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An increasing number of whole-genome/exome sequenc-
ing (WGS/WES) studies are being conducted to investigate 
the genetic bases of human diseases and traits, includ-

ing the Trans-Omics for Precision Medicine Program (TOPMed) 
of the National Heart, Lung, and Blood Institute and the Genome 
Sequencing Program (GSP) of the National Human Genome 
Research Institute. Such studies enable the assessment of associa-
tions between complex traits and both coding and noncoding RVs 
(minor allele frequency (MAF) < 1%) across the genome. However, 
single-variant analyses typically have low power to identify asso-
ciations with RVs1–3. To improve power, variant set tests have  

been proposed to jointly test the effects of given sets of multiple 
RVs. These methods include the burden test4–7, sequence kernel  
association test (SKAT)8 and their various combinations9–12.  
In parallel, external biological information provided by func-
tional annotations, such as conservation scores and predicted  
enhancer status, has been successfully used to prioritize  
plausibly causal common variants in fine-mapping studies, par-
titioning heritability in GWAS and predicting genetic risk13–17.  
It is of substantial interest to incorporate variant functional annota-
tions effectively to boost the power of RV analysis of WGS associa-
tion studies18,19.
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Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex pheno-
types. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set 
test for association using annotation information), a scalable and powerful RV association test method that effectively incor-
porates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we 
introduce ‘annotation principal components’, multidimensional summaries of in silico variant annotations. STAAR accounts 
for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequenc-
ing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 
discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated 
new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with 
low-density lipoprotein cholesterol.
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Variant functional annotations take two forms: (1) qualitative 
functional groupings into genomic elements, such as variant effect 
predictor categories20,21; and (2) quantitative functional scores avail-
able for variants across the genome, including protein functional 
scores22,23, evolutionary conservation scores24,25, epigenetic mea-
sures26 and integrative functional scores27. Different annotation 
scores capture diverse aspects of variant function28,29. Given the 
diversity of available annotations, efforts have been made to aggre-
gate the evidence they provide on genomic function30. Simultaneous 
use of multiple, varied functional annotation scores in variant set 
tests could improve RV association study power, for example, by 
optimally selecting and weighting plausibly causal RVs31.

To boost power for variant set tests in the WGS RV association  
study, we propose the variant-Set Test for Association using 
Annotation infoRmation (STAAR), a general framework that 
dynamically incorporates both qualitative functional categories and 
quantitative complementary annotation scores using a unified omni-
bus multidimensional weighting scheme. For the latter, to effectively 
capture the multifaceted biological impact of a variant, we introduce 
annotation principal components, multidimensional summaries of 
annotation scores that can be leveraged in the STAAR framework.

Recent methods32–34 have incorporated functional annotations 
in genetic association studies. However, these methods cannot be 
scaled to analyze large-scale WGS studies while accounting for 
relatedness and population structure. Large-scale WGS and WES 
studies, such as TOPMed and GSP, include a considerable fraction 
of related and ancestrally diverse samples. STAAR accounts for 
both relatedness and population structure, as well as longitudinal 
follow-up designs, for both quantitative and dichotomous traits, 
using a generalized linear mixed model (GLMM) framework35 that 
includes linear and logistic mixed models36,37. Using sparse genetic 
relatedness matrices (GRMs)38, STAAR is computationally scalable 
for very large WGS studies and biobanks of hundreds of thousands 
of samples.

In the present study, we performed extensive simulation studies 
to demonstrate that STAAR can achieve substantially greater power 

compared to conventional variant set tests, while maintaining accu-
rate type I error rates for both quantitative and dichotomous phe-
notypes. We then applied STAAR to perform WGS gene-centric 
and sliding window-based genetic region analysis of 12,316 discov-
ery and 17,822 replication samples with 4 quantitative lipid traits: 
low-density lipoprotein cholesterol (LDL-C); high-density lipopro-
tein cholesterol (HDL-C); triglycerides (TG) and total cholesterol 
(TC) from the National Heart, Lung, and Blood Institute (NHLBI) 
TOPMed program. We show that STAAR outperforms existing 
methods and identifies new and replicated associations, including 
with LDL-C in disruptive missense RVs of NPC1L1 and in an inter-
genic region near APOC1P1.

Results
Overview of methods. STAAR is a general framework for analyzing 
WGS RV association study at scale by using both qualitative func-
tional categories and multiple in silico variant annotation scores 
within a variant set, while accounting for population structure and 
relatedness by fitting linear and logistic mixed models for quanti-
tative and dichotomous traits using fast and scalable algorithms. 
For each variant set, there are two main components of the STAAR 
framework: (1) using annotation principal components to capture 
and prioritize multidimensional variant biological functions; and 
(2) testing the association between each variant set and phenotypes 
by incorporating these annotation principal components as well as 
other integrative functional scores and MAFs in the STAAR test sta-
tistics using an omnibus weighting scheme (Fig. 1).

Variants often influence genes and gene products through multi-
ple mechanisms. We extracted a broad set of variant functional anno-
tations (Supplementary Table 1), including individual and ensemble 
functional scores, from various databases, such as ENCODE (v.2)26 
and Roadmap Epigenomics (Human Epigenome Atlas release 9)39, 
as well as other evolutionary and protein annotation databases27,40,41. 
A correlation heatmap across variants in the genome (Fig. 2) shows 
that the correlation structure among all individual annotations 
is approximately block-diagonal, with highly correlated blocks  
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Fig. 1 | STAAR workflow. a, Input data of STAAR, including genotypes, phenotypes, covariates and (sparse) genetic relatedness matrix is prepared.  
b, All variants in the genome are annotated and the annotation principal components for different classes of variant function are calculated. PCA, principal 
component analysis. c, Two types of variant sets are defined: gene-centric analysis by grouping variants into functional genomic elements for each 
protein-coding gene; and genetic region analysis using agnostic sliding windows. d, The STAAR statistics for each variant set is calculated. aPC, annotation 
principal component. e, The STAAR-O P values for all variant sets defined in c are obtained and significant findings are reported.
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representing different classes of variant function, for example, epi-
genetic function, evolutionary conservation, protein function and 
local nucleotide diversity. We introduce annotation principal com-
ponents defined as the first principal components calculated from 
the set of individual functional annotation scores in each functional 
block (Supplementary Table 1 and Methods). Annotation principal 
components effectively reduce the dimensionality of the large num-
ber of individual annotations and summarize multiple aspects of 
variant function.

The STAAR framework first calculates a set of multiple candi-
date test statistics using different annotation weights under a par-
ticular testing approach (Fig. 1d). For each type of RV test, STAAR 
then uses the aggregated Cauchy association test (ACAT) method to 
combine the resulting P values calculated using different weights to 
effectively and powerfully aggregate the association strength from 
all annotations in a data-adaptive manner (Fig. 1d and Methods). 
The ACAT method for combining P values is accurate and com-
putationally efficient, while accounting for arbitrary correlation 
structure between tests9,42. To leverage the advantages of different 
types of tests, we propose an omnibus test in the STAAR framework 
(STAAR-O) by combining P values across different types of mul-
tiple annotation-weighted variant set tests using the ACAT method 
(Fig. 1d and Methods).

Simulation studies. To evaluate type I errors and the power of 
STAAR compared to conventional variant set tests, we performed 
simulation studies under a variety of configurations. We followed 
the steps described in Data simulation (Methods) to generate both 
continuous and dichotomous phenotypes. We generated genotypes 
by simulating 20,000 sequences for 100 different regions with each 
spanning 1 megabase (Mb). The data were generated to mimic the 
linkage disequilibrium structure of an African-American popula-
tion by using the calibration coalescent model43. We randomly 
selected 5-kilobase (kb) regions from these 1-Mb regions and con-
sidered sample sizes of 2,500, 5,000 and 10,000 for each replicate. 
The simulation studies focused on aggregating uncommon variants 
with an MAF < 5%.

Type I error simulations. The empirical type I error rates for 
STAAR-O were evaluated based on 109 simulations at α = 10−5, 
10−6,10−7 for continuous and dichotomous traits (Supplementary 
Table 2). The results show that the type I error rate for STAAR-O 
was well controlled for both continuous and dichotomous traits 
at all α levels. For continuous traits, STAAR-O delivered accurate 
empirical type I error rates. For dichotomous traits and the smallest 
α level considered (10−7), STAAR-O was slightly conservative for 
moderate sample sizes (2,500 individuals); however, its type I error 
rate came close to the nominal level with larger sample sizes.

Empirical power simulations. Next, we evaluated the power of 
STAAR empirically by incorporating MAF and ten annotations 
into its analysis and comparing the results with conventional vari-
ant set tests in a variety of configurations. Power was estimated as 
the proportion of P values less than α = 10−7 based on 104 replicates. 
The causality of variants was allowed to be dependent on different 
sets of annotations through a logistic model (Methods). We con-
sidered different proportions of causal variants (5, 15 and 35% on 
average) in the signal region. For both continuous and dichoto-
mous traits, STAAR-O incorporating all ten annotations had higher 
power than conventional variant set tests in terms of signal region 
detection (Supplementary Figs. 1–4). The power simulation results 
of STAAR-O for different magnitudes of effect sizes and different 
proportions of effect size directions yielded the same conclusion 
(Supplementary Figs. 1, 5 and 6). Overall, our simulation studies 
showed that STAAR-O could provide considerably higher power 
than conventional variant set tests.

Association analysis of lipid traits in the TOPMed WGS data. We 
applied STAAR to identify RV sets associated with four quantita-
tive lipid traits (LDL-C, HDL-C, TG and TC) using TOPMed WGS 
data44,45. LDL-C and TC were adjusted for the presence of medica-
tions as described elsewhere44. DNA samples were sequenced at 
>30× target coverage. The discovery phase consisted of four study 
cohorts of TOPMed Freeze 3. The replication phase consisted of ten 
different study cohorts in TOPMed Freeze 5 that were not in Freeze 
3 (Supplementary Note and Supplementary Table 3).

We performed sample- and variant-level quality control44,45. 
There were 12,316 discovery samples, which had 155 million 
single-nucleotide variants (SNVs), and 17,822 replication samples, 
which had 188 million SNVs. The TOPMed data consist of ances-
trally diverse and multi-ancestry-related samples. Race/ethnicity 
was defined using a combination of self-reported race/ethnicity and 
study recruitment information. The discovery cohorts consisted of 
4,580 (37.2%) Black or African-American individuals, 6,266 (50.9%) 
White, 543 (4.4%) Asian-American and 927 (7.5%) Hispanic/Latino 
American. Among all samples in the discovery phase, 3,577 (29.0%) 
had first-degree relatedness, 491 (4.0%) had second-degree related-
ness and 273 (2.2%) had third-degree relatedness (Supplementary 
Fig. 7). Among all SNVs observed in the discovery samples, there 
were 6.5 million (4.2%) common variants (MAF > 5%), 5.3 million 
(3.4%) low-frequency variants (1% ≤ MAF ≤ 5%) and 143.2 million 
(92.4%) RVs (MAF < 1%). The race/ethnicity, related sample and 
variant number distributions for the replication phase and pooled 
samples (samples from both discovery and replication phases) are 
given in Supplementary Table 4.

Our study used the proposed STAAR-O method to perform (1) 
gene-centric analysis using RV sets based on functional categories 
and (2) genetic region analysis using variant sets defined by 2-kb 
sliding windows with 1-kb skip length across the genome. We 
adjusted for age, age2, sex, race/ethnicity, study and the first ten 
ancestral principal components, while controlling for relatedness 
using linear mixed models, with inverse rank normal transforma-
tion applied to phenotypes (Methods). Race/ethnicity was included 
as a covariate to adjust for sociocultural and environmental factors, 
while genetic ancestry differences were captured by the inclusion 
of the ancestral principal components. In addition to the 2 MAF 
weights3, we incorporated 13 aggregated functional annotation 
scores in STAAR-O: 3 integrative scores (CADD27, LINSIGHT46  
and FATHMM-XF47); and 10 annotation principal components. 
Figure 2 summarizes the correlation among all functional annota-
tions, including 63 individual scores, 3 integrative scores and 10 
annotation principal components.

Gene-centric association analysis of coding and noncoding RVs. 
We performed gene-centric analysis to identify whether RVs in 
coding, promoter and enhancer regions of genes are associated with 
lipid traits using STAAR-O. For each of the four lipid traits, we ana-
lyzed five functional categories (masks) of coding and noncoding 
variants of each gene: (1) putative loss of function (stop gain, stop 
loss and splice) RVs; (2) missense RVs; (3) synonymous RVs; (4) 
promoter RVs; and (5) enhancer RVs. The putative loss of function, 
missense and synonymous RVs were defined by GENCODE variant 
effect predictor categories20,21. Promoter RVs were defined as RVs 
in the ±3-kb window of the transcription starting site (TSS) with 
overlap of cap analysis of gene expression (CAGE) sites. Enhancer 
RVs were defined as RVs in GeneHancer-predicted regions with 
overlap of CAGE sites48–50. Within each gene functional category,  
we tested for an association between RVs (MAF < 1%) in the func-
tional category and lipid traits using STAAR-O with the 13 aggre-
gated functional annotations described earlier. For missense RVs,  
we incorporated an additional annotation functional category 
predicting functionally ‘disruptive’ variants determined by meta- 
analytic support vector machine (MetaSVM)51, which measures the 
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deleteriousness of missense mutations. The overall distributions of 
STAAR-O P values were well calibrated for all four lipid phenotypes 
(Supplementary Fig. 8). For unconditional analysis, we considered 
a Bonferroni-corrected genome-wide significance threshold of 
α = 0.05/(20,000 × 5) = 5.00 × 10−7 accounting for 5 different masks 
across protein-coding genes.

STAAR-O identified 21 genome-wide significant associations 
with 4 lipid phenotypes using unconditional analysis of the discov-
ery samples (Supplementary Table 5 and Supplementary Fig. 9). 
After conditioning on known lipid-associated variants44,52–67, 11 out 
of the 21 associations were significant at the Bonferroni correction 
level of 0.05/21 = 2.38 × 10−3 using the discovery samples. These 
included associations with LDL-C (putative loss-of-function RVs in 
PCSK9 and APOB, missense RVs in PCSK9, NPC1L1 and APOE), 
association with HDL-C (putative loss-of-function RVs in APOC3), 
association with TG (putative loss-of-function RVs in APOC3) and 
associations with TC (putative loss-of-function RVs in PCSK9 and 
APOB, missense RVs in PCSK9 and LIPG) (Table 1). Of these 11 
associations, 10 were replicated at the Bonferroni-corrected level 
of 0.05/11 = 4.55 × 10−3 after adjusting for known lipid-associated 

variants. The association between APOC3 putative loss-of-function 
RVs and HDL-C was unreported in a previous study using the same 
TOPMed Freeze 3 data44.

The association between missense RVs in NPC1L1 and LDL-C 
was not detected by the conventional variant set tests and has 
not been observed in previous studies44,55,68,69. In the discovery 
phase, its unconditional STAAR-O P value was 1.29 × 10−7, while 
the most significant conventional variant set test was the burden 
test with P = 7.04 × 10−6. This association was not driven by any 
single RV (minimum single RV P value > 10−3) but was due to the 
aggregated effects of multiple missense RVs. The P value of the 
burden test additionally weighted by MetaSVM was the small-
est of all annotations (P = 3.15 × 10−9), highlighting the signifi-
cant association between disruptive missense RVs in NPC1L1 and 
LDL-C (Supplementary Fig. 10). Among all 174 missense RVs 
in NPC1L1 from the discovery samples, the disruptive missense 
RVs as predicted by MetaSVM were enriched among variants 
with higher annotation principal component-conservation scores 
(Supplementary Table 6). This contributed to the test weighted 
by annotation principal component-conservation being the most  
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significant across all quantitative annotation-weighted tests included 
in STAAR-O (burden P = 3.12 × 10−7). Since annotation principal 
component-conservation summarizes the evolutionary conser-
vation scores of variants, it is informative in predicting whether  
or not variants are deleterious and thus functional70,71. Conditioning 
on the ten known common variants in NPC1L1 associated with 
LDL-C (Supplementary Table 7; refs. 57–61,65–67) resulted in the asso-
ciation between disruptive missense RVs in NPC1L1 and LDL-C 
remaining significant after Bonferroni correction with the condi-
tional analysis P = 9.27 × 10−9 in the discovery phase. This asso-
ciation was validated in the replication phase with P = 2.59 × 10−4  
and P = 4.02 × 10−11 in pooled samples in the conditional analysis. 
This significant association was also validated using WES data from 
the UK Biobank72 (n = 40,519) with P = 2.49 × 10−4 in the condi-
tional analysis.

Genetic region analysis of RVs. We performed genetic region 
analysis to determine whether RVs within sliding windows were 
associated with lipid traits. The sliding windows were 2 kb in 
length, started at position 0 base pairs (bp) for each chromosome 
and had a skip length of 1 kb. Windows with a total minor allele 
count (MAC) < 10 were excluded from the analysis, resulting in a 
total of 2.66 million 2-kb overlapping windows, with a median of 
104 RVs in each sliding window among the discovery samples. For 
each 2-kb window, we tested for an association between the RVs in 
the window and each lipid trait using STAAR-O by incorporating 
13 aggregated quantitative annotations. The overall distributions 
of STAAR-O P values were well calibrated for all four lipid pheno-
types (Fig. 3b and Supplementary Figs. 11b, 12b and 13b). Using the 
Bonferroni correction, we set the genome-wide significance thresh-
old at α = 0.05/(2.66 × 106) = 1.88 × 10−8 across sliding windows  
(Fig. 3a and Supplementary Figs. 11a, 12a and 13a). Supplementary 
Table 8 summarizes the significant 2-kb sliding windows identi-
fied using STAAR-O. Overall, by dynamically incorporating mul-
tiple functional annotations capturing different aspects of variant 
function, STAAR-O detected more significant sliding windows, 
and showed consistently smaller P values for top sliding windows 
compared with conventional variant set tests weighted using MAFs  
(Fig. 3c,d and Supplementary Figs. 11c–f, 12c and 14). Burden tests 
did not detect any window that reached significance.

Among the 59 genome-wide significant sliding windows 
detected by STAAR-O in the unconditional analysis, 17 were sig-
nificant at the Bonferroni correction level of 0.05/59 = 8.47 × 10−4 
after conditioning on known lipid-associated variants using the 
discovery samples (Table 2). For LDL-C, the significant sliding 
windows were located in the PCSK9 gene or in a 50-kb region on 
chromosome 19 including the APOE cluster. For TC, all significant 
sliding windows were located in the same areas as for LDL-C. For 
TG, STAAR-O detected two consecutive significant sliding win-
dows within APOC3, whereas no significant sliding windows were 
detected for HDL-C. Of these 17 associations, 6 were replicated at 
0.05/17 = 2.94 × 10−3 after Bonferroni correction and another 4 were 
replicated at 0.05/9 = 5.56 × 10−3 after Bonferroni correction for 9 
nonoverlapping sliding windows in the conditional analysis of repli-
cation samples17, including a sliding window located downstream of 
APOC1P1 (chromosome 19: 44,931,528–44,933,527 bp), which was 

significantly associated with LDL-C but undetected by the burden 
test, SKAT and ACAT-V (Table 2 and Fig. 3c).

The top variant of the significant sliding window located down-
stream of APOC1P1 was rs370625306 (MAF = 0.005, P = 8.71 × 10−8), 
which was not significant at a Bonferroni-corrected threshold 
(α = 0.05/(1.51 × 107) = 3.31 × 10−9) in individual variant analysis. 
This RV and the second top variant in these windows (rs9749443, 
MAF = 0.009, P = 2.46 × 10−5) were upweighted by annotation prin-
cipal component-epigenetic in STAAR-O (Supplementary Fig. 15).  
Specifically, the annotation principal component-epigenetic scores 
of rs370625306 and rs9749443 ranked in the top 10 and 30% among 
all RVs, respectively, in the sliding window. Conditioning on the 
two known common variants rs7412 and rs429358 in APOE asso-
ciated with LDL-C55, the strength of association of both sliding 
windows was reduced but remained significant (Table 2). Similar 
results were found after further conditioning on APOE haplotypes 
using these two SNVs (Supplementary Table 8). This suggests that 
the effects of RVs in this sliding window are not fully captured by 
the two known common LDL-associated variants. STAAR-O also 
identified and replicated two highly significant windows in APOC3 
associated with TG in the conditional analysis that were undetected 
by SKAT and the burden test73.

STAAR identifies more associations using relevant tissue func-
tional annotations. To evaluate the effect of tissue specificity, we 
compared the performance of STAAR-O in both gene-centric and 
genetic region analysis by incorporating liver (a central hub for 
lipid metabolism), heart and brain annotations. For each tissue, 
we calculated a tissue-specific annotation principal component 
from tissue-specific DNase, H3K4me3, H3K27ac and H3K27me3 
from ENCODE (Supplementary Table 9) (refs. 26,74). We used 
tissue-specific CAGE sites with overlap of RVs in the ±3-kb win-
dow of the TSS and GeneHancers to define promoter and enhancer 
RV masks in gene-centric analysis. To make a fair comparison 
between tissues, we calculated STAAR-O P values based solely on 
the tissue-specific annotation principal component and without 
incorporating the MAF and other annotations.

Overall, the use of liver annotation resulted in more signifi-
cant levels of association than the heart and brain annotations, as 
would be expected for lipid traits, although no additional repli-
cated, conditionally significant association was detected by using 
tissue-specific annotations. STAAR-O identified nine and eight 
replicated conditionally significant associations by using liver anno-
tation in gene-centric and genetic region analyses, respectively 
(Supplementary Tables 10 and 11). Among these 17 significant asso-
ciations, 2 were not seen when the heart annotation was used and 
2 were not seen when the brain annotation was used; no additional 
associations were detected by using the heart and brain annotations 
(Supplementary Tables 10 and 11). Furthermore, more suggestive 
significant associations were detected when using the liver annota-
tion than the other two tissues at various levels of unconditional 
P value thresholds in the discovery phase (Supplementary Figs. 16 
and 17).

Computation cost. We developed an R package, STAAR, to per-
form scalable variant set association tests incorporating multiple 

Fig. 3 | Genetic region (2-kb sliding window) unconditional analysis results of LDL-C in the discovery phase using the TOPMed cohort. a, Manhattan 
plot showing the associations of 2.66 million 2-kb sliding windows for LDL-C versus −log10(P) of STAAR-O. The horizontal line indicates a genome-wide  
P value threshold of 1.88 × 10−8 (n = 12,316). b, Quantile–quantile plot of 2-kb sliding window STAAR-O P values for LDL-C (n = 12,316). c, Genetic 
landscape of the windows significantly associated with LDL-C that are located in the 150-kb region on chromosome 19. Four statistical tests were 
compared: burden; SKAT; ACAT-V; and STAAR-O. A dash indicates that the sliding window at this location was significant using the statistical test that the 
color of the dash represents (n = 12,316). d, Scatterplot of P values for the 2-kb sliding windows comparing STAAR-O with the burden, SKAT and ACAT-V 
tests. Each dot represents a sliding window with the x axis label being the −log10(P) of the conventional test and the y axis label being the −log10(P) of 
STAAR-O (n = 12,316).
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variant annotations for WGS RV association studies. Using sparse 
GRMs38, STAAR scaled well both in terms of computation time 
and memory for very-large-scale WGS association studies, such as  

sample sizes in TOPMed, GSP and UK Biobank. The computation 
time for STAAR-O to perform WGS gene-centric and genetic region 
analysis on 30,000 related samples using the TOPMed data required 
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15 h for 100 2.10 GHz computing cores with 6 gigabyte memory for 
each lipid trait. Analyzing 500,000 simulated related samples mim-
icking the UK Biobank sample size required 26 h for WGS analysis 
using the same approach and computational resources (Methods).

Discussion
We propose STAAR as a general, computationally scalable frame-
work that effectively incorporates multiple qualitative and quantita-
tive variant functional annotations to boost power for variant set 
tests for continuous and binary traits in WGS RV association stud-
ies, while accounting for both population structure and relatedness 
using GLMMs.

We highlighted STAAR-O, the omnibus test that aggregates 
multiple annotation-weighted tests in the STAAR framework. 
We focused on two types of WGS RV association analyses using 
STAAR-O: gene-centric analyses by grouping coding and non-
coding variants into functional categories for each protein-coding 
gene; and agnostic genetic region analyses using sliding windows. 
In extensive simulation studies, we demonstrated that STAAR-O 
achieves substantial power gain compared with conventional vari-
ant set tests weighted by MAF, while maintaining accurate type I 
error rates for both quantitative and dichotomous phenotypes.

In a WGS RV analysis of lipid traits using the TOPMed data, 
STAAR-O identified several conditionally significant functional 
categories associated with lipid traits in gene-centric analysis 
(including NPC1L1 missense RVs and LDL-C; APOC3 putative 
loss-of-function RVs and HDL-C; and LIPG missense RVs and TC) 
that were missed by the previous study using the same TOPMed 
data44. Earlier studies reported marginal association between inac-
tivating mutations (putative loss-of-function RVs and frameshift 
indels) in NPC1L1 and LDL-C with P = 0.04 (ref. 69), which was 
replicated using the pooled TOPMed samples (P = 0.02), although 
no significant association between putative loss-of-function RVs 
and LDL-C was found (P = 0.15). STAAR-O identified a much more 
significant previously unknown association, which was replicated, 
between missense RVs in NPC1L1 and LDL-C; this was driven by 
disruptive missense RVs (conditional P = 4.02 × 10−11 in pooled 
samples). None of these disruptive missense RVs was reported in 
ClinVar (5 September 2017; 20170905)75, suggesting that the find-
ings from emerging WGS studies can help guide the expansion 
of the ClinVar database. NPC1L1 is the direct molecular target of 
the lipid-lowering drug ezetimibe, which reduces the absorption 
of cholesterol by binding to NPC1L1 (ref. 76). STAAR-O also sug-
gested several conditional associations in the discovery phase that 
were validated in our replication phase and achieved significance in 
pooled samples (Supplementary Table 12).

In agnostic, sliding window-based genetic region analysis, 
STAAR-O detected and replicated ten sliding windows after con-
ditioning on known variants, including an association between an 
intergenic region located downstream of APOC1P1 and LDL-C, 
which were not detected using conventional tests. The detected 
APOC1P1 region is located in the hepatic control region 2 that 
regulates hepatic expression of apolipoproteins. By further condi-
tioning on the APOE haplotypes and rs35136575, a common variant 
previously found in the downstream hepatic control region 2 asso-
ciated with LDL-C77, the strength of association was reduced but 
remained significant (Supplementary Table 8). This discovery is due 
to upweighting several plausibly causal RVs that have regulatory 
functions using annotation principal component-epigenetic scores 
in STAAR-O (Supplementary Fig. 15 and Supplementary Table 13).  
These results highlight that incorporating multiple functional 
annotations using STAAR can effectively boost power for WGS RV 
association studies.

To capture multiple aspects of variant functionality, we intro-
duced annotation principal components by performing dimension 
reduction of a large number of diverse individual annotations from 

various external databases. See the Methods for an example, which 
demonstrates that annotation principal components explain diverse 
and complementary functionality of known LDL-associated func-
tional RVs, and that STAAR provides greater power for RV associa-
tion tests by upweighting these variants using annotation principal 
components.

In practice, STAAR is very flexible and users can determine the 
set of individual annotations to calculate annotation principal com-
ponents and the number of annotation principal components and 
integrative functional scores and other qualitative scores to be used, 
as well as tissue-, cell type- and phenotype-specific variant annota-
tions78–80. In this study, we grouped individual annotations based on 
biological knowledge; users can also apply data-driven approaches, 
such as clustering, to group annotations for annotation principal 
component calculation. We also demonstrated that STAAR detects 
more associations using relevant tissue functional annotations. It 
will be of interest, in future research, to incorporate improved RV 
effect size models in the weights to further improve the power for 
RV association studies81,82.

The STAAR procedure is fast and scalable for very large WGS 
studies and biobanks of hundreds of thousands to millions of sam-
ples for both quantitative and dichotomous phenotypes since it 
uses estimated sparse GRMs38 to fit the null GLMM and scan the 
genome. Besides using sliding windows of a prespecified fixed win-
dow length, STAAR could be extended to flexibly detect the sizes 
and locations of coding and noncoding RV association regions 
using the dynamic window analysis method SCANG83. In addition, 
STAAR could be extended to settings with survival, unbalanced 
case-control and multiple phenotypes; hence, it could provide a 
comprehensive framework for WGS RV association studies. Thus, 
STAAR provides a powerful and flexible tool for variant associa-
tion discovery in many settings to explore the molecular basis of 
common diseases. STAAR v.0.9.5 can be downloaded from https://
github.com/xihaoli/STAAR and https://content.sph.harvard.edu/
xlin/software.html.
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Methods
Notation and model. Suppose there are n individuals with M total variants 
sequenced across the whole genome. Given a genetic set of p variants, for  
subject i, let Yi denote a continuous or dichotomous trait with mean μi; 
Xi ¼ Xi1; ¼ ;Xiq

� �T
I

 denotes q covariates, such as age, age2, sex and ancestral 
principal components; Gi ¼ Gi1; ¼ ;Gip

� �T
I

 denotes the genotype information of 
the p genetic variants in a variant set.

When the data consist of unrelated samples, we consider the following 
generalized linear model (GLM):

g μið Þ ¼ α0 þ XT
i α þ GT

i β ð1Þ

where g(μ) = μ for a continuous normally distributed trait, g(μ) = logit (μ) for a 
dichotomous trait, α0 is an intercept, α ¼ α1; ¼ ;αq

� �T
I

is a vector of the regression 
coefficients for Xi and β ¼ β1; ¼ ; βp

� �T

I

 is a vector of regression coefficients  
for Gi.

When the data consist of related samples, we consider the following 
GLMM35–37: g μið Þ ¼ α0 þ XT

i α þ GT
i βþ bi

I
, where the random effects bi account 

for the remaining population structure unaccounted by ancestral principal 
components, relatedness and other between-observation correlation. We assume 
that b ¼ b1; ¼ ; bnð ÞT N 0;

PL
l¼1 θlΦl

� 

I
 with variance components θl and 

known covariance matrices Φl. The random effects b can be decomposed into a 
sum of multiple random effects to account for different sources of relatedness and 
correlation as b ¼ PL

l¼1 bl
I

 with bl  N 0; θlΦlð Þ
I

. For example, b1 accounts for 
unaccounted population structure and family relatedness by using the adjusted 
GRM as its covariance matrix Φ1 (refs. 84,85). A sparse GRM can be used to scale 
up computation38. Additional random effects b2,...,bL can be used to account for 
complex sampling designs, such as correlation between repeated measures from 
longitudinal studies using individual-specific random intercepts and slopes and 
hierarchical designs. The remaining variables are defined in the same way as 
those in the GLM (equation (1)). Under both GLM and GLMM, we are interested 
in testing the null hypothesis of whether the variant set is associated with the 
phenotype, adjusting for covariates and relatedness, which corresponds to H0:β = 0, 
that is, β1 = β2 = … = βp = 0.

Conventional variant set tests. Conventional score-based aggregation methods 
allow for jointly testing the association between variants in the genetic set 
and phenotype. In particular, burden tests4–7 assume that βj = wjβ, where β is a 
constant for all variants, such that the corresponding burden test statistic to test 
H0 : β ¼ 0 , H0 : β ¼ 0
I

 is given by:

QBurden ¼
Xp

j¼1
wjSj

 2

where Sj ¼
Pn

i¼1 Gij Yi � μ̂ið Þ
I

 is the score statistic of the marginal model for variant 
j and μ̂i is the estimated mean of Yi under the null GLM g μið Þ ¼ α0 þ XT

i α
I

 or the 
null GLMM g μið Þ ¼ α0 þ XT

i α þ bi
I

. QBurden asymptotically follows a chi-square 
distribution with 1 d.f. under the null hypothesis; its P value can be obtained 
analytically while accounting for linkage disequilibrium between variants3,37.

For SKAT8, βj are assumed to be independent and identically distributed 
following an arbitrary distribution, with E(βj) = 0 and Var βj

� �
¼ w2

j τ

I

. The 
null hypothesis of no variant set effect H0:β = 0 is equivalent to H0:τ = 0 and the 
corresponding SKAT test statistic is given by:

QSKAT ¼
Xp

j¼1

w2
j S

2
j

QSKAT asymptotically follows a mixture of chi-square distributions under the 
null hypothesis and its P value can be obtained analytically while accounting for 
linkage disequilibrium between variants3,37.

Furthermore, the recently proposed ACAT-V test uses a combination of 
transformed variant P values rather than operating on the test statistics directly9. 
The ACAT-V test statistic is given by:

QACAT�V ¼ w2MAF 1�MAFð Þ tan 0:5� P0ð Þπð Þ

þ
Pp0

j¼1
w2
j MAFj 1�MAFj

� 
tan 0:5� Pj

� 
π

� 

where p′ is the number of variants with an MAC > 10 and Pj is the association 
P value of the individual variant j corresponding to the individual variant score 
statistics Sj for those variants with MAC > 10. P0 is the burden test P value of 
extremely rare variants with an MAC ≤ 10 and w2MAF 1�MAFð Þ

I
 is the average 

of the weights w2
j MAFj 1�MAFj

� �

I
 among extremely rare variants with an 

MAC ≤ 10. QACAT-V can be well approximated using a Cauchy distribution under the 
null hypothesis and its P value can be obtained analytically while accounting for 
linkage disequilibrium between variants9. For binary traits in highly unbalanced 
designs, one can improve individual P value calculations using Saddlepoint 
approximation86,87.

These conventional approaches consider a weight wj defined as a threshold 
indicator or a function of MAF for variant j, that is, wj = Beta(MAFj;a1,a2) (ref. 3), 

where Beta(;a1,a2) is the Beta density function with parameters a1 and a2. Common 
choices of the parameters are a1 = 1 and a2 = 25, which upweight rarer variants, 
or a1 = 1 and a2 = 1, which correspond to equal weights for all variants. In WGS 
studies, most RVs across the genome are not causal. Thus, choosing their weights 
according to MAF will incorrectly upweight many such ‘noise’ variants in a variant 
set and result in a loss of statistical power. Weighting using multiple variant 
functional annotations will help overcome this deficiency.

Calculation of annotation principal components using individual functional 
annotations. To effectively capture the multifaceted biological impact of a 
variant while reducing dimensionality, we propose variant annotation principal 
components as the principal component summary of the functional annotation 
data by incorporating individual scores extracted from various functional 
databases26,27,39–41,88. We first grouped the individual scores into ten major functional 
categories based on a priori knowledge, each capturing a specific aspect of variant 
biological function, including epigenetics, conservation, protein function, local 
nucleotide diversity, distance to coding, mutation density, transcription factor 
(TF), mappability, distance to the TSS/transcription end site (TES) and microRNA 
(Fig. 2). For each category, we then centered and standardized all individual scores 
within the category, such that a higher value of each individual score indicates 
increased functionality of that annotation, and calculated the annotation principal 
component as the first principal component from the standardized individual 
scores (Supplementary Table 1). To facilitate better interpretation, these annotation 
principal components were then transformed into the Phred-scaled scores for each 
variant across the genome, defined as −10 × log10(rank(−score)/M), where M is 
total number of variants sequenced across the whole genome.

Unlike ancestral principal components, which are individual-specific and 
calculated using genotypes across the genome to control for population structure, 
annotation principal components are variant-specific, calculated using functional 
annotations for individual variants and used to summarize multifacet functions of 
individual variants. Complementary to other existing single-dimension integrative 
functional scores, annotation principal components summarize multiple aspects of 
variant function, with different blocks captured by different annotation principal 
components in the heatmap (Fig. 2).

STAAR incorporates multiple functional annotations. STAAR constructs the 
weights by modeling the probability of a variant being causal using its functional 
annotation information via qualitative annotations (for example, functional 
categories) and quantitative annotations (for example, annotation principal 
components and integrative annotations), as well as modeling the effect sizes of 
causal variants. Specifically, the effect of variant j on a phenotype can be written as:

βj ¼ cjγj

where cj is the latent binary indicator of whether variant j is causal, and γj is the 
effect size of variant j if it is causal. The burden test, SKAT and ACAT-V make 
direct assumptions on the variance of βj using MAF information. This newly 
proposed variant effect model is expected to increase the association power since 
a variant’s causal status can be prioritized using its functional annotations13,14. Let 
πj = E(cj) denote the probability of variant j being causal; then, the effect of variant j 
given above is equivalent to:

βj ¼ 1� πj
� �

δ0 þ πjγj

where δ0 is the Dirac delta function indicating that with probability 1 − πj, variant j 
has no association with the phenotype.

Defining π̂jk
I

 as the estimated probability of jth variant being causal using the 
kth annotation (k = 0,...,K), for example, π̂j1

I
 measures the estimated probability 

that the jth variant is causal using epigenetic annotation, annotation principal 
component-epigenetic. We estimated π̂jk

I
 using the empirical cumulative distribution 

function of the kth annotation for variant j using its rank among all variants as:

π̂jk ¼ ECDFk Ajk
� �

¼ rank Ajk
� �

M

where Ajk is the kth annotation for the jth variant. For k = 0, we set Aj0 = 1 as 
the intercept, which gives π̂j0 ¼ 1

I
. For a quantitative annotation, Ajk represents 

its numerical value, for example, the kth annotation principal component. The 
quantitative Ajk we consider in this study includes ten annotation principal 
components (Supplementary Table 1) and existing integrative scores, including 
CADD27, LINSIGHT46 and FATHMM-XF47. For a qualitative annotation, we 
defined Ajk = 1 for variants in the functional group (yes) and Ajk = 0 for variants 
otherwise (no). For example, Ajk denotes whether a variant is a disruptive missense 
variant using MetaSVM51. Hence, π̂jk ¼ 1

I
 for variants in the functional group 

and π̂jk ¼ 0
I

 otherwise, for example, disruptive missense variants (yes/no). This 
corresponds to the RV tests using variants of this functional group.

In the STAAR framework, we model the effect sizes of causal variants γj 
in the same way as that used in conventional variant set tests. Specifically, we 
assume jγjj / wj

I
, where wj is assumed as a function of MAF. For simplicity, 

we model wj using Beta(MAFj;a1,a2) and set (a1,a2) to be (1,1) or (1,25). 
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Then, the burden test statistic using kth variant functional annotation as the 
weight, for example, annotation principal component-epigenetic, is given by 

QBurden;k ¼
Pp

j¼1 π̂jkwjSj
 2

I

, whose P value is denoted by PBurden,k (k = 0,...,K). 

Under the assumption of SKAT, by estimating the probability of jth variant 
being causal using the kth annotation (k = 0,..., K), we have E(βj) = 0 and 
Var βj

� �
¼ Var cjγj

� �
¼ πjkw2

j τk

I

. Hence, the SKAT test statistic using the kth 
variant functional annotation as the weight is given by:

QSKAT;k ¼
Xp

j¼1

π̂jkw
2
j S

2
j

whose P value is denoted by PSKAT,k (k = 0,..., K). In the ACAT-V test, the test statistic 
using the kth variant functional annotation as the weight is given by:

QACAT�V;k ¼ π̂kw2MAF 1�MAFð Þ tan 0:5� P0;k
� 

π
� 

þPp0

j¼1
π̂jkw2

j MAFj 1�MAFj
� 

tan 0:5� Pj
� 

π
� 

where π̂kw2MAF 1�MAFð Þ
I

 is the average of the weights π̂jkw2
j MAFj 1�MAFj

� �

I
 

among the extremely rare variants with MAC ≤ 10. The P value of QACAT-V,k is 
denoted by PACAT-V,k (k = 0,..., K).

We denote by PBurden,k, PSKAT,k and PACAT-V,k as the P values of the burden, SKAT and 
ACAT-V tests, respectively calculated using the kth annotation as the weight. For 
each type of RV test, to robustly aggregate information from multiple annotations 
to boost power of RV association tests in a data-adaptive manner, we propose using 
the STAAR framework to combine individual annotation-weighted tests using 
the ACAT P value combination method9,42. Specifically, we define STAAR-Burden 
(STAAR-B), STAAR-SKAT (STAAR-S) and STAAR-ACAT-V (STAAR-A) as:

TSTAAR�B ¼
XK

k¼0

tan 0:5� PBurden;k
� 

π
 

K þ 1

TSTAAR�S ¼
XK

k¼0

tan 0:5� PSKAT;k
� 

π
 

K þ 1

TSTAAR�A ¼
XK

k¼0

tan 0:5� PACAT�V ;k
� 

π
 

K þ 1

The P value of TSTAAR-S, TSTAAR-B and TSTAAR-A can be approximated by:

PSTAAR�B  1
2
� arctan TSTAAR�Bð Þf g

π

PSTAAR�S 
1
2
� arctan TSTAAR�Sð Þf g

π

PSTAAR�A  1
2
� arctan TSTAAR�Að Þf g

π

To further aggregate information from different types of tests and different weights, 
we proposed an omnibus test in the STAAR framework (STAAR-O) by combining 
STAAR-B, STAAR-S and STAAR-A using the ACAT method9,42. We defined the 
STAAR-O test statistic as:

TSTAAR�O ¼ 1
3 Aj j

P
a1 ;a2ð Þ2A

tan 0:5� PSTAAR�B a1 ;a2ð Þ
� 

π
 

þtan 0:5� PSTAAR�S a1 ;a2ð Þ
� 

π
 

þ tan 0:5� PSTAAR�A a1 ;a2ð Þ
� 

π
 

where PSTAAR�B a1 ;a2ð Þ
I

, PSTAAR�S a1 ;a2ð Þ
I

 and PSTAAR�A a1 ;a2ð Þ
I

 denote the P values 
of STAAR-B, STAAR-S and STAAR-A using wj = Beta(MAFj;a1,a2), 𝒜 is the 
set of specified values of (a1,a2) and |𝒜| is the size of set 𝒜. In practice, we set 
𝒜 = {(1,25),(1,1)}. The P value of TSTAAR-O could then be accurately approximated by:

PSTAAR�O  1
2
� arctan TSTAAR�Oð Þf g

π

By combining different types of tests into an omnibus test, STAAR-O has a robust 
power with respect to the sparsity of causal variants and the directionality of 
effects of causal variants in a variant set, as well as variant multifacet functions 
and MAFs. Specifically, by including the burden test, STAAR-O is powerful when 
most variants in a variant set are causal and have effects in the same direction; by 
including SKAT, STAAR-O is powerful when not a small number of variants in 
a variant set are causal with effects in different directions, or when variants in a 
variant set are in high linkage disequilibrium; by including ACAT-V, STAAR-O 
is powerful when a small number of variants in a variant set are causal or a good 
number of extremely rare variants are causal; by weighting each type of tests using 

multiple annotation principal components and other integrative functional scores 
and qualitative annotations, STAAR-O is powerful when any of these variant 
functional annotations can pinpoint causal variants and help boost power.

Data simulation. Type I error simulations. We performed extensive simulation 
studies to evaluate whether the proposed STAAR framework preserves the desired 
type I error rate. We generated continuous traits from a linear model defined as:

Yi ¼ 0:5X1i þ 0:5X2i þ ϵi
I

 where X1i ~ N(0,1), X2i ~ Bernoulli(0.5) and 
ϵi ~ N(0,1). Dichotomous traits were generated from a logistic model defined 
as:logit P Yi ¼ 1ð Þ ¼ α0 þ 0:5X1i þ 0:5X2i

I
where X1i and X2i were defined the 

same as continuous traits and α0 was determined to set the prevalence to 1%. In 
this setting, we used a balanced case-control design. We generated genotypes 
by simulating 20,000 sequences for 100 different regions each spanning 1 Mb. 
The data were generated to mimic the linkage disequilibrium structure of an 
African-American population by using the calibration coalescent model43. In each 
simulation replicate, 10 annotations were generated as A1,…,A10 independent 
and identically distributed N(0,1) for each variant; we randomly selected 5-kb 
regions from these 1-Mb regions for type I error simulations. We applied 
STAAR-B, STAAR-S, STAAR-A and STAAR-O by incorporating MAFs and the 
10 annotations and repeated the procedure with 109 replicates to examine the type 
I error rate at the α = 10−5,10−6 and 10−7 levels. The total sample sizes considered 
were 2,500, 5,000 and 10,000.

Empirical power simulations. Next, we carried out a simulation study under a 
variety of configurations to assess the power gain by incorporating multiple 
functional annotations using STAAR compared to conventional variant set tests 
that use MAFs as weights. In each simulation replicate, we randomly selected 5-kb 
regions from these 1-Mb regions for power simulations. For each selected 5-kb 
region, we generated causal variants according to a logistic model defined as:

logit P cj ¼ 1
� �

¼ δ0 þ δk1Aj;k1 þ δk2Aj;k2 þ δk3Aj;k3 þ δk4Aj;k4 þ δk5Aj;k5

where k1; ¼ ; k5f g  1; ¼ ; 10f g
I

 were randomly sampled for each region. 
For different regions, the causality of variants was allowed to be dependent on 
different sets of annotations. We set δkl ¼ log 5ð Þ

I
 for all annotations and varied 

the proportions of causal variants in the signal region by setting δ0 = logit(0.0015), 
logit(0.015) and logit(0.18) for averaging 5, 15 and 35% causal variants in the signal 
region, respectively.

We generated continuous traits from a linear model given by:

Yi ¼ 0:5X1i þ 0:5X2i þ β1G1j þ ¼ þ βsGsj þ ϵi

where X1i, X2i and ϵi were defined the same as the type I error simulations, G1j,…,Gsj 
were the genotypes of the s causal variants in the signal region and β1,…,βs were the 
corresponding effect sizes of causal variants. Dichotomous traits were generated 
from a logistic model given by:

logit P Yi ¼ 1ð Þ ¼ 0:5X1i þ 0:5X2i þ β1G1j þ ¼ þ βsGsj

where α0,X1i,X2i were defined the same as the type I error simulations, G1j,…,Gsj 
were the genotypes of the s causal variants in the signal region and β1,…,βs were the 
corresponding log odds ratios (ORs) of the s causal variants.

Under both settings, we modeled the effect sizes of causal variants using 
βj ¼ γj ¼ c0j log10 MAFjj
I

. Therefore, the effect size of causal variant was a 
decreasing function of MAF. For continuous traits, c0 was set to be 0.13. For 
dichotomous traits, c0 was set to be 0.255, which gives an OR = 3 for a variant with 
MAF of 5 × 10−5. For each setting, we additionally varied the proportions of causal 
variant effect size directions by setting 100, 80 and 50% variants to have positive 
effects. Finally, we performed simulations using different magnitudes of effect sizes 
by varying the values of c0 across a wide range. We applied STAAR-B, STAAR-S, 
STAAR-A and STAAR-O using MAFs and all 10 annotations in the weighting 
scheme and repeated the procedure with 104 replicates to examine the powers at 
α = 10−7. The total sample sizes considered were 10,000 across all settings.

Computation cost. To test the computation time of 500,000 related samples, we 
simulated 1,000 genomic regions, each with 100 variants, for 1 million haplotypes 
of 125,000 families with 2 parents and 2 children per family. The computation time 
for WGS RV association studies was estimated by analyzing 2.5 million variant sets 
with on average 100 variants in each set using STAAR.

Statistical analysis of lipid traits in the TOPMed data. The TOPMed WGS 
data consist of ancestrally diverse and multi-ancestry-related samples45. Race/
ethnicity was defined using a combination of self-reported race/ethnicity and 
study recruitment information. The discovery cohorts consisted of 4,580 (37.2%) 
Black or African-American individuals, 6,266 (50.9%) White, 543 (4.4%) 
Asian-American and 927 (7.5%) Hispanic/Latino American. The replication 
cohorts consisted of 3,534 (19.8%) Black or African-American individuals, 11,662 
(65.4%) White, 132 (0.7%) Asian-American and 2,494 (14.0%) others. The ‘others’ 
category in the replication cohort included many Hispanic/Latino American 
individuals as well as a cohort of Samoans.
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We applied STAAR-O to identify RV sets associated with four quantitative 
lipid traits (LDL-C, HDL-C, TG and TC) using the TOPMed WGS data. LDL-C 
and TC were adjusted for the presence of medications as outlined elsewhere44. 
A linear regression model adjusting for age, age2 and sex was first fitted for each 
study-race/ethnicity-specific group. In addition, for Old Order Amish, we also 
adjusted for APOB p.R3527Q in the LDL-C and TC analyses and adjusted for 
APOC3 p.R19Ter in the TG and HDL-C analyses44. The residuals were rank-based 
inverse normal transformed and rescaled by the standard deviation of the original 
phenotype within each group. We then fitted a heteroscedastic linear mixed 
model for the rank-normalized residuals, adjusting for ten ancestral principal 
components, study-ancestry group indicators and a variance component for an 
empirically derived kinship matrix plus separate group-specific residual variance 
components to account for population structure and relatedness. The output of the 
heteroscedastic linear mixed model was then used to perform the following variant 
set analyses for RVs (MAF < 1%) by scanning the genome, including gene-centric 
analysis using five variant categories (putative loss-of-function RVs, missense RVs, 
synonymous RVs, promoter RVs and enhancer RVs) for each protein-coded gene 
and agnostic genetic region analysis using 2-kb sliding windows across the genome 
with a 1-kb skip length. The WGS RV association study analysis was performed 
using the R package STAAR v.0.9.5.

The annotation principal components provided diverse and complementary 
information on variant functionality and were incorporated in RV association 
tests using an omnibus weighting scheme via the proposed STAAR method. 
We demonstrated using the following example that STAAR boosts the RV 
association test power by properly upweighting known LDL-associated functional 
RVs. For example, the association between a 2-kb sliding window located at 
55,038,498–55,040,497 bp on chromosome 1 and LDL-C using STAAR-O is more 
significant than conventional tests in unconditional analysis (Supplementary Table 
14). This power gain of STAAR-O is due to upweighting functional variants, for 
example, the known tolerated missense variant rs11591147, within the sliding 
window through incorporating multiple annotation principal components59. 
Specifically, the annotation principal component-epigenetic, annotation principal 
component-protein and annotation principal component-mappability Phred 
scores are greater than 20 (top 1% across the genome) and the annotation principal 
component-MutationDensity, annotation principal component-TF and CADD Phred 
scores are greater than 10 (top 10% across the genome) for this variant, highlighting 
the multidimensional functionality of this variant. The annotation principal 
component-protein and annotation principal component-mappability-weighted 
SKAT P values are 6.69 × 10−13 and 3.78 × 10−12, which are more significant than 
SKAT (P = 1.12 × 10−9) and the burden test (P = 4.68 × 10−4).

Statistical analysis of LDL-C in the UK Biobank data. We used the UK Biobank 
WES from the functionally equivalent pipeline. Sample and variant quality control 
measures were described previously72,89. Briefly, samples with mismatch between 
genetically inferred and reported sex, high rates of heterozygosity or contamination 
(D statistic > 0.4), low sequence coverage (less than 85% of targeted bases achieving 
20× coverage), duplicates and WES variants discordant with genotyping chip were 
removed. A total of 43,243 individuals with genetically inferred European ancestry 
were included; 40,519 of them had data on LDL cholesterol. TC was adjusted by 
dividing the value by 0.8 among individuals reporting lipid-lowering medication 
use after 1994 or statin use at any time point. LDL cholesterol was calculated 
from adjusted TC levels by the Friedewald equation for individuals with TG levels 
<400 mg dl−1. If LDL cholesterol levels were directly measured, then their values 
were divided by 0.7 among those reporting lipid-lowering medication use after 
1994 or statin use at any time point. Residuals were created after adjusting for age, 
age2, sex and the first ten ancestral principal components. Residuals were then 
rank-based inverse normal transformed and multiplied by the standard deviation. 
Analyses were restricted to missense variants in the NPC1L1 gene predicted to 
be damaging according to the MetaSVM prediction algorithm and conditioned 
on ten known common variants in NPC1L1 associated with LDL-C (rs10234070, 
rs73107473, rs2072183, rs41279633, rs17725246, rs2073547, rs10260606, rs217386, 
rs7791240 and rs2300414) obtained from the UK Biobank imputed genotype data. 
We performed a burden test for the association between disruptive missense RVs 
in NPC1L1 and LDL-C.

Genome build. All genome coordinates are given in the NCBI GRCh38/UCSC 
hg38 version of the human genome.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
This paper used the TOPMed Freeze 5 WGS data and lipids phenotype data. 
Genotype and phenotype data are both available in database of Genotypes 
and Phenotypes. The discovery phase used data from the following four study 
cohorts (accession numbers provided in parentheses): Framingham Heart 
Study (phs000974.v1.p1); Genetics of Cardiometabolic Health in the Amish 
(phs000956.v1.p1); Jackson Heart Study (phs000964.v1.p1); and Multi-Ethnic 
Study of Atherosclerosis (phs001416.v1.p1). The replication phase used data 

from the following ten study cohorts: Atherosclerosis Risk in Communities Study 
(phs001211); Cleveland Family Study (phs000954); Cardiovascular Health Study 
(phs001368); Diabetes Heart Study (phs001412); Genetic Study of Atherosclerosis 
Risk (phs001218); Genetic Epidemiology Network of Arteriopathy (phs001345); 
Genetics of Lipid Lowering Drugs and Diet Network (phs001359); San Antonio 
Family Heart Study (phs001215); Genome-Wide Association Study of Adiposity 
in Samoans (phs000972); and Women’s Health Initiative (phs001237). The sample 
sizes, ancestry and phenotype summary statistics of these cohorts are given in 
Supplementary Table 3.
The functional annotation data are publicly available and were downloaded 
from the following links: GRCh38 CADD v.1.4 (https://cadd.gs.washington.edu/
download); ANNOVAR dbNSFP v.3.3a (https://annovar.openbioinformatics.org/
en/latest/user-guide/download); LINSIGHT (https://github.com/CshlSiepelLab/
LINSIGHT); FATHMM-XF (http://fathmm.biocompute.org.uk/fathmm-xf); 
FANTOM5 CAGE (https://fantom.gsc.riken.jp/5/data); GeneCards (https://www.
genecards.org; v.4.7 for hg38); and Umap/Bismap (https://bismap.hoffmanlab.
org; ‘before March 2020’ version). In addition, recombination rate and nucleotide 
diversity were obtained from Gazal et al90. The whole-genome individual functional 
annotation data assembled from a variety of sources and the computed annotation 
principal components are available at the Functional Annotation of Variant–Online 
Resource (FAVOR) site (http://favor.genohub.org). The tissue-specific functional 
annotations were downloaded from ENCODE (https://www.encodeproject.org/
report/?type=Experiment).

Code availability
STAAR is implemented as an open source R package available at https://github.
com/xihaoli/STAAR and https://content.sph.harvard.edu/xlin/software.html.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Software was used for downloading the data as follows: Wget (https://www.gnu.org/software/wget/wget.html) and ANNOVAR 
(annotate_variation.pl http://annovar.openbioinformatics.org).

Data analysis Data analysis was performed in R (3.5.1). STAAR v0.9.5 was used in both simulation and real data analysis and is implemented as an 
open-source R package available at https://github.com/xihaoli/STAAR. 
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We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data
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This paper used the TOPMed Freeze 5 whole genome sequencing data and lipids phenotype data. The genotype and phenotype data are both available in dbGAP. 
The discovery phase used the data from the following four studies, where the accession numbers are provided in parenthesis: Framingham Heart Study 
(phs000974.v1.p1), Old Order Amish (phs000956.v1.p1), Jackson Heart Study (phs000964.v1.p1), Multi-Ethnic Study of Atherosclerosis (phs001416.v1.p1). The 
replication phase used the data from the following ten studies: Atherosclerosis Risk in Communities Study (phs001211), Cleveland Family Study (phs000954), 
Cardiovascular Health Study (phs001368), Diabetes Heart Study (phs001412), Genetic Study of Atherosclerosis Risk (phs001218), Genetic Epidemiology Network of 
Arteriopathy (phs001345), Genetics of Lipid Lowering Drugs and Diet Network (phs001359), San Antonio Family Heart Study (phs001215), Genome-wide Association 
Study of Adiposity in Samoans (phs000972) and Women’s Health Initiative (phs001237). The sample sizes, ethnicity, and phenotype summary statistics are given in 
Supplementary Table 3. 
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The UK Biobank analyses were conducted using the UK Biobank resource under application 7089. 
 
The functional annotation data are publicly available and were downloaded from the following links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/
download), ANNOVAR dbNSFP v3.3a (https://annovar.openbioinformatics.org/en/latest/user-guide/download), LINSIGHT (https://github.com/CshlSiepelLab/
LINSIGHT), FATHMM-XF (http://fathmm.biocompute.org.uk/fathmm-xf), CAGE (https://fantom.gsc.riken.jp/5/data), GeneHancer (https://www.genecards.org), and 
Umap/Bismap (https://bismap.hoffmanlab.org). In addition, recombination rate and nucleotide diversity were obtained from Gazal, S. et al. Linkage disequilibrium–
dependent architecture of human complex traits shows action of negative selection. Nature genetics 49, 1421 (2017). The tissue-specific functional annotations 
were downloaded from ENCODE (https://www.encodeproject.org/report/?type=Experiment). 
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Sample size The discovery phase consists of all four study cohorts of TOPMed Freeze 3 and had 12,316 samples with lipid traits. The replication phase 
consists of all ten independent study cohorts in TOPMed Freeze 5 that were not in Freeze 3 and had 17,822 samples with lipid traits. The UK 
Biobank whole exome sequencing data had 40,519 samples with lipid traits.

Data exclusions For TOPMed data, failed variants and variants with sequencing depth <= 10 were excluded in the QC procedure. For UK Biobank data, samples 
with mismatch between genetically inferred and reported sex, high rates of heterozygosity or contamination (D-stat > 0.4), low sequence 
coverage (less than 85% of targeted bases achieving 20X coverage), duplicates, and whole exome sequencing variants discordant with 
genotyping chip were removed. All data exclusions criteria were pre-established.

Replication The significant associations between lipids and rare variants identified in gene-centric functional category and sliding window analyses using 
samples in the discovery phase were tested using the replication samples. The significant association between disruptive missense rare 
variants in NPC1L1 and LDL-C was also tested using UK Biobank data. All attempts at replication were successful. Experimental replication was 
not attempted.

Randomization This is a method and data analysis manuscript, where the methods were applied to analyze large whole genome sequencing genetic 
epidemiological studies of the TOPMed program. No randomization was used in the study design.

Blinding Not relevant, as this is not a clinical trial. De-identified coded data were used for analysis.
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Methods
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Population characteristics The TOPMed data consist of ancestrally diverse and multi-ethnic related samples. The discovery cohorts consist of 4,580 (37.2%) 
Black or African American, 6,266 (50.9%) White, 543 (4.4%) Asian American, and 927 (7.5%) Hispanic/Latino American. The 
replication cohorts consist of 3,534 (19.8%) Black or African American, 11,662 (65.4%) White, 132 (0.7%) Asian American, and 
2,494 (14.0%) others. The “others” category in the replication cohort includes many Hispanic/Latino American as well as a cohort 
of Samoans. Race/ethnicity was defined using a combination of self-reported race/ethnicity from study recruitment information. 
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Recruitment The TOPMed Freeze 5 lipids data included whole genome sequencing data of 30,138 samples from multiple existing NHLBI deep 

phenotyped study cohorts. The study participants of the TOPMed data have diverse ethnicities. The sample sizes, ethnicity and 
phenotype summary statistics can be found in Supplementary Table 3. Detailed information of participant recruitment of each 
study cohort can be found in Supplementary Note. More details can be found at https://www.nhlbiwgs.org.

Ethics oversight The study protocol was approved by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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