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INTRODUCTION
Researchers have widely used the process of ChIP-seq1 to map tran-
scription factor binding sites and histone modification status on a 
genome-wide scale2. ChIP comprises a few basic steps: cross-linking 
a protein to chromatin, shearing the chromatin, using a specific 
antibody to precipitate the protein of interest with its associated 
DNA and purifying the associated DNA fragments3–6. ChIP usually 
yields several to a few hundred nanograms of DNA as 75- to 300-bp 
fragments surrounding transcription factor binding sites or histone 
mark locations. High-throughput sequencing often generates tens 
to hundreds of millions of 25- to 75-bp sequences (also called short 
reads) from the 5′ ends of ChIP-DNA fragments.

ChIP-seq data analysis typically begins by mapping the short 
reads back to a reference genome. Although many mapped reads 
are dispersed throughout the genome, others are found in clusters 
constituting read-enriched regions, which represent the locations 
of transcription factor binding or histone marks. For the majority 
of transcription factors and several histone modifications such as 
H3K4me3, ChIP-seq reads are often concentrated in narrow peaks 
of a few hundred base pairs. However, for some transcription factors 
such as RNA polymerase II and other histone modifications such 
as H3K36me3, read enrichment regions can be broad, spanning 
up to tens of thousands of base pairs. Factors such as GC content, 
read mappability, DNA repeats, copy number variations and local 
chromatin structure can influence read distribution at different 
locations of the genome7–11. Therefore, sequencing control samples 
of sonicated chromatin is recommended as an additional measure 
to better eliminate background biases so as to reliably identify read-
enriched regions obtained from ChIP-seq10,12.

MACS is a computational method that was designed to identify 
read-enriched regions from ChIP-seq data. According to Web of 
Science, since its first publication in 2008 (ref. 13), MACS has been 
cited by more than 300 studies, including many influential works14–19.  
The MACS Google group contains approximately 3,000 active 
users. Over the years, MACS has continuously benefited from user 
feedback and contribution. We continue to add new functionality, 
fixing bugs and optimizing the algorithm based on user requests. 
In this protocol, we share the insights gained from collected 
user experience and demonstrate how to apply the latest stable  

version of MACS (1.4.2) to publicly available ChIP-seq data20 on a 
local computer. MACS is also available at the web-based ChIP-seq 
analysis portal Cistrome21, which provides a complete workflow 
for ChIP-seq and downstream analysis without the need for local 
installation and configuration.

Overview of the MACS algorithm
The MACS workflow is summarized in Figure 1. In the following 
sections, we detail the key steps of the MACS algorithm.

Removing redundant reads. Overamplification of ChIP-DNA by 
PCR may cause the same original DNA fragment to be sequenced 
repeatedly, especially at a high sequencing depth. Our experience 
indicates that removing these redundant reads can yield more reli-
able peak calls for downstream analysis. Therefore, MACS removes 
redundant reads based on a user-specified parameter without 
changing the input files containing the mapped ChIP-seq reads 
and control reads. By default, MACS retains no more than one read 
per genomic location.

Adjusting read position based on fragment size distribution. 
ChIP-DNA fragments often encompass the minimal DNA sequence 
containing protein-DNA interactions, and the sequencer is equally 
likely to sequence the 5′ end of either strand. As a result, reads that 
map to the positive and negative strands often appear to the left 
and right of the protein-DNA interaction location, which leads to 
a bimodal enrichment pattern flanking the precise interaction loca-
tion. It would be desirable to extend ChIP-seq reads to represent 
the original ChIP-DNA fragments, which necessitates the need to 
estimate the distribution of fragment size.

To estimate fragment size, denoted d, MACS first slides a window 
with a width of roughly twice the size of the sheared chromatin to 
identify regions of moderate enrichment. To avoid the influence of 
extremely enriched regions because of artifacts in PCR amplifica-
tion or repetitive elements, MACS randomly samples 1,000 regions, 
each having a 10- to 30-fold enrichment relative to the genome 
background as model peaks. For each peak, MACS separates reads 
mapped to the positive and negative strands and then calculates the 
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reads’ respective mode positions. The midpoint between the posi-
tive and negative modes is then used to align all the reads belonging 
to model peaks. The alignment generates a bimodal pattern: most 
reads from the positive strand appear on the left, and most reads 
from the negative strand appear on the right. The distance between 
bimodal summits yields the estimated DNA fragment size d, and all 
reads are extended in the 3′ direction until d is obtained.

In the majority of cases, the above procedure, which is referred to 
as building the peak model, provides a reasonable estimate of frag-
ment size. However, excessive chromatin shearing or transcription 
factors with broad enrichment may cause MACS to estimate a value 
of d that is too small. When this happens (e.g., when d  <  60 bp), 
we recommend that users rerun MACS with a specified distance 
based on the size selection in the sequencing library preparation. 
In addition, the value of d should be similar for multiple ChIP-seq 
samples corresponding to the same factor in the same study to 
ensure comparable downstream analyses among samples.

Calculate peak enrichment using local background normaliza-
tion. On the basis of the position-adjusted reads, MACS slides a 
window of size 2d across the genome to identify regions that are sig-
nificantly enriched relative to the genome background. Overlapping 
significant windows are then merged to form candidate regions 
for further analysis. Because many factors influence the local read 
enrichment distribution, MACS models the number of reads from 
a genomic region as a Poisson distribution with dynamic parameter 
λlocal. That is, instead of using a constant value of λ, λlocal values are 
allowed to vary along the genome. Specifically, the value of λlocal 
for a specific region is defined as max (λBG, [λregion, λ1k], λ5k, λ10k), 
where λBG is a constant estimated from the genome background, 

λregion is estimated from the candidate region under consideration 
in the control sample and the remaining λx values are estimated 
from an x-bp window centered at the candidate region in the con-
trol sample. When ChIP-seq and control samples are sequenced 
at different depths, MACS either linearly scales down the larger  
sample (default behavior) or scales up the smaller sample. For 
example, after removing redundant reads, if the total number of 
reads in the control sample is greater than the number of reads 
obtained from ChIP-seq by a factor of r (r  >  1), then when cal-
culating the P value λlocal will be divided by r by default. When 
a control sample is not available, λlocal is calculated from the  
ChIP-seq sample, excluding λregion and λ1k. On the basis of λlocal, 
MACS assigns every candidate region an enrichment P value, and 
those passing a user-defined threshold (the default is 10 − 5) are 
reported as the final peaks.

Estimating the empirical false discovery rate by exchanging 
ChIP-seq and control samples. When a control sample is avail-
able, MACS can also estimate an empirical FDR for every peak 
by exchanging the ChIP-seq and control samples and identifying 
peaks in the control sample using the same set of parameters used 
for the ChIP-seq sample. Because the control sample should not 
exhibit read enrichment, any such peaks found by MACS can be 
regarded as false positives. For a particular P value threshold, the 
empirical FDR is then calculated as the number of control peaks 
passing the threshold divided by the number of ChIP-seq peaks 
passing the same threshold.

Comparison with existing methods
Various methods that incorporate different strategies have been 
proposed for analyzing ChIP-seq data. For example, to find peak 
candidates, many methods including SISSRs22, USeq12 and MACS13 
identify clusters consisting of reads that overlap or are located 
within a fixed distance. Alternatively, CisGenome23 and SICER24 
use nonoverlapping sliding windows to identify candidate regions. 
To identify binding sites more accurately, MACS extends reads in 
the 3′ direction until the estimated DNA fragment size is reached, 
a strategy also used by SICER24. The majority of methods use a 
background or null model to assign a significance score to each 
peak region identified by the method. PeakSeq8 models the number 
of reads mapped to a peak region using a binomial distribution. 
CisGenome23 applies a negative binomial distribution to model 
windows of low read count. MACS uses a Poisson distribution 
to accurately approximate a binomial distribution and calculates 
dynamic Poisson parameters for each region to obtain a distribu-
tion having more flexibility than the negative binomial distribu-
tion. FindPeaks25 works differently by implementing a Monte Carlo 
simulation to calculate the likelihood of observing a peak of a given 
height. To calculate an empirical FDR, methods such as USeq12 and 
QuEST26 identify false-positive peaks by considering two inputs 
constructed from the control sample instead of exchanging the 
ChIP-seq and control samples as proposed by MACS. Previous 
reviews and systematic comparison studies provide further details 
regarding ChIP-seq experiments and comparisons of peak-calling 
algorithms2,27–32.

Applications and limitations
MACS can be applied to scenarios other than calling enriched 
regions from ChIP-seq data. MACS 1.4.2 and older versions can 

Treatment Control

Remove redundancy

Build model and estimate
DNA fragment size d

Select 1,000 regions with a
10- to 30-fold enrichment relative

to the genome background

Shift reads toward 3′ end by d

Scale two libraries

Call candidate peaks relative to genome background

Calculate FDR by exchanging treatment and control

Calculate P value and filter candidate peaks

Calculate dynamic λ for candidate peaks

Remove redundancy

Figure 1 | Workflow of MACS 1.4.2. If the control sample is missing, then 
the steps shown in white boxes will be skipped (remove redundancy of 
the control sample, scale two libraries and calculate FDR by exchanging 
treatment and control).
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be used to identify differential read-enriched regions from two 
ChIP-seq samples by viewing one of the samples as a control, 
so that peak regions correspond to more enriched regions in 
the other sample. Alternatively, users can call peaks from two  
ChIP-seq data separately. A peak is considered exclusive to one 
ChIP-seq sample only when it is identified with a stringent  
P-value in the sample but not identified even with a loose P value 
in the other sample. However, neither method is ideal for calling 

differential regions. To address this problem, we are developing a 
robust differential peak-calling method as a major functionality 
in the next significant version of MACS: MACS2. A test version of 
MACS2 is now available from https://github.com/taoliu/MACS/
downloads. In addition to ChIP-seq data, MACS can be applied  
to other data types such as DNase-seq33, MeDIP-seq34 and  
MBD-seq35; however, we suggest using more specialized tools for 
these alternate purposes.

MATERIALS
EQUIPMENT

Hardware: Any computer running UNIX, Linux or Mac OS can run MACS; 
the following examples were run on an Ubuntu 10.10 server with a 2.8-GHz 
CPU. A minimum of 4 GB of RAM is needed for 32 million reads. The 
RAM may need to be increased for more deeply sequenced ChIP-seq data. 
We do not recommend running MACS on Windows machines, although 
MACS does work on Cygwin, a Linux simulator for Windows. Users can 
also access MACS via the Cistrome web portal21.
Software: MACS is a command-line program whose execution requires a 
terminal program, available on UNIX, Linux or Mac OS. To run MACS 
on a remote server, an Internet connection and telnet or SSH are needed. 
MACS is coded in Python, an increasingly popular programming language 
in bioinformatics, which is preloaded with the majority of UNIX, Linux or 
Mac OS installations. MACS works in Python version 2.6 or 2.7, and version 
2.6.5 is recommended. To run MACS in a 64-bit environment, Python for 
the 64-bit CPU should be installed.
Optional software: Bowtie36, BWA37 or another aligner maps ChIP-seq 
and control sequencing reads to the reference genome. SAMtools38 merges 

•

•

•

sequencing data from replicates into one file. The R environment generates 
a PDF image of the DNA fragment size model. PeakSplitter39 can call sub-
peaks and refine peak resolution from MACS output. Integrative Genomics 
Viewer (IGV)40 has a user-friendly interface for visualizing the original 
ChIP-seq data and MACS output on a local computer. Alternative visualiza-
tion methods use the University of California Santa Cruz (UCSC) Genome 
Browser41 or Integrated Genome Browser42.
Data: We selected several ChIP-seq and control data sets from ENCODE20 
and made them accessible at http://cistrome.dfci.harvard.edu/MACS 
NatureProtocol/: the FoxA1 data set for the T-47D cell line, with only one 
ChIP-seq replicate (from the HudsonAlpha Institute); the H3K4me3 data set 
for the K562 cell line, with one ChIP-seq and one control replicate (from the 
University of Washington); the H3K4me3 data set for the GM12878 cell line, 
with one ChIP-seq replicate and two controls (from the Broad Institute); and 
the H3K36me3 data set for the GM12878 cell line, with two ChIP-seq and 
two control replicates (from the Broad Institute). The FoxA1 data set uses the 
FASTQ format with raw sequencing reads, and the remaining data sets use 
the BAM format with reads previously mapped to the hg19 human genome.

•

PROCEDURE
Installing MACS ● TIMING 10 min
1|	 Set up the necessary operating system and computing environment as listed in the Equipment section.

2|	 Download the MACS source code from http://github.com/downloads/taoliu/MACS/MACS-1.4.2-1.tar.gz. Locate the  
directory containing the downloaded source code package, and unpack the package using the following command:

 >  tar xvzf MACS-1.4.2-1.tar.gz

 CRITICAL STEP A precompiled MACS package for Debian or Ubuntu Linux is available for download from the above link.

3|	 Change the working directory to MACS-1.4.2 and use the standard installation command for Python packages as follows:

 >  cd MACS-1.4.2

 >  python setup.py install

The second command will install MACS globally, which requires root or administrator privileges. Alternatively, a user can 
install MACS to a specified directory in which the user has write privileges by using the following command:

 >  python setup.py install --prefix /your_directory/

! CAUTION Do not install MACS in the source code directory.
? TROUBLESHOOTING

4|	 Configure the shell environment variable PATH (such as the Unix shell Bash) as shown below. If MACS is installed in 
a user-specified directory (in Step 3), then add the following lines to the user’s configuration file .bashrc in the home 
directory:

 >  export PATH = /your_directory/bin:$PATH

 >  export PYTHONPATH = /your_directory/lib/python2.X/site-packages/:$PYTHONPATH

http://cistrome.dfci.harvard.edu/MACSNatureProtocol/
http://cistrome.dfci.harvard.edu/MACSNatureProtocol/
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Here, python2.X represents the version of Python used for the setup script in Step 3. To determine the current version of 
Python, type the following:

 >  python --version

For example, if the output is Python 2.7.1, then 2.X must be replaced by 2.7. Load the configuration file by typing 
either source ~ /.bashrc or bash on the command line to reload Bash. To temporarily change the environment  
variables, type the above two export commands in Bash.
? TROUBLESHOOTING

Installing optional software ● TIMING 30 min
5|	 Download Bowtie from http://www.bowtie-bio.sourceforge.net/manual.shtml, a prebuilt index of hg19 for Bowtie  
from ftp://ftp.cbcb.umd.edu/pub/data/bowtie_indexes/hg19.ebwt.zip, SAMtools from http://www.samtools.sourceforge.net/,  
R from http://www.cran.r-project.org/, PeakSplitter_Cpp_1.0.tar.gz from http://www.ebi.ac.uk/bertone/ 
software.html and IGV from http://www.broadinstitute.org/igv/. Install each software package according to the  
corresponding instructions.

Running MACS to call peaks
6|	 We use four different ChIP-seq data sets to illustrate how to run MACS using varying parameters: use option A to call 
FoxA1 peaks; option B to call H3K4me3 peaks with fragment size estimation turned on; option C to call H3K4me3 peaks with 
a specified DNA fragment size; or option D to call H3K36me3 peaks. Please note that some of these data sets are very large 
and may take an hour or more to download.
(A) Calling FoxA1 peaks ● TIMING 90 min
	 (i) Locate the downloaded prebuilt index for Bowtie, and unpack the package using the following command:

 >  unzip hg19.ebwt.zip

This command will generate several files with names prefixed by ‘hg19’ in the current directory.

	 (ii) �Download the HudsonAlpha Institute FoxA1 raw reads from http://cistrome.dfci.harvard.edu/MACSNatureProtocol/
HAIB_T47D_FoxA1.tar.gz, locate the download directory, unpack the compressed file and map the raw reads to the 
reference genome using Bowtie by entering the following two commands:

 >  tar xvzf HAIB_T47D_FoxA1.tar.gz

 >  bowtie –m 1 -S -q /path_to/hg19 HAIB_T47D_FoxA1.fastq HAIB_T47D_FoxA1.sam

In these commands,

-m 1 specifies that reads with only one hit on the genome are retained;

-S specifies the output format as SAM;

-q specifies the input format as FASTQ;

/path_to/ is the directory containing the unzipped bowtie prebuilt indexes; and

HAIB_T47D_FoxA1.fastq contains the downloaded raw reads for FoxA1.

Please refer to the Bowtie manual for more information.

	 (iii) Run MACS in the same directory by entering the following command:

 >  macs14 -t HAIB_T47D_FoxA1.sam -n HAIB_T47D_FoxA1 –g hs -B -S --call-subpeaks

The meanings of the parameters in this command are as follows (see also Box 1 for further parameters that could be used):

-t specifies the file name for the ChIP-seq sample read alignment. MACS supports and can automatically detect any  
of the following file formats: SAM, BAM, BED, ELAND, ELANDMULTI, ELANDMULTIPET, ELANDEXPORT and BOWTIE.  
The user-specified parameter --format can override the automatic format detection.

-g specifies the genome size. The hs parameter is a shortcut for the approximate effective genome size of humans, 
which equals 2.7e9.

-n applies the prefix ‘HAIB_T47D_FoxA1’ to the output file names.

-B generates signal files in the bedGraph format containing the extended read pileup at every base pair. This step is 
very time-consuming and memory-intensive; therefore, only specify -B if bedGraph output files are needed.

-S generates a single bedGraph file for the whole genome; otherwise, signal files will be generated for each  
chromosome separately.

http://www.ebi.ac.uk/bertone/software.html
http://www.ebi.ac.uk/bertone/software.html


©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1732 | VOL.7 NO.9 | 2012 | nature protocols

--call-subpeaks asks MACS to call PeakSplitter automatically after peak calling, if the latter has been installed 
properly.
! CAUTION Ensure that the character ‘/’ does not appear in the specified file prefix after the -n option, as MACS will 
interpret the string before ‘/’ as a directory (causing an error if this directory does not exist).
? TROUBLESHOOTING

	 (iv) �Check the screen output for the running status of MACS in the terminal. MACS generates warnings and progress reports 
similar to the following:

INFO @ Sun, 03 Jun 2012 23:36:03:

# ARGUMENTS LIST:

# name  =  HAIB_T47D_FoxA1

# format  =  AUTO

# ChIP-seq file  =  HAIB_T47D_FoxA1.sam

# control file  =  None

# effective genome size  =  2.70e + 09

# band width  =  300

# model fold  =  10,30

# pvalue cutoff  =  1.00e-05

# Large dataset will be scaled towards smaller dataset.

# Range for calculating regional lambda is: 10000 bps

INFO #1 read tag files.

INFO #1 read treatment tags.

INFO Detected format is: SAM

 < Several lines are skipped > 

INFO #2 Build Peak Model.

INFO #2 number of paired peaks: 16586

INFO #2 finished!

INFO #2 predicted fragment length is 114 bps

INFO #2.2 Generate R script for model : HAIB_T47D_FoxA1_model.r

INFO #3 Call peaks.

INFO #3 shift treatment data

INFO #3 merge  + /- strand of treatment data

INFO #3 save the shifted and merged tag counts into bedGraph file.

INFO write to a bedGraph file

 < Several lines are skipped > 

INFO #3 call peak candidates

 Box 1 | Additional MACS parameters 
Several additional key parameters that could be used to run MACS in Step 6A(iii) are as follows:
--bw sets the ‘bandwidth’, which is half of the sliding window size used in the model-building step.
--mfold specifies an interval of high-confidence enrichment ratio against the background on which to build the model. The default 
value ‘10, 30’ means that a model will be built on the basis of regions having read counts that are 10- to 30-fold of the background.
--pvalue establishes a threshold P value: only peaks surpassing the threshold will be reported. The default threshold is 10 − 5.  
Users can first set a loose P value cutoff so that a sufficient number of peaks will be reported and then select peaks having the  
smallest P values for downstream analyses.
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INFO #3 use self to calculate local lambda and filter peak candidates.

INFO #3 Finally, 74761 peaks are called!

INFO #4 Write output xls file. HAIB_T47D_FoxA1_peaks.xls

INFO #4 Write peak bed file. HAIB_T47D_FoxA1_peaks.bed

INFO #4 Write summits bed file. HAIB_T47D_FoxA1_summits.bed

INFO #5 Done! Check the output files!

INFO #6 Try to invoke PeakSplitter.

INFO #6 Please check HAIB_T47D_FoxA1_peaks.subpeaks.bed file for PeakSplitter 
output!

The messages provide information such as the date (the first line), key parameters (lines starting with ‘#’) and the 
run progress (lines starting with ‘INFO’). For lines indicating run progress, we have removed the date information and 
several lines to make the screen output more concise. If MACS encounters exceptions (e.g., if MACS estimates a frag-
ment size that is too small), then warning messages appear in the list.
! CAUTION Although warning messages do not affect the success of a MACS run, the majority should still be carefully  
evaluated. For example, the warning message ‘unbalanced reads between treatment and control’ means that the FDR of  
the resulting peaks will be overestimated when the control sample has more reads and will be underestimated when the 
ChIP-seq sample is sequenced more deeply. The message ‘Fewer paired peaks X than 1,000’ means that MACS only iden-
tified X model peaks and may indicate potential data quality issues because 1,000 model peaks are needed to robustly 
estimate ChIP-DNA fragment size. The message ‘missing chromosome X data’ might suggest that the raw input file for 
that chromosome is incomplete.

	 (v) Generate a PDF figure for the peak model using the following command (assuming that R has been installed properly):

 >  Rscript HAIB_T47D_FoxA1_model.r

This command will produce a PDF image named HAIB_T47D_FoxA1_model.pdf in the current working directory.  
This image illustrates the distribution of reads on positive and negative strands in the model peaks and the estimated  
fragment size.

	 (vi) �Verify the existence of the files listed in Table 1 in the current directory. Details of the output files are described in 
the ANTICIPATED RESULTS section.

(B) Calling H3K4me3 peaks with fragment size estimation turned on ● TIMING 90 min
	 (i) �Download the University of Washington H3K4me3 data set from http://cistrome.dfci.harvard.edu/MACSNatureProtocol/

UW_K562_H3K4me3.tar.gz. This data set contains one control replicate and one ChIP-seq replicate. Locate the  
directory in which the downloaded file has been stored. Extract the bundle using the following command:

 >  tar xvzf UW_K562_H3K4me3.tar.gz

	 (ii) In the same directory, run MACS as follows:

 >  macs14 -t UW_K562_H3K4me3.bam -c UW_K562_H3K4me3_Control.bam -g hs -n  
UW_K562_H3K4me3 -B -S --call-subpeaks

The parameter -c specifies the file name for the control sample read alignment. The other parameters follow the same 
convention as described in Step 6A(iii); see Box 1.
? TROUBLESHOOTING

	 (iii) �Check the screen output generated by MACS as described in Step 6A(iv). MACS will report a successful model build by 
displaying the following messages:

 < Several lines are skipped > 

INFO : #2 Build Peak Model.

INFO : #2 number of paired peaks: 12267

INFO : #2 finished!

INFO : #2 predicted fragment length is 156 bps

 < Several lines are skipped > 

INFO : #3 use control data to filter peak candidates.

INFO : #3 Finally, 20632 peaks are called!
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INFO : #3 find negative peaks by swapping treat and control

INFO : #3 Finally, 4006 peaks are called!

 < Several lines are skipped > 

	 (iv) �Generate a PDF figure named UW_K562_H3K4me3_model.pdf for the read distribution in model peaks and the 
estimation of fragment size by applying the following command:

 >  Rscript UW_K562_H3K4me3_model.r

	 (v) �Verify that all output files are present as described in Step 6A(vi), except that they should have the file name prefix 
‘UW_K562_H3K4me3’ instead of ‘HAIB_T47D_FoxA1’. Because a control sample is available in this case, another file 
(‘UW_K562_H3K4me3_negative_peaks.xls’) is generated that contains the peaks called by comparing the control  
sample with the ChIP-seq sample using the same parameters. These peaks are used by MACS for estimating the FDR of 
each reported ChIP-seq peak.

(C) Calling H3K4me3 peaks with a specified DNA fragment size ● TIMING 90 min
	 (i) �Download the Broad Institute H3K4me3 data set from http://cistrome.dfci.harvard.edu/MACSNatureProtocol/BROAD_

GM12878_H3K4me3.tar.gz. This data set contains one ChIP-seq replicate and two control replicates. MACS runs either 
on a single ChIP-seq sample or on a single ChIP-seq sample having a single control; in this case, the two control 
replicates must be concatenated. Extract the bundle, and merge the two control replicates using the following two 
commands:

 >  tar xvzf BROAD_GM12878_H3K4me3.tar.gz

 >  samtools merge BROAD_GM12878_H3K4me3_Control.bam 

BROAD_GM12878_H3K4me3_Control_1.bam 

BROAD_GM12878_H3K4me3_Control_2.bam

	 (ii) Run MACS as follows:

 >  macs14 -t BROAD_GM12878_H3K4me3.bam -c 

BROAD_GM12878_H3K4me3_Control.bam -g hs -n BROAD_GM12878_H3K4me3 -B 

-S --call-subpeaks
	 (iii) Check the screen output of MACS; it should contain the following lines:

 < Several lines are skipped > 

INFO : #2 number of paired peaks: 31077

INFO : #2 finished!

INFO : #2 predicted fragment length is 53 bps

 < Several lines are skipped > 

Table 1 | Files generated by MACS for the HudsonAlpha Institute FoxA1 data set.

File name Description

HAIB_T47D_FoxA1_model.r An R script for producing a PDF illustrating the peak model

HAIB_T47D_FoxA1_model.pdf The PDF image of the read distribution in model peaks and fragment size estimation, which is 
available only after executing Step 6A(v)

HAIB_T47D_FoxA1_peaks.xls Key parameters used by MACS and detailed information of every peak identified by MACS

HAIB_T47D_FoxA1_peaks.bed Peak locations in BED format

HAIB_T47D_FoxA1_peaks.subpeaks.bed Subpeak locations in BED-like format. This file is generated by PeakSplitter, which is called 
by MACS

HAIB_T47D_FoxA1_summits.bed Summit locations of the peaks in BED format

HAIB_T47D_FoxA1_MACS_bedGraph Directory where the BedGraph files are generated. For each control or ChIP-seq sample,  
a BedGraph file describes the read distribution along the whole genome
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The model built by MACS has a fragment length of 53, which is unusually short in a typical ChIP-seq experiment. 
Therefore, it is preferable to rerun MACS with modified parameters, as described in Step 6C(v).

	 (iv) �If MACS is still running, terminate it by typing Ctrl  +  C (hold the Control key and press C). Then, remove the  
directory BROAD_GM12878_H3K4me3_MACS_bedGraph from the previous MACS run using the  
following command:

 >  rm -rf BROAD_GM12878_H3K4me3_MACS_bedGraph

	 (v) �Rerun MACS using modified parameters, as follows:

 >  macs14 -t BROAD_GM12878_H3K4me3.bam -c 

BROAD_GM12878_H3K4me3_Control.bam -g hs -n BROAD_GM12878_H3K4me3 --

nomodel --shiftsize 73 -B -S --call-subpeaks

This command uses --nomodel to instruct MACS not to estimate the fragment size. --shiftsize 73 tells 
MACS to use a fixed DNA fragment size of 146  =  73 × 2.
 CRITICAL STEP The fragment size is set to 146 because a nucleosome is wrapped in a DNA sequence that is  
~146 bp in length, extending reads mapped to either DNA strand in the 3′ direction by 146 bp. Users can also  
specify the fragment size according to their sequencing library preparation, often in the range of 150–200 bp.

	 (vi) �Check the MACS screen output. The following messages relay that MACS did not build the model but instead used 
shiftsize 73:

 < Several lines are skipped > 

INFO : #2 Build Peak Model.

INFO : #2 Skipped.

INFO : #2 Use 73 as shiftsize, 146 as fragment length

 < Some lines are skipped > 

	 (vii) �Verify all the generated files except the R script as in Step 6A(vi), where file names must contain the prefix 
‘BROAD_GM12878_H3K4me3’ instead of ‘HAIB_T47D_FoxA1’. The file BROAD_GM12878_H3K4me3_negative_
peaks.xls contains the peaks identified in the control sample over the ChIP-seq sample. In this case, because 
MACS did not build the peak model, no R script is generated.

(D) Calling H3K36me3 peaks ● TIMING 90 min
	 (i) �Download the Broad Institute H3K36me3 data set from http://cistrome.dfci.harvard.edu/MACSNatureProtocol/

BROAD_GM12878_H3K36me3.tar.gz. This data set contains two control replicates and two ChIP-seq replicates. 
Extract the bundle and merge the replicates using the following commands:

 >  tar xvzf BROAD_GM12878_H3K36me3.tar.gz

 >  samtools merge BROAD_GM12878_H3K36me3.bam 

BROAD_GM12878_H3K36me3_1.bam BROAD_GM12878_H3K36me3_2.bam

 >  samtools merge BROAD_GM12878_H3K36me3_Control.bam 

BROAD_GM12878_H3K36me3_Control_1.bam 

BROAD_GM12878_H3K36me3_Control_2.bam

	 (ii) �Run MACS to call the peaks using the following command:

 >  macs14 -t BROAD_GM12878_H3K36me3.bam -c 

BROAD_GM12878_H3K36me3_Control.bam -g hs -n BROAD_GM12878_H3K36me3 --

nomodel --shiftsize 73 -B -S --pvalue 1e-3 --call-subpeaks

Compared with Step 6C(v), this command sets a less stringent P value cutoff (--pvalue 1e-3) than the default 
(1e-5). Because H3K36me3 ChIP-seq data often form broader but less-enriched regions, the parameters --
nomodel and --shiftsize 73 are preferred.

? TROUBLESHOOTING
	 (iii) �Verify all the generated files as in Step 6C(vii) using the file name prefix ‘BROAD_GM12878_H3K36me3’ rather than 

‘BROAD_GM12878_H3K4me3’.



©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1736 | VOL.7 NO.9 | 2012 | nature protocols

Loading results generated by MACS into IGV ● TIMING 10 min
7|	T o load a bedGraph generated by MACS into IGV, first decompress and rename the bedGraph file. As an example, con-
sider the results of MACS on the FoxA1 data set. First, locate the bedGraph in the directory HAIB_T47D_FoxA1_MACS_
bedGraph/treat.

8|	U nzip the file as follows:

 >  gzip -d HAIB_T47D_FoxA1_treat_afterfiting_all.bdg.gz

9|	 Change the extension of the file to ‘bedGraph’, which can be recognized by IGV, via the following command:

 >  mv HAIB_T47D_FoxA1_treat_afterfiting_all.bdg HAIB_T47D_FoxA1_treat_afterfiting_
all.bedGraph

10| Load HAIB_T47D_FoxA1_treat_afterfiting_all.bedGraph into IGV following the IGV manual.

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 2.

Table 2 | Troubleshooting table.

Step Problem Possible reason Solution

3 Installation error The user has no write permission to 
the installation directory

Pay attention to the installation messages to under-
stand the reason for the failure. The installation mes-
sages will indicate where the setup script copies the 
Python files. Change the installation path by using 
––prefix as illustrated in the text

4 Import error Python cannot locate certain library 
files from MACS. This error is usually 
caused by the existence of multiple 
versions of Python on the system.  
It can also occur when the user 
installed MACS to a specified path  
but forgot to set the environment  
variable PYTHONPATH

Check the last message in the installation message. It 
should read as follows: 
Writing /PATH_TO_MACS_LIB/MACS-
1.4.2-py2.X.egg-info  
In this message, PATH_TO_MACS_LIB is the library 
path where MACS is installed, which depends on the 
operating system. X is the Python version, e.g., X is 
6 if Python 2.6 is installed. Change the environment 
variable PYTHONPATH by executing the following 
command: 
  >  export PYTHONPATH=PATH_TO_MACS_LIB  
Change the privileges of PATH_TO_MACS_LIB using 
the following command: 
  >  chmod –R 755 PATH_TO_MACS_LIB

6A(iii), 6B(ii) MACS returns an error  
when reading the  
input sequence  
alignment files

The input files are corrupted Check the file integrity. For a BAM– or SAM– format 
file, the user can simply run samtools flagstat 
to determine whether the sequence statistics appear 
reasonable. For a BED format file, the user can count 
the number of lines using the command wc –l or 
check the end of file using the command tail to 
ensure that the file is complete

6D(ii) Other errors The format automatically detected by 
MACS is not correct

Pay attention to the running messages pertaining  
to the file format and read length detected by MACS. 
When necessary, the user can explicitly  
set the file format and read length using the  
commands ––format and ––tsize
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● TIMING
The time required to download the program and data depends on the user’s network bandwidth. Each step that requires  
running MACS (i.e., Steps 6A(iii), 6B(ii), 6C(v) and 6D(ii)) requires ~70 min.
Steps 1–4, installing MACS: 10 min
Step 5, installing optional software: 30 min
Step 6A, calling FoxA1 peaks: 90 min
Step 6B, calling H3K4me3 peaks with fragment size estimation turned on: 90 min
Step 6C, calling H3K4me3 peaks with a specified DNA fragment size: 90 min
Step 6D, calling H3K36me3 peaks: 90 min
Steps 7–10, loading results generated by MACS into IGV: 10 min

ANTICIPATED RESULTS
Common results for all data sets
Although we set different parameters for different ChIP-seq data sets, the types and formats of the output files generated by MACS 
are similar. As an example, we describe in detail the MACS results for the H3K4me3 data set from the University of Washington.

The most important output file is UW_K562_H3K4me3_peaks.xls, which contains all of the information about the 
peaks identified by MACS. Both UW_K562_H3K4me3_summits.bed and UW_K562_H3K4me3_peaks.bed contain 
partial information for all of the peaks in BED format to expedite downstream analyses, such as visualization in IGV or in the 
UCSC genome browser. The top lines of UW_K562_H3K4me3_peaks.xls are as follows:

# This file is generated by MACS version 1.4.2 20120305

# ARGUMENTS LIST:

# name  =  UW_K562_H3K4me3

# format  =  AUTO

# ChIP-seq file  =  UW_K562_H3K4me3.bam

# control file  =  UW_K562_H3K4me3_Control.bam

# effective genome size  =  2.70e + 09

# band width  =  300

# model fold  =  10,30

# pvalue cutoff  =  1.00e-05

# Large dataset will be scaled towards smaller dataset.

# Range for calculating regional lambda is: 1000 bps and 10000 bps

# tag size is determined as 36 bps

# total tags in treatment: 15465586

# tags after filtering in treatment: 13913615

# maximum duplicate tags at the same position in treatment  =  1

# Redundant rate in treatment: 0.10

# total tags in control: 14653281

# tags after filtering in control: 14444786

# maximum duplicate tags at the same position in control  =  1

# Redundant rate in control: 0.01

# d  =  156

chr start end length summit tags -10*log10(pvalue) fold_enrichment FDR(%)

chr1 137660 138139 480 153 62 635.75 41.05 0.00

chr1 138380 139613 1234 680 118 1038.81 41.05 0.00

chr1 712724 715549 2826 1877 433 3100.00 98.27 0.00

chr1 752449 752902 454 151 15 83.67 12.44 6.45

chr1 760913 763271 2359 1901 296 2878.46 83.33 0.00

chr1 805080 805697 618 385 18 54.29 8.13 15.71

chr1 839086 841012 1927 465 175 1154.41 24.76 0.00
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The lines starting with ‘#’ contain the key parameters used 
by MACS and the basic data statistics that the program  
computes—information crucial for reproducing results. 
‘Redundant rate’ indicates the proportion of reads that are 
removed because of redundancy. This section is followed by 
detailed peak information. The first four columns contain 
each peak’s length and genome coordinates. Note that the 
coordinates in this file are 1-based, which differs from files 
in the BED format, in which coordinates are 0-based. The fifth column (‘summit’) gives the position having the highest frag-
ment pileup in each peak region (e.g., the summit coordinate of the first peak is chr1, position 137,812, which is 137,660-
1  +  153), which may not necessarily represent the center of a peak. The ‘tags’ column shows the number of reads aligned 
to each peak region. The ‘ − 10*log10(Pvalue)’ column lists the transformed P value of each peak, which makes peak sorting 
easier. For example, a P value of 1e − 5 would be transformed to 50. The ‘fold_enrichment’ column shows the ratio of the 
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Figure 2 | Peak model built by MACS using the FoxA1 data set.  
d  =  114 represents the estimated DNA fragment size. The red curve 
represents the percentage of positive strand reads at each base pair,  
and the blue curve models reads on the negative strand. The black curve 
illustrates the distribution of reads after shifting them toward the 3′ end by 
57  =  114/2 bp.

Figure 3 | IGV visualization of MACS results using the FoxA1 data set. This region is selected from chromosome 1, as shown at the top of the figure. The 
middle section of the figure illustrates the pileup signal after extending all reads to the estimated fragment size in the top track (labeled FoxA1_treat_chr1). 
Below this, the middle track, labeled FoxA1_peaks.bed, shows two peaks identified by MACS. The bottom track, labeled FoxA1_peaks.subpeaks.bed, shows 
three subpeaks generated by PeakSplitter. The bottom section of the figure, labeled hg19refGene, shows the gene annotation of the human genome assembly 
of version hg19.
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Figure 4 | IGV visualization of MACS results using the University of Washington H3K4me3 data set. The region on chromosome 1 (shown in the top section 
of the figure) shows three peaks identified by MACS in the middle section. These three peaks are located in the promoter regions of three genes, shown in 
the bottom part of the figure.
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ChIP-seq read count to the local value of lambda within each peak. The ‘FDR(%)’ column contains the empirical FDR percent-
age for each peak. For example, the fourth peak in the list has an ‘FDR(%)’ value of ‘6.45’ and ‘ − 10*log10(Pvalue)’ value of 
‘83.67’; using the same P value cutoff of 4.4e − 09  =  1083.67/ − 10, the ratio of the number of peaks identified by MACS after 
and before exchanging control and ChIP-seq samples is 6.45:100. The FDR column is only available when the control sample 
is available. For example, using the HudsonAlpha Institute FoxA1 data set, this column would not appear in the correspond-
ing .xls file.

Specific results for each data set
For a typical transcription factor such as FoxA1, the peak model can often be built successfully by MACS, i.e., when the 
detected DNA fragment size is not too small (e.g.,  <  60 bp). We can check the model by inspecting the file HAIB_T47D_
FoxA1_model.pdf, which is generated in Step 6A(v). Figure 2 illustrates that reads on the positive or negative strand are 
enriched at the left or right of the paired peak center, respectively. The detected DNA fragment length is 114 bp, which may 
vary among different ChIP-seq libraries.

We can visualize the peak regions in detail using IGV, as exemplified in Figures 3–5. Figure 3 displays the results of  
running MACS on the FoxA1 data set. The figure has three tracks: one bedGraph track for the fragment pileup of the ChIP-seq 
sample, peak regions called by MACS and subpeaks refined by PeakSplitter. The peak track illustrates three peaks identified 
by MACS that correspond to three enriched regions shown in the bedGraph track. Figure 4 presents an example region of the 
University of Washington H3K4me3 data set, on which reads are enriched in gene promoter regions, as indicated by the gene 
annotation track. Figure 5 illustrates the Broad Institute H3K36me3 data set, wherein H3K36me3 is enriched at the 3′ end 
of the gene body, especially at exons.
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H3K36me3_peaks.subpeaks.bed
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Figure 5 | IGV visualization of MACS results using the Broad Institute H3K36me3 data set. The selected region spans the whole gene body of SMURF1 shown 
in the bottom part of the figure. The middle section of the figures shows that the H3K36me3 signal is more enriched in exon regions, as demonstrated in the 
second track (H3K36me3_treat_chr7). MACS identifies such enriched regions as multiple peaks, shown in the third track (H3K36me3_peaks.bed).
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