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If trait-associated variants alter regulatory regions, then they 
should fall within chromatin marks in relevant cell types. 
However, it is unclear which of the many marks are most 
useful in defining cell types associated with disease and fine 
mapping variants. We hypothesized that informative marks 
are phenotypically cell type specific; that is, SNPs associated 
with the same trait likely overlap marks in the same cell type. 
We examined 15 chromatin marks and found that those 
highlighting active gene regulation were phenotypically 
cell type specific. Trimethylation of histone H3 at lysine 4 
(H3K4me3) was the most phenotypically cell type specific 	
(P < 1 × 10−6), driven by colocalization of variants and 	
marks rather than gene proximity (P < 0.001). H3K4me3 	
peaks overlapped with 37 SNPs for plasma low-density 
lipoprotein concentration in the liver (P < 7 × 10−5), 31 SNPs 
for rheumatoid arthritis within CD4+ regulatory T cells 	
(P = 1 × 10−4), 67 SNPs for type 2 diabetes in pancreatic islet 
cells (P = 0.003) and the liver (P = 0.003), and 14 SNPs for 
neuropsychiatric disease in neuronal tissues (P = 0.007). We 
show how cell type–specific H3K4me3 peaks can inform the 
fine mapping of associated SNPs to identify causal variation.

Recent work showing that common phenotypically associated SNPs 
are enriched for expression quantitative trait loci (eQTLs)1–6 sug-
gests that they might act by altering gene regulatory regions. One 
example is a common non-coding variant associated with plasma 
low-density lipoprotein (LDL) concentration. This variant modifies 
a CEBPB transcription factor–binding site in an enhancer and, in 
doing so, alters the expression of SORT1, a gene that affects plasma 

LDL concentration7. Another similar example is an intergenic risk 
allele for systemic lupus erythematosus (SLE) that decreases TNFAIP3 
transcription by modifying the nuclear factor (NF)-κb–binding site 
within a promoter8. Whereas many eQTLs and regulatory variants 
act universally, the ones most relevant to disease might have tissue 
specific activity6. The cell type specificity of regulatory elements is one 
of the major limitations in pursuing functional studies to investigate 
the regulatory potential of common alleles9–13.

One approach to identify regulatory elements influenced by com-
mon variants involves assaying epigenetic chromatin marks14–16. 
For example, H3K4me3 and monomethylation at H3K4 (H3K4me1) 
highlight active promoters and enhancers. But, a practical challenge 
of this approach is that dozens of chromatin marks might potentially 
be assayed17, and it is prohibitive to conduct studies on all of them 
in large numbers of different tissues or in samples collected from 
many individuals. However, because chromatin marks colocalize18, 
the status of a small subset of the most informative marks might be 
characterized, allowing for more focused assays in tissue libraries and 
populations to link variants to regulatory mechanisms. Additionally, 
it is challenging for a given phenotype to know which cell type(s) 
are most useful to assay chromatin marks in order to fine map risk 
alleles. If the critical cell types were known, then it might be possible 
to identify the biologically important cell type–specific eQTLs.

Here, we hypothesize that a proportion of alleles for a given phe-
notype influence gene regulation by altering regulatory elements that 
control expression within the cell types most relevant to the phe-
notype. If this is the case, then variants associated with the same 
phenotype should overlap marks preferentially occurring within the 
same cell type. Therefore, to identify the most informative chromatin 
marks, we quantify the degree to which their activity in specific cell 
types near phenotypically associated variants tracks with phenotype. 
We then show how those chromatin marks that are most phenotypi-
cally cell type specific can identify causal cell types, asserting that 
cell type–specific marks might be used to fine map and identify the 
plausible causal variant at a particular locus.

RESULTS
Summary of statistical methods
We first sought to define a score that corresponds to the possibility 
that a phenotypically associated SNP or a variant in tight linkage dis-
equilibrium (LD) with it can alter cell type–specific gene regulation, 
as highlighted by a specific chromatin mark. We define chromatin 
marks as precise positions in the genome where there is a significant 
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excess of reads from chromatin immunoprecipitation and sequencing 
(ChIP-seq) data over control sequencing data. We assume that vari-
ants close to or directly under tall chromatin mark peaks in specific 
cell types might be involved in cell type–specific gene regulation; on 
the other hand, variants that are far from chromatin mark peaks are 
much less likely to have a direct role in gene regulation. First, for each 
phenotypically associated SNP, we identified each SNP or insertion 
and/or deletion (indel) in tight LD (r2 > 0.8 in 1000 Genomes Project 
data19; Fig. 1a). Next, for each cell type, we assigned each variant in 
LD a score proportional to the height of the nearest chromatin mark 
peak (referred to as h; Online Methods) divided by the physical dis-
tance to the summit (h/d in Fig. 1b; referred to as s; Online Methods). 
If the physical distance to the nearest peak is more than 2.5 kb, then 
the score is set to 0 to obviate any confounding distal effects. Thus, 
a variant in LD directly under a strong peak will receive a very high 
score. For each cell type, we assigned the phenotypically associated 
SNP the maximum score achieved by any of its variants in LD. To 
quantify the specificity of signals across cell types (as opposed to 
the absolute magnitude), we normalized the h/d scores so that the 
Euclidean metric across cell types was one (normalized h/d scores (sn; 
Online Methods). Thus, a SNP within a chromatin mark that is active 
in only one cell type will have a high score of 1 in that cell type and 0 
in others. In contrast, a SNP close to chromatin marks that are not cell 
type specific will have similarly modest scores across cell types.

Then, we wanted to quantify the phenotypic cell type specificity 
of the overlap between SNPs and chromatin marks. To do this, we 
identified sets of SNPs associated with different phenotypes and 
then assessed the phenotypic cell type specificity of different marks 
(Fig. 1c). For informative marks, one or few cell types should con-
sistently score highly across many of the SNPs for a given pheno-
type. For an uninformative chromatin mark, the cell types with the 
greatest scores vary from SNP to SNP within the same phenotype. 

Therefore, for informative marks, there should be minimal deviation 
of scores within a phenotype across multiple cell types. To quantify 
the phenotypic cell type specificity of a chromatin mark, we defined 
a metric representing the variation of signal seen within a cell type 
within a specific phenotype (referred to as d; Online Methods). We 
evaluated the statistical significance of this metric with permutations 
with which we randomly reassigned SNPs to phenotypes (Fig. 1d). 
This permutation strategy restricts analysis to only phenotypically 
associated SNPs and, in doing so, avoids biases that might result 
from known differences between phenotypically associated SNPs 
and non–phenotypically associated SNPs in local LD structure, gene 
density and epigenetic activity. We note that this approach accurately 
estimates type I error (Supplementary Fig. 1a).

Active gene regulation is phenotypically cell type specific
To test the phenotypic cell type specificity of individual marks, we 
identified a set of SNPs associated with any one of many complex 
traits20. We selected only SNPs associated in European popula-
tions to facilitate LD calculations. To ensure adequate power, we 
selected only those traits that had at least 15 reported associations 
in European populations. Then, we pruned SNPs by LD so that they 
were all independent (r2 < 0.1 and >100 kb away from other associated 
SNPs in the genome; Online Methods). This resulted in a set of 510 
independent SNPs associated with 31 complex traits. After defining 
the genomic locations and heights of peaks for 15 chromatin marks 
assayed in 14 Encyclopedia of DNA Elements (ENCODE) cell types15 
(Supplementary Table 1), we observed statistically significant pheno
typic cell type specificity for 4 marks (P < 0.0033 = 0.05/15; Fig. 2).  
The most strongly associated chromatin marks were H3K4me3 and 
acetylation of histone H3 at lysine 9 (H3K9ac) (P < 1 × 10−6), which 
are known to highlight active gene promoters16,21. In fact, all four 
most significant modifications are known to occur at regions of the 

Figure 1  Overview of the statistical approach. 
(a) For phenotypically associated variants, 
other variants in tight LD are found. For each 
SNP associated with a phenotype from genetic 
studies (lead SNP, blue diamond; top), we 
define a locus by identifying SNPs in tight LD 
(r2 > 0.8, dashed red line; bottom) using data 
from the 1000 Genomes Project (blue dots; 
bottom). (b) Each locus is scored on the height 
and distance of the nearest peak to a variant in 
LD. For a selected chromatin mark, we define 
peaks (red) in n cell types across the genome. 
For each SNP in the locus (blue diamond and 
light-blue circles), we compute a score equal to 
the height of the closest peak (vertical purple 
line) divided by the distance to the summit in 
each of the n cell types (horizontal purple line). 
In each locus within each cell type, we note the 
value of the SNP with the highest score: this 
measure reflects the overlap between a locus 
and a cell type–specific regulatory element.  
(c) Across many phenotypes, we assess whether 
marks overlap alleles in specific cell types. 
Here, the measure of cell type specificity of 
each risk locus is represented by the intensity 
of red color. A phenotypically cell type–specific 
mark should consistently give signal in one or a 
small number of cell types for a given phenotype 
(yellow outline). We quantify the phenotypic cell 
type specificity of each mark. (d) Permutations are performed to assess the significance of phenotypic cell type specificity. To compute the significance 
of the phenotypic cell type specificity for a chromatin mark, we permutate SNPs from different loci across phenotypes; this preserves tissue-specific 
signals without altering the correlation and prevalence of tissue-specific signals.
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genome involved in active gene transcription; DNase I hypersensi-
tivity sites (DHSs; P < 1 × 10−3) and dimethylation of histone H3 
at lysine 79 (H3K79me2; P < 1 × 10−5) identify active promoter, 
enhancer or transcribed regions. Because some chromatin marks 
colocalize (Supplementary Fig. 2), we performed conditional 
analyses to assess whether chromatin marks contributed to pheno-
typic cell type specificity independently (Supplementary Fig. 3). 
We observed that the highly significant associations of H3K4me3, 
DHSs and H3K9ac were generally not independent. In contrast, we 
found that chromatin marks that did not correspond to active gene 
regulation were not phenotypically cell type specific. In particu-
lar, H3K9me1, H3K9me3, CTCF-binding sites and trimethylation 
at histone H3 lysine 27 (H3K27me3), highlighting transcription-
ally repressed heterochromatic insulator and polycomb-repressed 
regions, respectively, showed no evidence of being phenotypically 
cell type specific (P > 0.40).

To assess the reproducibility of these results, we conducted a simi-
lar analysis of data from the US National Institutes of Health (NIH) 
Epigenomics Project, consisting of assays for 6 different chromatin 
marks in 38 different cell types22 (Supplementary Table 2). We again 
observed that the most informative mark was H3K4me3 (P < 1 × 10−6), 
along with H3K4me1 (Fig. 2). H3K9ac was more nominally significant 
(P = 0.03), perhaps owing to the fewer cell types assayed in this experi-
ment. The concordance of the results from these two data sets was 
reassuring when considering that the data from the ENCODE Project 
were obtained on cell lines, whereas most of the NIH Epigenomics 
Project data were obtained using primary cell types.

Our approach benefits from taking advantage of 1000 Genomes 
Project data to identify variants in LD (Fig. 1a). Repeating our analysis 

using only the reported lead SNPs and not examining SNPs in LD 
resulted in considerably less significant results (Supplementary 
Fig. 1b). We note that some of the variation in phenotypic cell type 
specificity could be related to the variable number of assayed cell 
types for different chromatin marks; power to detect phenotypic 
cell type specificity correlates with the number of assayed cell types 
(Supplementary Fig. 4).

Variants colocalize with cell type–specific H3K4me3 peaks
Because chromatin marks tend to concentrate in and around genes, we 
considered the possibility that the observed overlap between H3K4me3 
peaks and variants might be an artifact of proximity to gene transcript 
sequences with phenotypically cell type specific expression. To assess 
the role of the specific peak locations versus proximity to specifically 
expressed genes, we repeated our analyses after randomly shifting the 
specific location of peaks locally (± 10 kb, s.d. of 2.5 kb) within pheno-
typically associated loci. While these small shifts would maintain the 
proximity of peaks to genes, they would disrupt the specific colocali-
zation of variants and H3K4me3 peaks. Indeed, in 1,000 such experi-
ments, we found that shifting peak locations lowered the significance 
of phenotypic cell type specificity (median P = 0.03), and we did not 
observe any instance where the phenotypic cell type specificity was 
more significant than it was in the actual data (Supplementary Fig. 5). 
This result strongly suggests that the specific colocalization of variants 
in LD with phenotypically associated SNPs and H3K4me3 peaks rather 
than proximity to gene structures is driving the phenotypic cell type 
specificity signal (P < 0.001 by permutation).

Enhancers and promoters underlie phenotypic cell type specificity
To understand whether the phenotypic cell type specificity that  
we observed was driven by the activity of promoters or enhancers, we 
divided chromatin peaks into those falling within proximal promoter 
regions (including the transcriptional start site (TSS) ± 2 kb) and 
those falling outside of promoter regions and repeated our analysis. 
Whereas phenotypic cell type specificity was seen both within and 
outside of the immediate promoter regions, H3K4me3, H3K79me2 
and DHSs were more significantly phenotypically cell type specific 
outside of promoter regions than within (Supplementary Fig. 6). 
We note that, although H3K4me3 marks are not generally thought 
of as being enriched in enhancers, there was evidence that they 
can be enriched in strong and disease-associated enhancers9,23,24. 
Alternatively, H3K4me3 enrichment outside of promoter sites might 
also represent unannotated sites.

We further assessed the phenotypic cell type specificity of previously 
published functional annotations on the basis of hidden Markov model 
states capturing information on nine separate chromatin marks9.  
We observed that hidden states 4 and 5, corresponding to active 
proximal enhancers and active distal enhancers, respectively, were 
most significantly phenotypically cell type specific (Supplementary  
Fig. 7). State 4 is highly enriched for H3K4me3 peaks, the mark that 
we observed to be the most phenotypically cell type specific.

Identification of key cell types for four phenotypes
We identified the cell types within which common variants likely influ-
ence gene regulation using published SNPs for 4 distinct phenotypes 
(Fig. 3 and Supplementary Table 3) and H3K4me3 data from the 
Epigenomics Project for a panel of 34 cell-types22. We selected these 
phenotypes because there is a reasonable sense of what the critical  
cell types might be and because a sufficient number of associated 
SNPs had been identified. For each phenotype, we assigned a cell 
type specificity score to each of its associated variants (Fig. 1a,b and 
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Figure 2  Evaluating the significance of phenotypic cell type specificity 
for different marks. We used two data sets of marks assayed in different 
cell types: the ENCODE Project and NIH Epigenomics Project. For each 
mark, we performed up to 1 million permutations of SNPs and phenotypes 
to calculate the null distribution of phenotypic cell type specificity for 
comparison to observed phenotypic cell type specificity. Below, we show 
the observed phenotypic cell type specificity (green lines) against the null 
distribution (black and gray density plots). Above, we plot the corresponding 
P values. The red dashed line indicates the significance threshold after 
correcting for the testing of multiple independent hypotheses.
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Online Methods) and compared to scores 
from equal-sized sets of matched SNP sets 
sampled from 45,950 LD-pruned SNPs3. 

can be controversial28–30. When we tested the 31 SNPs associated 
with rheumatoid arthritis31, we observed that they implicated 1,328 
H3K4me3 peaks in 34 tissues, with the most significant association 
to CD4+ T cells and, in particular, CD4+ regulatory T (Treg) cells  
(P = 1.3 × 10−4; Fig. 3b). The phenotypically similar CD4+ memory 
T cells were also highly significantly associated (P = 7.0 × 10−4)32. 
Of the 31 SNPs associated with rheumatoid arthritis, we found that 
6 (19.3%) were close to chromatin marks that were highly specific to 
CD4+ Treg cells, with relative specificity of 0.53 or greater (permuted  
95th-percentile threshold; Fig. 4b). These 6 SNPs are generally in tight 
LD with a variant that is very close to cell type–specific H3K4me3 
peaks (median of 37 bp away; see Supplementary Table 3 for details 
on the specific SNPs).

In instances where dense genotyping has been applied to localize 
the association signal, we speculate that cell type–specific overlap 
might become more apparent. Indeed, for the 31 loci associated with 
rheumatoid arthritis, we examined recent results from a fine-mapping 
study using the dense genotyping platform the Immunochip33. 
Indeed, when repeating the analysis with the newly defined index 
SNPs from each locus using dense genotyping data, we found that 
the significance of the enrichment for CD4+ Treg cells increased  
(5.1 × 10−5; Supplementary Fig. 10) and that the median specificity 
score for each locus increased from 0.13 to 0.16.

Application to psychiatric disorders implicates neuronal tissues
The 14 independent SNPs from neuropsychiatric disorders34,35 
mapped within 874 H3K4me3 peaks. Despite the limited power of this 
analysis, we were encouraged to see that these SNP associations impli-
cated multiple neuronal tissues, including the anterior caudate nucleus 
(P = 0.0076) and the mid-frontal lobe of the brain (P = 0.044) (Fig. 3c); 
we also observed a likely spurious association with colonic smooth 
muscle (P = 0.026). The role of the frontal lobe in neuropsychiatric 
disease in particular has long been appreciated36–38. Although none  

Adult liver

LD
L

(3
7 

lo
ci

)
R

he
um

at
oi

d 
ar

th
rit

is
(3

1 
lo

ci
)

N
eu

ro
ps

yc
hi

at
ric

di
so

rd
er

s
(1

4 
lo

ci
)

T
2D

(6
7 

lo
ci

)

Correlation Enrichement for H3K4me3 peaks
(P value)

0 1 1 10–1 10–2 10–3 10–4 10–5

Adult liver

Treg primary cells

Anterior caudate

Pancreatic islets

a

b

c

d

CD34+ primary cells

H
em

at
op

oi
et

ic
B

ra
in

M
us

cl
ul

os
ke

le
ta

l,
en

do
cr

in
e 

&
 o

th
er

s
G

as
tr

oi
nt

es
tin

al

CD3+ primary cells
CD19+ primary cells
CD8+ memory primary cells

CD4+ memory primary cells
Treg primary cells
Mesenchymal stem cells (bone marrow)

Mesenchymal stem cells (adipose)

Cingulate gyrus
Anterior caudate
Substantia nigra
Inferior temporal lobe
Mid-frontal lobe
Hippocampus middle
Pancreatic islets
Chondrocytes (mesenchymal stem cells)
Adipose nuclei
Adult kidney

Adult liver
Mucosa, colon

Mucosa, duodenum

Mucosa, stomach

Mucosa, rectum
Rectal smooth muscle

Duodenum smooth muscle
Stomach smooth muscle

Smooth muscle, colon

Muscle satellite cultured cells
Skeletal muscle
Adipocyte (mesenchymal stem cells)

CD8+ naive primary cells

CD4+ naive primary cells
CD34+ cultured cells

Mobilized CD34+ primary cells

Figure 3  SNPs for four complex traits overlap 
H3K4me3 marks in specific cell types. (a–d) 
We considered four phenotypes: LDL cholesterol 
plasma concentration (a), rheumatoid arthritis (b),  
neuropsychiatric disorders (schizophrenia and 
bipolar disease) (c) and T2D (d). For each 
phenotype, we calculated the cell type–specific 
overlap with H3K4me3 histone modification 
peaks in 34 tissues (listed on the left). The 
histograms on the right show the significance 
of the overlap for each tissue with variants from 
each of the phenotypes, estimated by sampling 
sets of SNPs matched so that the total number 
of peaks overlapping SNPs in LD was the same 
as in the test set. Adjacent to each histogram, 
we present correlation coefficients between 
two tissues based on scores computed from 
randomly sampled sets of independent loci. 
Colored boxes in d show independent P values 
for pancreatic islets and liver computed by 
removing the SNPs scoring highly in one tissue 
but not the other.

Because phenotypically associated SNPs have more epigenetic activity  
than other SNPs, we were careful to match sampled SNPs so that 
they had similar total numbers of H3K4me3 peaks across all 34 cell 
types as associated SNPs. Results were generally consistent in a more 
stringent analysis when we sampled instead from only phenotypi-
cally associated SNPs from the National Human Genome Research 
Institute (NHGRI) genome-wide association study (GWAS) catalog20 
(Supplementary Fig. 8). In addition to these phenotypes, we present 
separately the results for four additional phenotypes, B-cell–specific 
cis eQTL associations, SLE, type 1 diabetes (T1D) and body mass 
index (BMI) (Supplementary Fig. 9); in all of those instances, except 
BMI, we were able to identify highly significant cell types.

Application to plasma LDL concentration implicates liver 
As a positive control, we tested 37 SNPs associated with LDL con-
centration25 for overlap with H3K4me3 marks in different tissues. 
These variants should implicate regulatory activity within the liver, 
according to previous work7,26,27. In aggregate, we observed that the 
37 SNPs implicated a total of 1,501 H3K4me3 peaks in 34 different cell 
types. The most significant cell type was adult liver tissue (P = 7.2 ×  
10−5; Fig. 3a). We observed overlap with liver-specific peaks using 
other phenotypically cell type–specific marks, including H3K9ac  
(P = 0.003) and H3K4me1 (P = 0.002). In contrast, we observed 
little association with liver for the H3K27me3 or H3K9me3 marks 
(Fig. 2 and Supplementary Table 4). Examining the relative prox-
imity and specificity of the SNPs within 10,000 sets of matched 
SNP sets used to calculate statistical significance, we identified the 
95th-percentile threshold at a score of 0.58 (Fig. 4a). Of the 37 SNPs 
associated with LDL concentration, 7 (19%) were near to a highly 
liver-specific chromatin mark at this threshold. These seven SNPs 
are generally in tight LD with a variant that is very close to cell type– 
specific H3K4me3 peaks (median of 132 bp away; see Supplementary 
Table 3 for details on the specific SNPs).

Application to rheumatoid arthritis implicates CD4+ Treg cells 
For rheumatoid arthritis and other autoimmune diseases, the critical 
immune cell types are often not clearly defined in the literature and 
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of these results reached a conservative level of significance after cor-
recting for multiple-hypothesis testing, we are hopeful that additional 
SNP discoveries will help clarify this result further. Of the 14 SNPs 
associated with neuropsychiatric disorders, 3 (21%) had a tissue-
specific chromatin mark within the anterior caudate, with a relative 
specificity of 0.28 or greater (permuted 95th percentile; Fig. 4c).

Application to T2D implicates pancreatic islets and liver
In certain instances, it might be plausible that multiple tissues could 
be implicated in a disease. When we examined 67 SNPs for type 2 dia-
betes (T2D)39–50, implicating a total of 2,776 H3K4me3 peaks within 
34 different cell types, we observed the most significant enrichment 
in pancreatic islets (P = 0.0061) and the liver (P = 0.0079) (Fig. 3d). In 
particular, of the 67 SNPs associated with type 2 diabetes, 14 (20.1%) 
were either highly specific for chromatin marks within the liver (at 
a 0.57 permuted 95th-percentile threshold) or pancreatic islets (at a 
0.65 permuted 95th-percentile threshold); these SNPs are in tight LD 
with a marker that has a median distance of 46 bp from the summit of 
a cell type–specific peak. When we tested the pancreatic islet and liver 
tissues together, we found that the combination of liver and pancreatic 
islets was even more significant than the tissues individually (P = 
2.0 × 10−4; Online Methods) and was more significant than all other 
possible tissue pairs. We found that the SNPs driving the overlap in 
the two tissues were distinct (Fig. 4d). When we removed the SNPs 
most specific for pancreatic islet marks (score > 0.3), we observed that 
enrichment in liver was even more apparent (P = 0.0032); similarly, 
when we removed the SNPs most specific for overlap with liver marks 
(score > 0.3), we observed that the enrichment in pancreatic islets was 
also more apparent (P = 0.0026). Both islet cells and the liver have 
long been known to have a key role in mediating glucose synthesis, 
insulin secretion and diabetes51.

Fine mapping with cell type–specific H3K4me3 peaks
One of the major challenges in understanding complex trait associa-
tions is to identify the causal variants and the mechanisms through 
which they affect genes. Associated variants can be fine mapped to 

variants in tight LD within cell type–specific chromatin marks in the 
appropriate cell type. Here, we present examples where cell type– 
specific H3K4me3 peaks can potentially be used to localize associated 
variants to causal variants.

First, we considered the rs629301 SNP that is associated with 
plasma LDL concentration in the region including the SORT1 gene 
(Fig. 5a). A liver-specific H3K4me3 peak, not seen as prominently 
in other cell types, overlapped with this SNP and three other variants 
in tight LD with it. This H3K4me3 peak is located far from the TSS 
region and corresponds to a hepatocyte enhancer region7. The clos-
est SNP to the summit of the peak (87 bp away) is the rs12740374 
functional variant. This variant is known to alter a CEBPB-binding 
site within the enhancer region controlling SORT1.

Another example is provided by the locus for T2D represented by 
the rs704184 reported SNP association. rs10814915, tightly in LD 
with the reported GWAS SNP (r2 = 0.93), scored highly for pancre-
atic islets but showed no tissue specificity for the liver (Fig. 5b). This 
SNP located only 84 bp away from the summit of a highly pancre-
atic islet–specific peak. rs10814915 is predicted to be present within 
a sequence bound by the glucocorticoid receptor (GR)52, which is 
known to have a role in pancreatic islets and glucose regulation. The 
SNP resides within an intron of the GLIS3 gene, which is involved in 
the development of pancreatic islets.

Finally, we examined the locus for rheumatoid arthritis defined 
by a reported association with the rs13119723 SNP in the intron of 
a gene with unknown function, KIAA1109. This SNP is in LD with 
other variants spanning over 500 kb within this locus, rendering  
fine-mapping efforts particularly challenging. We identified a SNP, 
rs13140464, in tight LD with rs13119723 (r2 = 0.9) (Fig. 5c), which 
maps only 116 bp from the summit of the H3K4me3 peak, which is 
highly specific to CD4+ Treg cells with a score of 0.63. This SNP is 
located between the IL2 and IL21 genes, 122 kb downstream of IL2 
and 34 kb upstream of IL21, and is 280 kb away from the published 
SNP. It is tempting to speculate that rs13140464 might act by altering 
a highly cell type–specific regulatory sequence controlling IL2 expres-
sion, which has a key role in CD4+ Treg maturation53.
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95th-percentile threshold for the sampled sets of matched SNPs (dashed line), which we use as a specificity cutoff. For each phenotype, about one-fourth  
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DISCUSSION
In this study, we demonstrated that chromatin marks highlighting 
active regulatory regions, such as H3K4me3, H3K9ac and DHSs, over-
lap phenotypically associated variants; furthermore, this overlap is 
phenotypically cell type specific. These results strongly support the 
hypothesis that many complex disease and trait alleles might act by 
influencing gene regulation in a cell type–specific manner. In addi-
tion, we quantified the degree to which different marks are cell type 
specific in their overlap with phenotypically associated SNPs. These 
cell type–specific marks might not only be used to connect pheno-
types to specific cell types, but they might also be useful in map-
ping phenotype-associated SNPs to potential regulatory variants. In 
particular, we consistently observed that H3K4me3 marks could be 
used to effectively identify specific cell types that are enriched among 
specific phenotypes. We note that this statistical approach can be 
applied to assess the significance of other chromatin marks or other 
cell type–specific gene annotations as they become available.

In the phenotypes that we examined, we found that about one-
fourth of associated variants could be connected to a highly cell type–
specific mark within a critical cell type (Fig. 5). In instances where we 
do not observe a SNP in tight LD within a highly cell type–specific 
H3K4me3 peak, it is possible that a regulatory region that is not cell 
type specific might be altered. Alternatively, in some instances the 
reported SNP association will need to be further refined with dense 
genotyping, or undiscovered variants in tight LD will need to be ascer-
tained through sequencing, before the effect of a cell type–specific 
peak can be identified. Finally, for many phenotypes, multiple cell 
types could be involved, in which case this approach might have lim-
ited efficacy. We demonstrated one example of this type of scenario 
in T2D, where we detected effects both in liver and pancreatic islet 
cell types.

We acknowledge that our approach is potentially sensitive to the 
diversity and number of cell types assayed. For instance, a limited  
application to a set of hematopoietic cell types might not be 

particularly informative if a set of purely neurological phenotypes is 
assayed. We note that our approach depends critically on technical 
factors—for instance, the quality of antibody reagents, experimen-
tal protocols or other technical factors that might introduce noise 
into specific chromatin mark assays could mitigate true signals. Our 
approach may perform better on  the chromatin marks with higher 
quality assays.

Once variants and cell types are identified, they will likely be 
excellent candidates for cell type–specific functional investigations, 
including allelic imbalance assays to define cis-eQTL activity54, cell 
type–specific DHS quantitative trait locus (dsQTL) analyses55 and 
identification of active transcription factor–binding sites. These cell 
type–specific investigations in appropriately chosen cell types might 
ultimately help to lead investigators from common disease variation 
to causal variants and molecular mechanisms.

URLs. All software is available online at http://www.broadinstitute.
org/mpg/epigwas/. ENCODE, http://genome.ucsc.edu/ENCODE/
downloads.html; NIH Roadmap Epigenomics Mapping Consortium, 
http://www.roadmapepigenomics.org/; NHGRI GWAS catalog, http://
www.genome.gov/gwastudies/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Chromatin mark data. We obtained two publicly available data sets for chro-
matin mark assays on different sets of tissues. We use the term chromatin 
mark broadly to include histone modifications and DHSs, as well as common 
epigenetic features, such as CTCF-binding sites.

First, we used data from the ENCODE Project, which included sequence 
reads from ChIP-seq assays and controls in up to 14 different cell types from 
a diverse set of 15 chromatin marks: CTCF-binding sites, the variant H2A 
histone (H2A.Z), H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, 
H3K4me3, H3K79me2, H3K9ac, H3K9me1, H3K9me3, H4K20me1,  
Pol2b-binding sites and DHSs15 (Supplementary Tables 1 and 2). We sepa-
rately obtained hidden chromatin state annotations for 8 of the 14 cell types 
defined by clustering chromatin marks9.

Second, we used data from the NIH Roadmap Epigenomics Mapping 
Consortium that assayed only six chromatin marks on a large number of 
cell types22. This data set included sequence reads from ChIP-seq assays and 
controls for 6 histone modifications—H3K27me3, H3K4me3, H3K36me3, 
H3K9ac, H3K4me1 and H3K9me3—assayed in 38 adult and fetal tissues 
(Supplementary Table 2).

For both of these data sets, we downloaded data comprising hg19-mapped 
sequence reads. In instances where there were multiple replicates of a given 
ChIP-seq assay for the same tissue, we aggregated sequence reads for the indi-
vidual assays. We also obtained mapped reads from control data comprising 
sequenced genomic DNA. We ran MACS (v1.4) software to identify signi
ficant peaks (P < 1 × 10−5), specific locations within the genome with enrich-
ment of tag sequences, setting the bandwidth parameter to 300 bp56. For each  
chromatin mark, we located its summit, which represents the position with 
the highest pileup of sequence tags.

Processing chromatin mark data. Once we identified peaks, we used MACS 
to determine the fold enrichment of tags compared to controls, using the 
equation 

f = l
l

mean

local

where λpeak and λlocal are parameters for a Poisson distribution determined 
by fitting the local sequence tag distributions in the peak region from ChIP-
seq data and control data, respectively. We considered f as the height of peak 
instead of the raw number tags, as this approach leverages control data to 
account for local biases in the genome (due to sequencing bias, mapping bias, 
chromatin structure and genome copy-number variations) and improves the 
robustness and specificity of the estimation.

We then corrected for global variation in multiple experiments for the same 
chromatin mark in different cell types, using the equation 
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where fi,j corresponds to fold enrichment for the peak j in the cell type i before 
normalization, and hi,j,norm is the fold enrichment after normalization (or the 
height of the peak).

Phenotypes and associated SNPs. To estimate the phenotypic cell type specifi-
city of each chromatin mark, we identified a comprehensive set of independent 
SNPs associated with unique phenotypes. We used data from a catalog sum-
marizing results from recent GWAS20 (downloaded January 2012). We selected 
only the phenotype-associated SNPs with highly statistically significant asso-
ciations (P < 5 × 10−8). To ensure the applicability of the 1000 Genomes Project 
resource, we used only those SNPs associated in populations of European 
descent. To limit the analysis to phenotypes that have an adequate number 
of SNP associations, we selected only phenotypes with at least 15 such SNP 
associations. To ensure the independence of the associated SNPs, we removed 
SNPs with r2 > 0.1 and those that were <100 kb from a more strongly associated 

(1)(1)

(2)(2)

variant in the genome. To preserve a priori specific phenotypes for independ-
ent testing, we removed SNPs associated with rheumatoid arthritis, BMI and 
LDL plasma cholesterol concentration as well as height. For variants associated 
with multiple phenotypes, we selected a single phenotype association and 
discarded others; we selected the SNP associated with the phenotype with the 
fewest SNPs. Our final data set consisted of 510 risk variants associated with 
31 diseases or traits.

To test our approach, we also separately identified in the literature 37 SNPs 
associated with LDL plasma concentration25, 31 SNPs associated with rheu-
matoid arthritis risk31, 67 SNPs associated with T2D risk39–50 and 14 risk loci 
for neuropsychiatric disorders34,35.

Evaluating marks for their phenotypically cell–type specific overlap with 
variants. Step 1. Identifying variants in LD with associated SNPs. We recog-
nized that the observed phenotype association of a given variant might be the 
consequence of other variants tightly linked to the associated variant (Fig. 1a). 
We therefore comprehensively ascertained variants from the 1000 Genomes 
Project to identify all variants (SNPs and indels) in LD19 (r2 > 0.8) on the basis 
of haplotypes reconstructed with Beagle from the subset of 379 individuals 
of European descent.

Step 2. Scoring regulatory activity near a risk SNP. Next, we examined 
chromatin marks in the different cell types located near associated SNPs 
(Fig. 1b). We assumed that the closer an associated SNP (or variant in LD) 
was to a tall peak, the greater the chance that it might influence a regulatory 
element highlighted by that peak. We scored each associated SNP k within 
each cell type by identifying a SNP k′ (or indel) in tight LD that was closest 
to a chromatin mark peak j in tissue i. We then assigned a score sj,k equal to 
the height of peak j in the tissue i, hi,j,norm (referred to as h in the main text) 
divided by the distance d between the SNP k′ and the summit of the peak j.  
If there was no peak within 2.5 kb of each SNP in LD with SNP k, then si,k was  
set to zero.

Step 3. Normalization to obtain a cell type specificity score. For each associ-
ated SNP k and chromatin mark, we obtained a vector of scores for multiple 
cell types i. To compare the cell type specificity score across risk variants and 
phenotypes, we applied Euclidean normalization in the following equation: 
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i k

i k

i k
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,
,

,

=
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This ensured that sni,k emphasized cell type specificity instead of the mag-
nitude of the signal. For associated risk variants not near any peak, where si,k is 
zero for all i, we replaced values with the average of values of other associated 
SNPs with at least one nonzero si,k value over all cell types.

Step 4. Estimating the phenotypic cell type specificity of a chromatin mark. 
If a chromatin mark is informative for phenotypic cell type specificity, then 
the deviance of chromatin mark overlap for associated SNPs (sni,k) should be 
minimal for a given phenotype and tissue. If a chromatin mark is not informa-
tive, then the deviance of chromatin mark overlap for associated SNPs will be 
high for a phenotype and tissue.

Therefore, we defined a deviance-based metric of phenotypic cell type spe-
cificity for a mark, which was the aggregate sum of the squared differences 
between sni,k values and mean values for fixed phenotypes p and cell types i, 
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where meani,p(sn) is the mean of the normalized cell specificity scores in the 
cell type i for SNPs associated with phenotype p. If a mark is informative, 
then sn scores are dependent on the phenotype and cell type, and this sum of 
squares should be relatively small.

Step 5. Evaluating the statistical significance of phenotypic cell type specificity. 
To evaluate the statistical significance of phenotypic cell type specificity for 
particular marks, we conducted up to 1 million permutations reassigning SNPs 
to phenotypes randomly. This ensures that the properties of associated SNPs 
in the analysis are maintained, only disrupting their phenotypic associations.  

(3)(3)

(4)(4)
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We recalculated d after each permutation. To compute P values, we calculated 
the proportion of d scores from permutations (these correspond to the null 
hypothesis) that were greater than the observed d score.

Using overlap with chromatin marks to identify the critical cell type(s) 
for a specific phenotype. After identifying SNPs associated with a selected 
phenotype, we compute a cell type specificity score ci,p for a phenotype p by 
summing the normalized sni,k scores for a cell type i and associated SNPs k in 
the following equation: 

c sni p i k
k p

, ,=
∈
∑

To evaluate the statistical significance of cell type specificity scores ci,p, we 
defined matched sets of SNPs not associated with phenotype p and used them 
to calculate cell type specificity scores. Statistical significance was calculated 
as the proportion of SNP sets with cell type specificity scores exceeding the 
observed scores for actual phenotypic SNPs.

(5)(5)

To define the matched SNP sets, we required that the sampled SNPs had 
the same total number of chromatin mark peaks in the region in LD across all 
cell types as associated SNPs. This ensures that randomly selected SNPs have 
similar nearby regulatory activity. For the primary analysis, we drew random 
SNPs from 45,950 independent HapMap SNPs that were clustered to ensure 
minimal independence3. In a secondary analysis, we drew SNPs from pheno-
typically associated SNPs from the NIH GWAS catalog20.

Using overlap with marks to identify pairs of critical cell types for a specific 
phenotype. To test possible pairs of n cell types for association, we constructed 
(n – 1) × n/2 artificial ChIP-seq profiles for each tissue pair. Each artificial 
profile consisted of all of the peaks defined in both tissues, where the peak 
heights were reduced to half of their original heights. We then tested for asso-
ciation with cell type pairs in the same way as for single cell types, except that 
we replaced individual cell type scores with scores for cell type pairs.

56.	Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 
(2008).
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