding mouse DNA sequences using
ConcatRef67. Briefly, WES results were aligned to a concatenated hg19 reference
genome and only reads for which both pairs uniquely aligned to just the hg19
reference sequences using BWA. The resultant high-confidence human paired-end
sequences were then used for downstream analysis as above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The ATAC-seq, ChIP-seq, and RNA-seq data generated in this study have been
deposited in the NCBI GEO database under accession code GSE156292. The publicly
available data used in Supplementary Fig. 1 were downloaded from the NCBI GEO
database under accession number GSE118207. The publicly available RNA-seq data used
in Fig. 3a and Supplementary Fig. 3a, b were downloaded from dbGap phs000909.v.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000909.v1.p1
and from the NCBI GEO database under accession number GSE126078. Source data are
provided with this paper.
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