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High-dimensional genomic data bias correction and
data integration using MANCIE
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High-dimensional genomic data analysis is challenging due to noises and biases in

high-throughput experiments. We present a computational method matrix analysis and

normalization by concordant information enhancement (MANCIE) for bias correction

and data integration of distinct genomic profiles on the same samples. MANCIE uses a

Bayesian-supported principal component analysis-based approach to adjust the data so as to

achieve better consistency between sample-wise distances in the different profiles. MANCIE

can improve tissue-specific clustering in ENCODE data, prognostic prediction in Molecular

Taxonomy of Breast Cancer International Consortium and The Cancer Genome Atlas data,

copy number and expression agreement in Cancer Cell Line Encyclopedia data, and has broad

applications in cross-platform, high-dimensional data integration.
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H
igh-throughput genomic technologies have made it
possible to generate massive data for studying biological
mechanisms or disease aetiology. Such high-dimensional

genomic data usually can be presented as a matrix, with each
column representing a sample (for example, a patient, a cell type,
an experimental condition and so on), and each row representing
a genomic feature (for example, a gene, a genomic locus and so
on). By computational analyses of these high-dimensional data
matrices using dimension reduction (for example, principal
component analysis, PCA) or clustering approaches, one can
learn characteristic information within samples and identify key
features between samples to interrogate biological functions. In
many cases, there can be multiple platforms of experiments on
the same set of samples and they can generate more than one data
matrices. For example, the ENCODE (Encyclopedia of DNA
Elements) Consortium generated high-throughput data including
ChIP-seq, DNase-seq, and exon array transcriptomes and so on.
on a designated panel of human cell lines1; The Cancer Genome
Atlas (TCGA) program2 and the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC)3

generated mutation and gene-expression profiles of patient
tumours; and the Cancer Cell Line Encyclopedia (CCLE)
project4 provided copy number, gene expression for over a
thousand cancer cell lines. Integrative analysis is critical for
obtaining biological insights from these data sets, within which a
common challenge exists in identifying and correcting hidden
biases in such high-dimensional data matrices.

In high-throughput data with different experimental platforms,
it is not uncommon for a subset of samples in a data matrix on
one experimental platform to have technical biases5,6. For
example, in a cohort of dozens of samples, the expression and
ChIP-seq profiling were conducted under various batches, each
with unique biases from sample collection and preparation, array
hybridization, sequencing GC content7 or coverage differences
that are challenging to identify and remove. There have been
methods developed to remove batch effect within one data matrix
of the same platform. For example, PCA have been used to solve
such problems. As an extension of PCA, Sparse PCA5 uses the
linear combination of a small subset of variables instead of all to
generate the principal components and still explains most
variances present in the data, while making the dimension
reduction and bias removal clearer and easier to interpret8.
Surrogate variable analysis (SVA)9 models the gene-expression
heterogeneity bias as ‘surrogate variables’ and separate them from
primary variables that capture biologically meaningful
information. These methods aim to normalize data within the
same data matrix from the same platform. However, to our
knowledge, methods that can normalize data from different
matrices and borrow information between different platforms are
still lacking.

Recently, Wang et al.10 propose similar network fusion (SNF),
a method that first generates sample networks from each data
platform separately, then uses network fusion to merge the
platform-specific networks together with confidence weighting.
SNF demonstrated good performance on separating TCGA
glioblastoma samples into subtypes using transcriptome and
DNA methylome profiles. However, SNF does not provide the
normalized data matrices that could be useful in the downstream
analysis. In addition, SNF is based on network construction,
which could be sensitive to strong biases in a subset of samples
that result in ‘high-weight’ edges in the network and are difficult
to remove in the fusion step. In other words, if the networks
generated from each data matrices were too dissimilar, it is
difficult to ‘fuse’. A more general applicable method is needed to
simultaneously provide better sample clustering and generate
normalized data matrices.

To overcome the above challenges, we propose MANCIE
(matrix analysis and normalization by concordant information
enhancement), an integrative computational method that can
conduct data normalization and bias correction by borrowing
information from a column-matched associated data matrix.
Applied to ENCODE, METABRIC, TCGA and CCLE data,
MANCIE showed effectiveness in improved identification of
biologically meaningful patterns.

Results
Method overview. MANCIE takes in two data matrices and
adjusts one (thereafter defined as the ‘main matrix’) using the
other (thereafter defined as the ‘associated matrix’) by identifying
and maintaining the concordant information and reducing the
discordant information between them. The two data matrices
contain profiles on the same set of samples generated using
different experimental platforms (for example, copy number
variation (CNV) and RNA-seq on the same collection of
tumours), or generated independently (for example, expression
profiles measured at different institutions on the same collection
of cell lines). If the rows of the two matrices are unmatched (for
example, genes versus ChIP-seq peaks), MANCIE first generates a
summarized associated matrix that has matched rows with the
main matrix using a biologically motivated matching process
(Supplementary Fig. 1, see Methods for details). This matching
step requires additional biological information to connect the
rows between the two matrices, for example, each gene (as a row
vector in the main matrix) will corresponds to a row vector
summarized from a few nearby transcription factor (TF) -binding
sites (as a few rows in the associated matrix). MANCIE assumes
that pairwise sample distance as measured by different platforms
should be similar, and discordance in the pairwise distance largely
arise from technical biases and/or noises. Therefore, the second
and key step of MANCIE adjusts the main matrix row by row by
borrowing information from data in the associated matrix. In
each row, depending on whether the correlation between the
main and associated data is high, moderate or low, MANCIE
takes the first principle component (scenario 3), a correlation-
weighted sum (scenario 2) or the original data (scenario 1) as the
adjusted data, respectively (Fig. 1, see Methods for details). The
correlation cutoffs are determined empirically, by making roughly
1/3 of the rows be adjusted under scenario 3. Finally, the output
of MANCIE is the normalized adjusted matrix that has the same
dimension as the main matrix yet with the information from the
associated matrix incorporated. It is worth noting that one can
swap the main and associated matrices, so the quality of both data
can be improved from each other. We show that this approach is
an appropriate approximation of the full Bayesian inference for
reducing noises from such data sets (Supplementary Notes). In
the following sections, we applied MANCIE on a few data sets
generated by large consortia including ENCODE1, METABRIC3,
TCGA2 and CCLE4 to demonstrate its utility in genomic data
integration.

ENCODE data. From ENCODE consortium1, we obtained data
from 61 cell lines where both DNase-seq data for chromatin
accessibility profiling and Affymetrix exon array data for gene-
expression profiling are available. These cell lines can be classified
into seven groups by their tissues of origin (Fig. 2). DNase
hypersensitive sites (DHS, measured by DNase-seq) mark open
chromatin regions that can be considered as a repertoire of all
putative cis-regulatory elements in the genome11,12 that regulate
gene expression as measured by exon arrays. Although active
gene promoters are usually DHS, most DHS are located in introns
or intergenic regions, marking distal enhancers1,13 which are
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often more dynamic across different cell types or conditions14–17.
Focusing on enhancers, we generated the DHS data matrix based
on a union set of intronic and intergenic DHS peaks identified
from all the DNase-seq data, and obtained the gene-expression
data matrix based on the exon array data. We used MANCIE to
adjust each data matrix using the other as the associated matrix.
Since the rows between the two data matrices are not matched,
we generated the summarized associated matrices using the
genomic location information of genes (based on the
transcription start site, TSS) and DHS (based on the DHS peak
centre). For summarization of DHS data around genes, we used
up to 50 nearby DHS located within 100 kb from the TSS of each
gene as the local sub-matrix for that gene. For summarization of
gene-expression data around DHS, we used a similar approach
but up to 20 nearby genes, considering that there are much fewer
genes than DHS. The adjusted main matrix was then generated by
integrating the main matrix with the summarized associated
matrix. We conducted multi-dimensional scaling on the adjusted
data as well as the raw data, and plotted two principal
components with each data point representing a cell line
(Fig. 2a,b). We hypothesized that cell lines belonging to the
same tissue type should be more similar to each other than cell
lines from different tissue types, a pattern previously reported for
these data types16. Indeed, although MANCIE only aims to make
cell lines similar in one platform more similar in the other
platform, the end result is that the adjusted data, both DHS and
expression data, show better cell line clustering according to
their tissue types (Fig. 2a,b). To assess the better clustering
quantitatively, we performed K-means clustering with randomly
sampled seeds for 1,000 times on each data set and calculated the
adjusted Rand index18 that measures the similarity between the

K-means clustering and the actual tissue-type clustering for each
random sample. The average adjusted Rand index is significantly
higher for MANCIE-adjusted data than that for the raw data,
indicating that MANCIE improves the tissue-type clustering
(Fig. 2c,d). In contrast, cell line clustering using SVA-adjusted
data is actually worse than using the raw data (Supplementary
Fig. 2a,b).

We next investigated the implication of the MANCIE
adjustment on the ENCODE data. As GC-content bias is one
major sources of biases in next-generation sequencing data, we
first checked whether MANCIE can reduce the GC-content biases
in the DNase-seq data. For each cell line, we calculated the
distribution of the GC-content of all sequence reads in the
DNase-seq data set as well as the magnitude of MANCIE
adjustment, measured by the Euclidean distance between
the corresponding column vectors in the raw and the
MANCIE-adjusted data matrices. Cell lines showing GC-content
patterns that were farther away from average of all cell lines
(Supplementary Fig. 2c) underwent a greater magnitude of
MANCIE adjustment than the other cell lines (Fig. 2e
and Supplementary Fig. 2d). This result indicates that
MANCIE successfully corrected the GC-content biases in the
DNase-seq data.

To further evaluate MANCIE performance in adjusting the
DNase-seq data, we selected the top 2,000 DHSs with greatest
increase after MANCIE adjustment in the cell lines with the
biggest adjustment, and performed sequence motif analysis on
these DHSs. We found that the sequence motifs enriched in these
DHSs usually match cell-type-specific TFs (Fig. 2e). For example,
ETS motif is enriched in both TH1 and TH2 cell lines, and the
ETS-family TFs ERM and PU.1 are specific to TH1 and TH2 cell
lines, respectively19,20. The motif of megakaryocyte-specific TF
NF-E217 is enriched in the megakaryocyte cell line CMK. These
results demonstrated that integrated with gene-expression data,
MANCIE-adjusted DHSs show an increased pattern of cell-type
specificity that is better correlated with cell-type-specific gene-
expression pattern. Taken together, MANCIE is able to integrate
the genomic DHS data with gene expression and to reduce
potential biases, as well as to emphasize biologically meaningful
signals.

METABRIC and TCGA data. We applied MANCIE on the
METABRIC breast cancer data sets3 to demonstrate its
effectiveness for noise reduction on another data platform.
METABRIC has two independent cohorts of breast cancer
patients. Each cohort has around 1,000 patients with gene-
expression values, CNV values and survival information. We used
the first cohort as the training set and the second cohort
as the independent set to predict survival information from
gene-expression data. MANCIE was applied to adjust the gene-
expression data based on CNV data. The underlying assumptions
are: first, if gene-expression signatures can predict patient survival
outcome, noise-reduced and bias-corrected gene-expression data
should have better predictive accuracy in the patient survival;
second, genes with concordant correlation between copy number
and expression are more likely to be reliably measured and are
more informative for outcome prediction. Indeed, we found
that the MANCIE-adjusted data can better predict survival
information than the original expression data, by better
distinguishing patients with lower and higher risk of death,
with an example shown in Fig. 3a. To assess the improvement
quantitatively, we compared the logrank P values obtained using
original training and original testing expression matrices with the
logrank P values obtained using adjusted training and adjusted
testing expression matrices. We limited our analysis to a subset of
genes whose adjusted expression values are most different from
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the original values, defined as correlation of the adjusted vector
and original vector being smaller than a threshold for either the
training or the testing data set. Under a series of threshold from
0.7–0.93, MANCIE consistently improved the prediction accuracy
by generating smaller P values (Fig. 3b).

Although TCGA also has breast cancer profiles, the death
events are too few to provide meaningful survival separation.
Therefore, we applied MANCIE on TCGA lung adenocarcinoma
data2 for survival prediction. A total of 10,704 genes for 417
tumours with complete expression, CNV and clinical information
were used, and MANCIE was applied to adjust the

gene-expression data based on CNV data. For comparison, the
gene-expression data matrix was also adjusted by the SVA
method. To test the effectiveness of MANCIE adjustment, we
selected six prognostic gene signatures for non-small cell lung
cancer from previous publications21–26 for survival prediction.
The 417 tumours were sub-sampled for 1,000 times when each
time 90% of these samples were randomly selected. For each
sub-sample, supervised principal components for survival
analysis (SuperPC)27 was used to fit each gene signature and a
continuous risk score is generated from the fitted model for the
patients in the sub-sample. Then, similar to the METABRIC data
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Figure 2 | Case study on ENCODE data. (a,b) Multi-dimensional scaling map representing genomic data from 61 cell lines. Each data point represents a

cell line, with its tissue type labelled in the same colour as in the legend. (a, top) Raw DHS data; bottom, MANCIE-adjusted DHS data; (b, top) Raw

expression data; bottom, MANCIE-adjusted expression data. (c,d) Adjusted Rand index comparing K-means clustering on the data with actual tissue-type

clustering. K-means clustering was performed 1,000 times with random seeds. The three boxes represent original data (blue), MANCIE-adjusted with

random data matrices (cyan) and MANCIE-adjusted with the other data type (red). (c) DHS data, (d) gene-expression data. P value was calculated using

Wilcoxon rank sum test. (e) Relationship between the magnitude of MANCIE adjustment and the deviation of GC-content distribution of DNase-seq reads.

The magnitude of MANCIE adjustment was calculated as the Euclidean distance between the sample data vectors before and after MANCIE adjustment.

The deviation refers to the distance from each sample’s data point to the centre of mass in the mean—coefficient of variation map of the GC-content

distribution in Supplementary Fig 2c. Labels in the parentheses are the top sequence motif enriched in the most increased DHS in the corresponding cell

line after MANCIE adjustment.
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analysis, a Cox proportional hazards model28 was regressed on
the risk score to test how well the trained risk score can explain
the survival data, with smaller P values indicating better
correlation between the risk score and the survival data (one
example shown in Supplementary Fig. 3a). We then plotted the
differences in negative log P values before and after either
MANCIE or SVA adjustment for each gene signature over the

1,000 samplings (Fig. 3c and Supplementary Fig. 3b). MANCIE
adjustment can improve the P values, indicating better association
of the risk scores with survival data for all six gene signatures
(Fig. 3c), and outperformed SVA in four out of the six gene
signatures.

In addition, we showed the effect of different combinations of
the two cutoff parameters on the performance of MANCIE. We
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used the differential log P values to evaluate the improvement of
survival prediction of MANCIE-adjusted data over the original
data. For both METABRIC (Supplementary Fig. 4a) and TCGA
lung cancer data (Supplementary Fig. 4b), although MANCIE
improvement varies with the cutoffs, overall it is robust and has
good performance under the default (0, 0.5) parameters.

CCLE/GDSC data. We next demonstrated that MANCIE can
reduce noise in a data set by leveraging information from a dif-
ferent source of the same data type. Two recent drug screen
studies, CCLE4 and Genomics of Drug Sensitivity in Cancer
(GDSC) project29 led by the Cancer Genome Project-profiled
cancer cell line response to different drugs as well as the
expression and CNV of each cell line. The two projects shared a
total of 425 common cell lines and 10,461 genes measured. We
adjusted the gene-expression data from CCLE project as the main
matrix using the associated data matrix from the GDSC project,
and compared the performance between MANCIE and SVA.

To evaluate the performance of MANCIE and SVA, the
correlation between the expression level and CNV were examined
for each gene using expression data with and without adjustment.
The underlying assumption is that better noise reduction should
give stronger correlation between expression and CNV as a
general trend, given the fact that the expression of many genes is
partially driven by its CNV. The difference in Spearman
correlation after MANCIE adjustment is calculated for each gene
(example of NDUFC2 gene in Fig. 4a,b) and it is positive for 63%
of the genes (Fig. 4c), compared with the 55% improved
correlation with SVA (Fig. 4d). These results show that MANCIE
is able to reduce noise in the expression data by using
independent data from a different lab and to improve the overall
data consistency.

Discussion
We present a general computational method for high-
dimensional genomic data integration. By case studies using
available large-scale genomics data cohorts from several con-
sortium efforts, we demonstrated that MANCIE can reduce
potential biases and noises without identifying them in prior and
successfully derive biologically meaningful information from data
integration. As a data-driven method, MANCIE uses the basic
principles from PCA by identifying the largest concordant
differences across samples. MANCIE has few parameters,
therefore making it more generally applicable to different data
types. To our knowledge, MANCIE is the best-performing
computational method for bias correction and integration of
two high-dimensional genomic data matrices. In general,
MANCIE can be applied to integrate any two data matrices with
matched columns, For example, it can integrate genetic mutation
profiles with gene-expression profiles, RNA-level expression with
protein expression, or chromatin profiles generated using similar
but different techniques, such as DNase-seq and ATAC-seq
and so on.

Like every computational method for high-dimensional data
analysis, MANCIE has its specific scope and limitation. It holds a
strong assumption that the concordant information between the
two data matrices is biologically meaningful. However, if the
biases or batch effects exist in both the main and associated
matrices in a concordant manner, MANCIE cannot identify
them, and might even enhance the consistent bias with
detrimental effects. In addition, MANCIE requires additional
information, such as physical distance information, for the
associated matrix summarization step. It assumes that, for one
row in the main matrix, the principal direction of the related
features in the associated matrix should contain concordance
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information that can be borrowed. For computational conve-
nience, we usually only consider the local effect, that is, only
include nearby associated data rows in the summarization of the
associated matrix into a row that matches the main data row.
There are situations when this might be insufficient, for example,
enhancer regulation at distal loci could be ignored in the
summarization step of MANCIE. Furthermore, MANCIE carries
out the adjustment through each corresponding row vectors
independently. It does not use the information across rows, which
could be valuable and helpful in more sophisticated statistical
inference to be explored in the near future. Last but not least,
MANCIE prefers many columns in the data matrices, because
more measured samples could potentially increase the power of
bias modelling and correction.

We tested different combinations of cutoff values in the
METABRIC and TCGA data. In these cases, previous prognostic
signatures were used to evaluate and guide the choice of
parameters, but this type of orthogonal information is not always
available to optimize parameter selection. According to our
experience with the example data sets in this study and for
simplicity’s sake, we set the default cutoff1 to be 0. The
underlying assumption is that only positive correlations between
the main row vector and the corresponding associated row vector
are biologically meaningful and can be integrated. Cutoff2 can be
empirically set so that about 1/3 of the rows are adjusted under
the third scenario, which has worked robustly in all the example
data sets in our study.

Taking together, MANCIE can be used as a general method for
high-dimensional data integration with the potential to reduce
noise and correct biases. It serves as a proof of principle that bias
can be removed by such a methodology and more advanced
statistical algorithm may be developed. For example, MANCIE
can be extended to include multiple associated matrices for
correction of bias in the one main matrix. It provides a novel
approach to genomic data integration, an area that will become
increasingly important for mining big biological data in the near
future.

Methods
MANCIE algorithm. Data description. The main matrix is denoted as M¼

m1

m2

� � �
mn1

2
664

3
775.

The main matrix can be any high-dimensional genomic data such as gene
expression or peak count data across many different samples/conditions (listed on
columns). The main matrix can come from high-throughput experiments such as
RNA-Seq, microarray, ChIP-Seq, DNase-Seq, ATAC-seq and so on. Each row
vector mi,i¼ 1, 2, y n1 represents a feature such as one gene or one peak.

Similarly, an associated matrix is defined as C¼

c1

c2

� � �
cn2

2
664

3
775, where each row vector

ci,i¼ 1, 2, y n2 represents a feature such as one gene or one peak. The associated
matrix C could come from the same or different type of experiment as M, but must
be conducted in exactly the same sample conditions as M. In other word, M and C
must have matched columns. n1¼ n2 is satisfied when M and C are from the same
experiment and may not be satisfied when M and C are from different experiments.
In the latter case, one matrix could be DNAase-Seq and the other matrix could be
RNA-Seq. For such scenarios, the annotation data relating both the main and
associated matrix (for example, chromosome, start position of feature and ending
position of feature) must be available.

Summarization of information in the associated matrix. This step is skipped
when each row vector in C has a one-to-one matching row vector in M, which
measures different features of the same entity. For example, when a gene’s
expression is measured in M and the same gene’s CNV data is measured in C,
the M and C matrices satisfy this condition. Otherwise, the C data need to be
summarized to this format that is compatible with the M matrix in both
dimensionality and biological meaning.

On the basis of the connection information, for each row in the main matrix, no
more than p rows in the associated matrix associated with the row in the main
matrix were selected and the first principal component of this sub-matrix is
calculated as the summarized row in the summarized associated matrix
(Supplementary Fig. 1).

One summarization function that works in the majority of all cases is described
here. For each row vector in M, mi, the nearest features defined by physical
genomic distances calculated in the annotation data in the C matrix are extracted.
The number of nearest features to extract can be set flexibly by users. Let

Ci¼

ci1

ci2

� � �
ciSi

2
664

3
775be the subset of C that are extracted whose features are closest to mi.

If not a single feature in C are found to be close to mi in the main matrix, this main
matrix row will be skipped for adjustment. Then the first principal component of
CT

i by PCA on correlation matrix is calculated as a row vectorc0i. In the case of
Pearson correlation cor c0i;mi

� �
smaller than 0, all elements in c0i are converted to

their additive inverse. These summarized vectors form a new matrix C0¼

c01
c02
� � �
c0n1

2
664

3
775.

The new matrix C0 is compatible in dimension with M and each row represents
summarized information carried by C that might be leveraged to remove the noise
in the corresponding row in M.

Removing noise in M matrix by combination with C. With slight abuse of terms,
if step (2) is carried out, still let C denote the new matrix C0 . Now for each row mi, a
three-way strategy is employed to remove noise by borrowing information from the
associated matrix C.

(a) If cor(ci, mi)o¼ cutoff1, the new row vector m0i¼mi:
(b) If cor(ci, mi)4cutoff1 and cor(ci, mi)o¼ cutoff2, the new row vector

m0i¼scale mið Þþ cor ci;mið Þ�scale cið Þ, where cor(ci, mi) is the Pearson correlation
and scale(x) is a function that scales a row vector to an s.d. of 1.

(c) If cor(ci, mi)4cutoff2, the new row vector m0i is the first principal

component of the PCA of
mi

ci

� �T

on the 2� 2 correlation matrix. In the case of

Pearson correlation cor m0i;mi
� �

smaller than 0, all elements in m0i are converted to
their additive inverse.

The two cutoffs cutoff1 and cutoff2 can be set flexibly by the users, with default
values of 0 and 0.5. In case summarization is involved and if the first cutoff is set to
be equal or less than 0, the first option will not be used. Finally, m0i calculated by
either of the three options is scaled to have the mean and s.d. of the old row vector

mi. The adjusted main matrix is then M0¼
m01
m02
m0n1

2
4

3
5.

ENCODE data analysis. DNase-Seq data sets from each individual cell line was
downloaded from ENCODE1. DHS peaks were identified in each cell line using
MACS230 with default parameters and only peaks whose summits are in introns or
intergenic regions and have a fold enrichment of at least four were retained. Peaks
wider than 150 bp were chopped to 150 bp centred at the summit location. Then
overlapping DHS peaks were merged into a new region. The DHS level on each
merged peak in each cell line were measured as RPKM. Exon array data were
processed using JETTA31. The sequence motif scan analyses were performed using
the MDSeqPos algorithm32 on the Cistrome analysis pipeline33.

Survival analysis for METABRIC data set. We adjusted both the training set
expression matrix and the testing set expression matrix with the corresponding
CNV data matrix using default parameters. Then we calculate the Pearson
correlation of each row vector in the original training set expression matrix and the
row vector in the adjusted training set expression matrix. We also calculated the
Pearson correlation for the testing set matrix before and after adjustment. We focus
our analysis on the row vectors (gene expression across patients) whose Pearson
correlations are below a certain threshold for either the training set or the testing
set. To be objective, we chose a series of threshold values in the downstream
analysis. Then we used LASSO34 with cox family to analyse selected genes from the
previous step to further narrow down the genes whose expression levels are
significantly correlated with survival in the training set. Then we fit a multivariate
Coxph model35 using these selected genes and predicted to the testing set after
which Coxph model returned a risk score vector for the testing set patients. We
dichotomized the risk score based on median risk and tested the Logrank P values
of the overall survival difference between the low-risk group and high-risk group.
Since the LASSO method is stochastic, generating slightly different results
especially when the number of input features is large, we ran the same analysis
20 times and obtained a distribution of logrank P values.

Data analysis by SVA. For TCGA data, we used cancer stage and smoking status
as the primary variables, no variable of known noise source and 1 surrogate
variable to be estimated. For CCLE/GDSC data, we used no variable of known
noise source and 1 surrogate variable to be estimated. For Encode data, we used
tissue type as known noise source and 1 surrogate variable to be estimated. Each
row vector is regressed on the estimated surrogate variable and replaced by the
regression residuals.
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Choice of parameters. For METABRIC and TCGA data studied in this paper,
Cutoff1 was set as 0 and the Cutoff2 being 0.5. For CCLE data, the two parameters
are 0 and 0.7, respectively. For Encode data, the two parameters are 0 and 0.5,
respectively. We used the differences in negative log rank P values as a metric to
evaluate the effect of different combinations of higher cutoff and lower cutoff on
the efficiency of MANCIE for the METABRIC data set.

Availability. MANCIE is available as an R-package (http://cran.r-project.org/web/
packages/MANCIE/).
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