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INTRODUCTION
Gene expression is regulated through multiple mechanisms, two 
of which include the binding of TFs and chromatin regulators. 
TFs bind DNA and interact with transcriptional machinery to 
activate or repress the expression of target genes. In contrast, 
chromatin regulators bind to or catalyze histone modifications to 
affect chromatin structure and function. In vivo binding of both 
TFs and chromatin regulators (hereafter referred to collectively 
as factors) can be discovered by chromatin immunoprecipitation 
followed by high-throughput sequencing (ChIP-seq). In addition, 
the influence of factor binding on gene expression can be investi-
gated by using transcriptome data obtained from conditions that 
contrast between the bound and unbound states.

However, in mammalian experimental systems, the concord-
ance between gene expression changes and TF binding is often 
difficult to interpret. First, factor-binding sites and target genes 
usually lack a one-to-one relationship. The same factor could 
bind anywhere between the proximal promoter to hundreds of 
kilobases downstream to regulate gene expression. Alternatively, 
the same binding site could regulate multiple genes by interact-
ing with different promoters in different subpopulations of cells. 
Second, not all factor-binding sites found in a ChIP-seq experi-
ment are functional, potentially owing to the lack of collabo-
rating factors or conditions favorable to their function. Finally, 
the binding of one factor may cause secondary effects owing to 
transcriptional changes of its direct targets. Addressing these 
issues requires making general working assumptions about gene 
regulation combined with robust statistical analyses on avail-
able ChIP-seq and transcriptome data. Although several target 
gene prediction methods have been published, few of these pro-
vide a user-friendly algorithm package for target gene detection. 
The GREAT target analysis tool provides several ad hoc options 
for designating target genes, which it subsequently analyzes for 
annotation enrichment1. Databases such as TRED2 provide target 
genes for a selection of factors on the basis of motif analysis or 
public ChIP-seq data, but they cannot infer targets specific to 
user-defined factors or conditions3,4.

Development of the protocol
We developed BETA as an integrated software package for ana-
lyzing factor binding and differential expression in mammalian 
genomes. It is available open source at http://cistrome.org/BETA, 
and it can be run as a web tool directly from http://cistrome.
org/ap/. The program has three main functions: (i) to predict 
whether a factor has activating or repressive function; (ii) to infer 
the factor’s target genes; and (iii) to identify the binding motif 
of the factor and its collaborators, which might modulate the 
factor’s activating or repressive function. Figure 1 illustrates the 
main operational stages of BETA. Instead of assigning one-to-
one mapping between binding sites and genes, BETA models the 
influence of a binding site on the expression of a gene with a 
monotonically decreasing function that is based on the distance 
between the binding site and transcription start site. The regula-
tory potential of a gene is scored as the sum of the contribution 
of individual sites5. However, genes with promoters in a repres-
sive chromatin environment, or those lacking prerequisite col-
laborating factors may not respond to factor binding despite a 
high regulatory potential. In these cases, gene expression changes 
associated with factor binding can give better confidence that a 
gene is a direct target. To take this into account, BETA ranks genes 
on the basis of both regulatory potential of factor binding and 
differential expression upon factor binding, and then it calculates 
the rank product6 of the two to predict direct targets. To deter-
mine whether a factor has overall activating and/or repressive 
functions, a nonparametric statistical test contrasts regulatory 
potentials for genes that are differentially expressed with genes 
that are statically expressed in the factor perturbation experiment. 
The activating or repressive functions of factors are often modu-
lated by other collaborating factors, some of which also directly 
bind DNA. BETA conducts sequence motif analysis on binding 
sites near upregulated or downregulated targets to identify puta-
tive collaborating factors.

BETA contains three subprotocols: BETA-basic, BETA-plus and 
BETA-minus. BETA-basic can be used to predict whether a factor 
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has activating or repressive function and detect direct target genes. 
BETA-plus can be used to predict whether a factor has activating 
or repressive function, whether it can detect direct target genes 
and whether it can analyze sequence motifs in target regions. Both 
binding and differential expression data are required for BETA-
basic and BETA-plus, whereas BETA-minus is used when only 
binding data are available to predict target genes.

Application of BETA
The purpose of this protocol is to predict genes that are the direct 
targets of TFs or chromatin regulators. Once the factor’s set of 
target genes is known, further analysis can be done by using gene 
ontology–based tools such as DAVID7 to link functions to this 
set. The motif analysis function of BETA identifies motifs that 
are associated with candidate cis-regulatory regions relative to 
regions that are nonregulatory, which enables the identification 
of potential cofactors.

Comparison with other methods
Various methods and software process ChIP-seq data and analyze 
TF target genes with different strategies. Model-based analysis of 
ChIP-seq (MACS)8, CisGenome9 and SICER10 are some of the peak 
caller tools globally used to identify precise TF-binding sites. With 
ChIP-seq pre-processed data, a simple peak-based way to identify 
targets is to assign the proximal nearest gene or the gene containing 
peaks in its promoter region11,12. With most TF ChIP-seq data, only 
a small percentage of binding is found at the promoters, and the 
use of nearest peaks to assign target genes is very unreliable. TIP13, 
which builds a probabilistic model to identify the target genes by 
TF-binding profiles, does not consider gene expression data. In 
contrast, some earlier studies predict the targets on the basis of 
gene expression information only. Qian et al.14 predict the target 
genes by identifying the relationship of gene expression with sup-
port vector machines (SVM); Honkela et al.15 do that with time-
series expression data by creating a linear activation model based on 
Gaussian process; and Redestig et al.16 developed the CERMT algo-
rithm by using multiple short expression time-series data with sev-
eral treatments, defining the TF target candidates as the genes with 
similar responses to the TF in these treatments. The false-positive 
rate is reduced when using integrated binding and expression infor-
mation to identify target genes compared to solely using either.  
We compared some simple methods in our previous study5.

Many ChIP-seq experiments, together with expression profile 
experiments, are performed in conditions in which the expression 
of the factor of interest is perturbed (knockdown or overexpres-
sion). The expression changes of all other genes, especially for the 
regulatory targets of the factor, are considered as being the result of 
the perturbation. Several methods and web servers were released 
recently for TF target gene prediction by using the integrative ana
lysis of binding and expression data. ChIP-Array17 is a web server 
that identifies the direct targets by simply marking the genes that 
are both differentially expressed and binding-enriched as targets, 
but all binding peaks and the expression changes of each gene 

receive equal weight. EMBER18, developed by the Dinner group, 
integrates the binding and expression data by an unsupervised 
machine learning with an expectation maximization algorithm 
to detect the potential targets. It gives each gene an expression 
behavior but ignores the distance between binding sites, and it 
considers all genes 100 kb within the binding peaks as potential 
targets. BETA uses a distance-weighted measure to gauge the regu-
latory potential of all the binding sites of the factor within a certain 
distance to a target gene. In addition, when a factor’s expression 
is perturbed, affected genes often include both upregulated and 
downregulated genes—one group might represent directly affected 
genes, whereas the other group might represent indirectly affected 
genes or squelching. BETA integrates differential expression with 
binding to evaluate whether the direct effect of factor binding is 
an activating or repressing expression, and it assigns direct up- or 
down-targets. ChIP-seq often yields tens of thousands of peaks in 
a single experiment, but only a few hundred direct targets. Because 
sometimes co-regulation of TFs is key to influencing gene expres-
sion at certain conditions, the differential motif finding function 
(e.g., peaks near differential genes versus peaks near nondifferential 
genes) provided by BETA will help find the correct co-regulators.  
Finally, some factors can both directly activate and repress gene 
expression, and it is often through interaction with different 
partners that their specific effects are determined; therefore, dif-
ferential motif analysis comparing the peak associated with the 
up-target and down-target regions is also important.

Experimental design
To illustrate how this protocol works and to interpret its results,  
we use androgen receptor (AR) ChIP-chip data obtained in LNCaP 
cells in combination with microarray data of gene expression after 
16 h of dihydrotestosterone (DHT) treatment. AR is a member of 
the nuclear receptor family, and it has a key role in gene regulation 
in normal prostate and in prostate cancer. Detection of AR target 
genes is important to understand its regulation and function. Here, 
we show how to use BETA to analyze AR regulation by integrating 
binding and transcriptome information. The details of this case 
study will be discussed at the ANTICIPATED RESULTS section. To 
show other features of BETA, we also provide examples involving 
the genes encoding human estrogen receptor-α (ESR1) and the 
mouse tet methylcytosine dioxygenase 1 (Tet1).

Activating/repressive function prediction. ChIP-seq data are 
often examined in the context of gene expression, and thus 
expression profiles are available for both the factor-bound and 

Expression data

Activation

Upregulate targets
and associated

peaks

UP motifs

Differential motifs

Stage 3: motif analysis

Stage 2: direct targets
prediction

Stage 1: activation and
repression prediction

Binding data

Repression

Downregulate targets
and associated

peaks

DOWN motifs

Figure 1 | BETA workflow. Stage 1 analyzes the differential expression and 
ChIP-seq binding data to predict whether a factor generally activates or 
represses gene expression. Stage 2 predicts direct target genes by their 
upregulation or downregulation. Stage 3 conducts motif analysis to identify 
putative collaborating factors that contribute to upregulation (UP) or 
downregulation (DOWN).
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factor-unbound conditions. We used LIMMA19 and Cuffdiff20 to 
obtain differentially expressed genes from microarray or RNA-
seq experiments, respectively (BETA also accepts expression data 
with other applied algorithms). We determined the list of differ-
entially expressed genes in the DHT-induced AR system by using 
LIMMA19, and we show top lines here as follows:

ID	 logFC	 AveExpr	 t	 P.Value	 adj.P.Val	 B

NR_045762_at	 3.16711734	 9.140369116	 35.91057535	 6.99e-11	 4.18e-07	 14.13456018 

NM_001002231_at	3.214550493	 9.169929883	 35.32505807	 8.07e-11	 4.18e-07	 14.05227211

NM_001256080_at	3.214550493	 9.169929883	 35.32505807	 8.07e-11	 4.18e-07	 14.05227211

NM_005551_at	 3.214550493	 9.169929883	 35.32505807	 8.07e-11	 4.18e-07	 14.05227211

We divided genes into three groups according to their expres-
sion pattern, upregulated, downregulated or unchanged, after 
DHT treatment, and labeled them as UP, DOWN or NON in 
the workflow, respectively. BETA users can specify the number of 
genes in each group by count or by specific statistical measures 
such as false discovery rate (FDR) via the parameters --da and 
--df, respectively, in BETA basic and BETA plus.

For ChIP-seq data, we use Bowtie21 to map sequencing reads 
to the reference genome and MACS22 for peak calling. We use 
the peak-calling program model-based analysis of tiling array 
(MAT)23 to identify the binding events from ChIP-chip data. Four 
lines of the output from this analysis of AR ChIP-chip data from 
Wang et al.24 are as follows:

chr1	 1208689	 1209509	 AR_LNCaP_2	 51.58

chr1	 1334246	 1335348	 AR_LNCaP_7	 54.55

chr1	 2179351	 2180790	 AR_LNCaP_9	 257.72

chr1	 2341577	 2342737	 AR_LNCaP_11	199.59

The regulatory potential, which is a gene’s likelihood of being regu-
lated by a factor, is estimated for each gene. The regulatory poten
tial is calculated as S eg i

k i= − +
=∑ ( . )0 5 4

1
∆  (ref. 5). All binding sites (k)  

near the transcription start site of the gene (g) within a user speci-
fied range (100 kb as default) are considered. ∆ is the exact dis-
tance between a binding site and the TSS proportional to 100 kb  
(∆ = 0.1 means the exact distance = 10 kb). BETA users can also 
specify the top number of binding sites by count or by specific sta-
tistical measures. BETA then generates a cumulative distribution 
function of the gene groups and uses a one-tailed Kolmogorov-
Smirnov test25 to determine whether the UP and DOWN groups 
differ significantly from the NON group. As shown in Figure 2a, 
the dotted line represents the background, the genes that are not 

differentially expressed, whereas the red and the blue lines repre-
sent the genes upregulated and downregulated, respectively. BETA 
sorts genes by the regulatory potential score from high to low. 
The y axis of Figure 2a represents the proportion of genes in a 
category that are ranked at or better than the x-axis value, which 
represents the rank on the basis of the regulatory potential score 

from high to low. The P value listed in the top left represents the 
significance of the UP or DOWN group relative to the NON group 
as determined by the Kolmogorov-Smirnov test. From the AR 
activating/repressive function prediction result, it is clear that the 
UP-regulated genes have a much higher regulatory potential score 
than the DOWN-regulated and the nonregulated genes. That is 
to say, the genes with a gain in gene expression after 16 h of DHT 
treatment tend to also have an enrichment of AR-binding sites.

Direct target prediction. BETA predicts factor target genes by 
combining the binding potential from ChIP-seq data with differen-
tial expression data. Each gene is assigned two ranks: one based on 
binding potential Rgb and one based on differential expression Rge.  
Direct targets are then assigned on the basis of the rank product6 
of the two, and those with more nearby binding and more differ-
ential expression are more likely to be called as real targets.

There is evidence that binding of the transcription factor 
CCCCTC-binding factor (CTCF) can form regulatory bounda-
ries and that the expression patterns of genes within such regula-
tory blocks correlate better than genes in different blocks26. BETA  
provides a conserved CTCF boundary file that integrates all avail-
able Encyclopedia of Data Elements (ENCODE) data for humans 
(hg19 assembly) and mice (mm9). However, this block will have 
a big contribution only when the certain range is set via the  
parameter -d—when we use 100 kb (as default) or smaller distances, 
there is little difference.

BETA provides the target prediction file in a user-friendly for-
mat; the first six columns are in the standard BED format. In addi-
tion to refseq gene IDs, BETA also provides official gene symbols. 
With these results, users can easily perform further downstream 
analysis with GREAT1 or DAVID7. This is an example of the top 
lines of that output for direct target gene prediction:

Chroms	 txStart	 txEnd	 refseqID	 rank product	 Strands	 GeneSymbol

chr19	 51376688	 51383823	 NM_001256080	 2.186e-07	 +	 KLK2

chr19	 51376688	 51383823	 NM_005551	 2.186e-07	 +	 KLK2

chr19	 51376688	 51383823	 NR_045762	 2.186e-07	 +	 KLK2

chr19	 51376688	 51383823	 NR_045763	 2.186e-07	 +	 KLK2

chr19	 51376688	 51383823	 NM_001002231	 2.186e-07	 +	 KLK2

chr1	 207191865	 207206101	 NM_023938	 8.822e-07	 -	 C1orf116

chr1	 207191865	 207206101	 NM_001083924	 8.822e-07	 -	 C1orf116

chr21	 42836477	 42880085	 NM_005656	 1.033e-06	 -	 TMPRSS2

chr21	 42836477	 42879992	 NM_001135099	 1.041e-06	 -	 TMPRSS2
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Suppose there are n genes (both differentially expressed and 
with regulatory potential >0, which means at least one binding 
event around it within the range defined by the parameter -d). 
Two ranks (R) are associated with each gene (g): one is based on 
decreasing regulatory potential (Rgb), such that is Rgb = 1 for the 
gene with the largest regulatory potential score, and the other is 
based on the increasing of the FDR or P value (Rge), that is, Rge = 1  
for the most strongly differentially expressed gene. Then the rank 
product of the gene (g), RPg = ( ) ( )R n R ngb ge/ * / . The RP can be 
interpreted as a P value6, because it shows the probability that 
this gene has a regulatory potential rank ≤Rgb and a differen-
tial expression changed rank ≤Rge. On the basis of RP, users can 
judge the targets with a certain cutoff, for example, genes with 
an RP less than 10−3 will be more likely to be the true target 
genes of AR. Kallikrein-related peptidase 2 (KLK2), a gene that 
is highly expressed in prostate cancer, has been reported to be 
regulated by AR27. As a prognostic marker of prostate cancer, 

the function of KLK2 is still unknown. As expected, BETA found 
KLK2 to be upregulated by AR with the most significant RP value  
(RP = 2.186e–07). We also found chromosome 1 open reading 
frame 116 (Clorf116; also known as SARG), and transmem-
brane protease serine 2 (TMPRSS2) to have significant RP values  
(RP = 8.822e–07 and RP = 1.033e–06, separately) for upregu-
lation by AR. In previous studies, it was already been proven 
that Clorf116 is an AR-upregulated target gene28 and that the 
TMPRSS2–ETS-related gene (ERG) fusion gene is upregulated 
by AR and is present in prostate cancer with a high frequency29. 
BETA outputs hundreds of target genes, which is helpful in under-
standing the function and regulation of factors and provides some 
genes with highly potential values.

Except for direct targets, BETA provides the target gene– 
associated peaks as well, which can be easily used for motif search-
ing or meta-profiling. Here we show the associated peaks of  
AR-upregulated target genes as follows:
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Figure 2 | BETA output of activating/repressive 
function prediction and motif analysis of AR.  
(a) BETA activating/repressive function 
prediction of the AR data set from the LNCaP 
prostate cancer cell line. The red and the 
purple lines represent the upregulated and 
downregulated genes, respectively. The dashed 
line indicates the nondifferentially expressed 
genes as background. Genes are cumulated by 
the rank on the basis of the regulatory potential 
score from high to low. P values that represent 
the significance of the UP or DOWN group 
distributions are compared with the NON  
group by the Kolmogorov-Smirnov test.  
(b) Motif scan algorithm. Motif scores in  
each binding peak are compared among three 
regions. The middle region consists of 200 bp 
centered on the peak summit; the left and right 
regions comprise 200 bp in either direction of 
the middle region. The significance of motif 
summit enrichment is measured by the P value 
from a one-tailed t test. (c) Screenshot of 
binding motif analysis on UP target regions of 
AR. Similar motifs are grouped together, and 
the motif logo of the most significant factor in 
the group is provided in the last column. The 
motif symbol, DNA-binding domain and species 
are shown in the first three columns; the t score 
and the P value from the t test are shown in the 
middle two columns.

chrom	 pStart	 pEnd	 Refseq	 Symbol	 Distance	 Score

chr19	 51354060	 51354999	 NM_001256080	 KLK2	 -22159	 0.249983590819

chr19	 51372841	 51373704	 NM_001256080	 KLK2	 -3416	 0.529067106385

chr19	 51392207	 51393248	 NM_001256080	 KLK2	 16039	 0.319320493096

chr19	 51354060	 51354999	 NM_005551	 KLK2	 -22159	 0.249983590819

chr19	 51372841	 51373704	 NM_005551	 KLK2	 -3416	 0.529067106385

chr19	 51392207	 51393248	 NM_005551	 KLK2	 16039	 0.319320493096

chr19	 51354060	 51354999	 NR_045762	 KLK2	 -22159	 0.249983590819
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The first three columns are the basic information about the 
peaks, the 4th and 5th columns are the target genes’ RefSeq ID and 
gene symbol, and the 6th column is the distance from the peak 
center to the gene transcription start site (TSS) (a positive value 
represents the peak downstream of the gene and negative one 
is upstream). The regulatory potential score in the last column 
represents the contribution of each peak (the nearer the peak is, 
the higher the score). The user can upload the first three columns 
to IGV30 or to the University of California Santa Cruz (UCSC) 
genome browser31 to visualize the relationship between target 
genes and associated peaks.

If ChIP-seq data do not have corresponding differential 
expression data, users can apply BETA-minus, a simpler method 
that defines the targets as the genes with a high regulatory 
potential, derived only from TF binding within a specific 
region (100 kb default). In such cases, BETA is not able to 
predict whether the factor binding is activating or repressing  
gene expression.

Binding motif analysis. To identify factor-binding motifs asso-
ciated with ChIP-seq and differential expression data, BETA 
conducts motif analysis on sites proximal to the targets. It calls 
the function ‘model-based interval scanner with PSSM’ (MISP) 
to search for enriched sequence motifs represented as position-
specific scoring matrices (PSSM). MISP adopts the algorithm 
proposed in MOODS32, which can scan hundreds of matrices 
to chromosome-sized sequences in a few seconds. BETA then 
compares the number of motifs near the ChIP-seq binding sum-
mits with that in flanking regions to detect motifs with marked 
summit enrichment (Fig. 2b). Requiring summit enrichment 
improves the specificity of reported motifs, and this approach 
has been adopted in the SeqPos algorithm in the Cistrome  
analysis pipeline33.

A similar analysis could also be conducted in peaks near the UP 
and DOWN targets to identify differential motifs enriched over the 
NON targets or over each other. These differential motifs could 
provide important insight into collaborating factors or novel regula-
tory mechanisms. As AR has an activating function only in LNCaP 
cells, the motif analysis focuses only on the upregulated target gene 
regions. Our analysis summarizes all significant motif results in a 
web page, part of which is shown in Figure 2c; additional details 
from the original results can be found in text files in BETA deposited 
results folder, which can be defined by the BETA parameter -o. To 
remove redundant motifs from this summary, BETA classifies motifs 
into groups on the basis of similarity scores from Habib’s method34. 
Other information, including the motif ID (our database ID), the 
official symbol of the factor and DNA-binding domains (integrated 
from the TFCat database35), detail each motif. t scores and corres
ponding P values measure the significance of motif enrichment. 
From the motif analysis on AR target regions (Fig. 2c), nuclear 
receptor subfamily 3, group C, member 1 (NR3C1) was detected as 
the strongest motif and grouped with NR3C2, AR and progesterone 
receptor (PGR). Forkhead box AI (FOXA1), as a pioneer factor of 
AR, was detected with a significant P value and summarized with 
other forkhead domain family members (Fig. 2c).

Limitations of BETA
BETA requires at least ChIP-seq data to identify putative target 
genes. For combined expression data analysis, BETA currently sup-
ports standard LIMMA and Cuffdiff outputs or a tab-delimited  
differential expression text file with BETA required information 
(see examples at http://cistrome.dfci.harvard.edu/BETA/). BETA 
recognizes both Refseq IDs and official gene symbols in differen-
tial expression data. Other types of gene identification should be 
converted to these formats before analysis with conversion tools 
such as the DAVID gene ID conversion tool36.

MATERIALS
REAGENTS

Data sets formatted as described below: factor-binding data and differential 
gene expression data

EQUIPMENT
Computer: any computer running a Unix-like system with at least 2 GB 
of RAM can be used. A 64-bit machine running either Linux or Mac OS X 
(10.6 or later) with 4 GB or more of RAM is preferred

•

•

Software: downloaded and installed as described below: Python2.6 or  
newer and the NumPy Python package; R 2.13.1 or newer; GNU Compiler 
Collection (GCC) 

•

PROCEDURE
1|	 (Optional) Install git. Git-clone is widely used to make a copy of a project. To copy the Python NumPy module (Step 2), 
install git first. Follow option A for Mac OS X users, option B for Linux Ubuntu users, option C for Linux Fedora users or  
option D for other Linux distribution users. If git is already installed, skip this step.
(A) For Mac OS X users
	 (i) Download the dmg file from http://code.google.com/p/git-osx-installer, and then double click the file to install it.
(B) For LINUX Ubuntu users
	 (i) Type the following code: $ apt-get install git

http://cistrome.dfci.harvard.edu/BETA/
http://code.google.com/p/git-osx-installer
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(C) For LINUX Fedora users
	 (i) Type the following code: $ yum install git
(D) For other LINUX distribution users
	 (i) Refer to http://git-scm.com/download/linux.

? TROUBLESHOOTING

2|	 (Optional) Install python module NumPy. Linux and Mac OS X usually have Python built in. Ensure that the version is 
newer than Python 2.6. Next, install NumPy for multidimensional array analysis. If Python already has NumPy installed, skip 
this step.

$ git clone git://github.com/numpy/numpy.git numpy

$ cd numpy

$ python setup.py build

$ python setup.py install

? TROUBLESHOOTING

3|	 Verify the installation of Numpy. To verify the installation of NumPy, launch Python and type the following:

>>> import numpy

>>> numpy

>>> numpy.__version__

The NumPy installed directory and version information will be displayed in the screen if it is installed successfully.

For example:

    >>>    numpy

   �  >>>    <module 'numpy' from	
'/Library/Frameworks/Python.framework/Versions/2.7/lib/python	
2.7/site-packages/numpy/__init__.pyc' >

    >>>  numpy.__version__

    >>>  1.8.0.dev-ccbf5cf
? TROUBLESHOOTING

4|	 Install R. R is free software that is widely used for statistical computing and graphics. If R is already installed, ensure 
that the version is newer than R 2.13.1. Otherwise, perform option A for Linux and option B for Mac OS X to install R.
(A) For Linux users
	 (i) Type the following:

$ sudo apt-get update

$ sudo apt-get install r-base-core

(B) For Mac OS X users
	 (i) Choose the CRAN mirrors at http://www.r-project.org/.
	 (ii) Download R for Mac OS X and choose the latest version http://cran.cnr.berkeley.edu/.
	 (iii) Install R by double-clicking the package (e.g., R-3.0.1.pkg).

? TROUBLESHOOTING

5|	 Download BETA. Download the BETA source code from http://cistrome.dfci.harvard.edu/BETA/,

$ cd BETA
? TROUBLESHOOTING

6|	 Install BETA. Follow option A for global installation or option B for local installation.
(A) For global installation, if the user is a root or an administrator of the machine
	 (i) Type the following:

$ sudo python setup.py install 

http://git-scm.com/download/linux
http://www.r-project.org/
http://cran.cnr.berkeley.edu/
http://cistrome.dfci.harvard.edu/BETA/
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(B) For local installation
	 (i) Type the following:

$ python setup.py install --prefix=<your path>

In this case, you should modify PYTHONPATH by adding the following two lines to the .bashrc file in the home  
directory if necessary:

> export PATH=/your_directory/bin:$PATH 

> �export PYTHONPATH=/your_directory/lib/python2.X/site- packages/:$PYTHONPATH

 CRITICAL STEP Do not install BETA in the source code directory.
? TROUBLESHOOTING

7|	 Download the reference genome sequence data. BETA requires reference genome data to perform motif analysis. Currently, 
BETA only supports reference genome data in FASTA format. It can be downloaded from the UCSC Genome Bioinformatics site 
at http://genome.ucsc.edu/ (ref. 37).
 CRITICAL STEP Ensure that the chromosome identification is ‘chr1’, ‘chr2’… instead of ‘chrI’, ‘chrII’.

8|	 Format factor-binding data sets for BETA analysis. Factor-binding data files should be in BED format. BETA only supports 
three-column (chrom, chromStart, chromEnd) or five-column (chrom, chromStart, chromEnd, name, score) BED files. To get 
the BED-format binding events, perform option A for ChIP-seq data sets or option B for ChIP-chip data sets.
(A) For ChIP-seq data sets
	 (i) Align the data to a reference sequence with an alignment tool, such as Bowtie21.
	 (ii) Analyze the alignment results with a peak-calling program, such as MACS8.
(B) For ChIP-chip data sets
	 (i) �Analyze TF-binding events with a peak-calling program for tiling arrays, such as MAT23. 

? TROUBLESHOOTING

9|	 Format differential gene expression data sets for BETA analysis. Differential expression data files should be tab-delimited 
text files from LIMMA (LIM), Cuffdiff (CUF), BETA-specific format (BSF) or other file types (O) with prescribed expression 
information (Box 1). Raw expression data should have both control and experimental conditions. To get the eligible  
differential gene expression data, perform option A for LIM format from microarray data; use option B for CUF format from 
RNA-seq data; use option C for BSF; or use option D for other types.
(A) For LIM format from microarray data
	 (i) Ensure that the experiment has at least two replicates.
	 (ii) �Download the custom CDF file38 from BRAINARRAY (http://brainarray.mbni.med.umich.edu/Brainarray/Database/ 

CustomCDF/CDF_download.asp).
	 (iii) Run LIMMA19 with R.
(B) For CUF format from RNA-seq data
	 (i) Align RNA-seq reads to the whole genome with TopHat20.
	 (ii) Obtain differentially expressed genes by using Cuffdiff20 in the Cufflinks package.
(C) For BSF
	 (i) Convert to a tab-delimited text file.
	 (ii) Ensure that the file consists of three columns: gene ID, expression change and P value or other statistical significance.
(D) For other file types
	 (i) Convert to a tab-delimited text file.
	 (ii) �Ensure that the file has three columns: gene ID, expression change and P value or other statistical significance.  

Specify the column number via --info. 
 CRITICAL STEP All genes should be identified with Refseq IDs or official gene symbols. 
? TROUBLESHOOTING

10| Parameter selection for example data sets. Example data sets (described in Table 1 and available at http://cistrome.
org/BETA/#download) are used here to illustrate BETA analysis. Each data set is analyzed with BETA-basic, BETA-plus and  
BETA-minus. For data input, basic commands indicate the following parameters (additional, optional BETA parameters can  
be found in Box 2): -p specifies the name of factor-binding data; -e specifies the name of the corresponding differential  

http://genome.ucsc.edu/
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp
http://cistrome.org/BETA/#download
http://cistrome.org/BETA/#download
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expression data; -k specifies the format of the differential expression data—LIM, CUF, BSF or O; -d specifies a distance  
(in bp) within which peaks will be considered, default = 100,000 (100 kb); -g specifies the reference genome: hg19 for  
human or mm9 for mouse; for other genomes, see parameter -r in Box 3; -n specifies the prefix of the output files;  
and --da limits analysis to a specific number of differentially expressed genes in either direction (up and down).
 CRITICAL STEP Input of LIM, CUF, BSF or O under -k depends on the data set; ensure that the input file format is BETA 
supported.
? TROUBLESHOOTING

11| BETA analysis of example data sets. We use AR in LNCaP, Tet1 in mouse embryonic stem (ES) cells and ESR1 in MCF-7 cells 
to illustrate how the different BETA subprotocols work for different data sets. Perform option A for BETA-basic, option B for 
BETA-plus or option C for BETA-minus.
(A) BETA-basic: TF activating and repressive function prediction and direct target detection
	 (i) Predict AR function and direct targets in LNCap cells with 16 h of DHT treatment:

$ BETA basic –p 3656_peaks.bed –e AR_diff_expr.xls –k LIM –g hg19 --da500 -o basic

	 (ii) �The screen output lists all arguments used in this procedure, reports the input file format checking status and shows 
warnings and progress. In the end, BETA also reports the total time of the procedure. An example of this screen  
information is shown:

[16:52:07] Argument List:

[16:52:07] Name = basic

[16:52:07] Peak File = 3656_peaks.bed 

[16:52:07] Top Peaks Number = 10000

[16:52:07] Distance = 100000 bp

[16:52:07] Genome = hg19

[16:52:07] Expression File = AR_diff_expr.xls

[16:52:07] Expression Type = MicroArray, LIMMA result

[16:52:07] Number of differential expressed genes = 500.0

[16:52:07] Differential expressed gene FDR Threshold = 1

[16:52:07] Up/Down Prediction Cutoff = 0.001000

Box 1 | Differential expression data file formats 
• LIMMA standard output (LIM)19

ID (optional), RefseqID, logFC, AveExpre, T, P-value, Adj. P-value, B

• Cuffdiff standard output (CUF) (http://cufflinks.cbcb.umd.edu/manual.html#gene_exp_diff)
Test ID, gene ID, gene, locus, sample1, sample2, status, value1, value2, log2 (fold change), test stat, P value, Q value, significant

• BETA-specific format (BSF)
Gene ID, regulatory status (value with + or −), statistical value (e.g., FDR or P value)

• Other formats (O)
Gene ID, regulatory status, statistical value

Table 1 | Example data sets.

Binding file name Binding data resource Data description Peak no. Expression file name Expression data accession no.

3656_peaks.bed Brown Laboratory24 AR in LNCaP cells 7095 AR_diff_expre.xls GSE7868 (ref. 24)

5795_peaks.bed GSE24841 (ref. 39) Tet1 in mES cells 35532 Tet1_diff_expre.xls GSE24842 (ref. 39)

349_peaks.bed GSE19013 (ref. 40) ESR1 in MCF-7 cells 7031 ESR1_diff_expr.xls GSE11324 (ref. 41)

http://cufflinks.cbcb.umd.edu/manual.html#gene_exp_diff
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7868
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24841
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24842
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19013
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11324+
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[16:52:07] Check 3656_peaks.bed successfully!

[16:52:07] limma output file format successful passed 

�[16:52:07] You do not like filter peak by CFCT boundary, it will be filtered only 
by the distance

[16:52:07] Read file <3656_peaks.bed> OK! All <7059> peaks.

[16:52:20] Process <41168> genes 

[16:52:30] Finished! result output to <basic.txt>

[16:52:32] Prepare file for the Up/Down Test

null device

        1

[16:52:40] Finished, Find the result in NA_score.pdf

[16:52:40] Get the Rank Product of the ''upregulate'' genes

[ '''upregulate''' ]

[16:53:36] pick out the peaks 100000 bp around the selected genes

[16:53:37] Finished: Find target gene associated peaks in basic

total time: 0:1:29

	 (iii) �Predict Tet1 function and direct targets in mouse ES cells. Input Tet1 BED format peak file via -p and input the  
differential expression file via -e; set the genome assembly mm9 via -g:

$ BETA basic –p ../5795_peaks.bed - 	
e ../Tet1_diff_expr.xls -k LIM -g mm9 -o basic --	
da 500

	 (iv) Predict ESR1 function and direct targets in MCF-7 cells with 12 h of E2 treatment:

$ BETA basic -p ../349_peaks.bed –	
e ../ESR1_diff_expr.xls -k LIM -g hg19 -o basic --	
da 500 

(B) BETA-plus: TF activating and repressive function prediction, direct target detection and motif analysis
	 (i) �BETA-plus uses the same parameters as BETA-basic and additional parameters: --gs is required for motif scanning and  

it specifies a FASTA format reference genome; --bl is an optional parameter that is on when boundaries are considered. 
In these commands, the parameter –da was not set, meaning that the default top 50% of upregulated genes and top 
50% of downregulated genes were chosen as differentially expressed. This parameter can be specified depending on 
the data set. We turn --bl on and use the CTCF boundaries provided by BETA to ensure that the gene and associated 
peaks are in one CTCF block. This boundary file allows other data with at least three-column BED format, and it can be 
set via the parameters in Box 3.

Box 2 | Optional BETA parameters 
-n NAME, --name NAME	 Name result file
-o OUTPUT, --output OUTPUT	 Directory to store all output files
--gname2	� If switched on, gene or transcript IDs in files given through -e will be considered official gene  

symbols DEFAULT=FALSE
--info EXPREINFO	� Specify gene ID, up/down status and statistical values Columns? of expression data; DEFAULT: 2,5,7 

for LIMMA; 2,10,13 for Cuffdiff; 1,2,3 for BETA-specific format
--pn PEAKNUMBER	 Number of peaks contributing to regulatory potential score DEFAULT=10000
--df DIFF_FDR	� Input a value 0–1 as a significance threshold for differentially expressed genes by statistical value 

DEFAULT=1 (all genes)
--da DIFF_AMOUNT	� Most significant differentially expressed genes by proportion (0–1) or number (>1) and ranked  

by statistical value; for example, 2,000 will set the top 2,000 up genes and 2,000 down genes  
DEFAULT=0.5 (top 50% up genes and top 50% down genes)

-c CUTOFF, --cutoff CUTOFF	� Input a value 0–1 as a threshold of one-tail Kolmogorov-Smirnov test to determine significant  
difference DEFAULT=1e-3
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	 (ii) �Integration analysis (function prediction, target detection and motif analysis) of AR in LNCap cells with 16 h of DHT 
treatment:

$ BETA plus –p 3656_peaks.bed –e AR_diff_expr.xls 	
–k LIM –g hg19 --gs hg19.fa --bl

	 (iii) �Integration analysis of Tet1 in mouse embryonic stem cells:

$ BETA plus –p ../5795_peaks.bed –	
e ../Tet1_diff_expr.xls -k LIM -g mm9 --gs mm9.fa ––bl

	 (iv) Integration analysis of ESR1 in MCF-7 cells with 12 h of E2 treatment:

$ BETA plus -p ../349_peaks.bed -	
e ../ESR1_diff_expr.xls -k LIM -g hg19 --gs hg19.fa ––bl

	 (C) BETA-minus: target prediction based solely on binding events
 CRITICAL STEP BETA-minus requires only parameters –p and –g.

	 (i) Regulatory potential–based target prediction for AR in LNCap cells with 16 h of DHT treatment:

$ BETA minus -p 3656_peaks.bed --bl -g hg19 

	 (ii) Regulatory potential–based target prediction for Tet1 in mouse ES cells:

$ BETA minus -p 5795_peaks.bed --bl -g mm9

	 (iii) Regulatory potential–based target prediction for ESR1 in MCF-7 cells with 12 h of E2 treatment:

$ BETA minus -p 349_peaks.bed --bl -g hg19 
? TROUBLESHOOTING

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 2.

Box 3 | Parameters for BETA-plus extension usage 
• Application of BETA beyond human and mouse data:
   -r R�EFERENCE, --reference REFERENCE	� The gene annotation file is downloaded from http://genome.ucsc.edu/. Input only if the 

genome is neither hg19 nor mm9
• �Peaks and associated genes may be detected by some boundaries such as CTCF binding sites; BETA provides built-in  

CTCF-conserved binding sites integrated from ENCODE CTCF and DNase1 ChIP-seq data:
   --bl BOUNDARYLIMIT	� Boolean value; whether or not to use a CTCF boundary to obtain a peak’s associated gene, 

DEFAULT=FALSE
   --bf BOUNDARYFILE	 BED format boundary file; use only when --bl is set and genome is neither hg19 nor mm9

Table 2 | Troubleshooting table.

Step Problem Possible reason Solution

1–6 Installation  
failed

Variable problems (and see below) Refer to the readme or detailed installation online http://cistrome.
org/BETA/#inst

6 Setuptools  
error

Lack of the Python package  
‘setuptools’; multiple versions  
of Python installed

To install setuptools, input the following in the terminal: $ curl  
http://python-distribute.org/distribute_setup.py | sudo python  
For multiple python versions, specify the PYTHONPATH of 1 over 2.6 
in environment variable: > export PYTHONPATH=PATH_TO_BETA_LIB

Installation  
failed

Incorrect permission of the  
installation directory

Modify PYTHONPATH and reinstall BETA with: ––prefix

 8, 9 Error when checking 
input file format

Unsupported format of input data or 
incorrect [LIM/CUF/BSF/O] parameter

Check the input file, especially for differential expression data; see 
examples of test data in the BETA package

 10, 11 No results  
output

Low data quality or unmatched 
binding and expression data

Use high-quality data or loosen some parameters

http://genome.ucsc.edu/
http://cistrome.org/BETA/#inst
http://cistrome.org/BETA/#inst
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● TIMING
In general, it takes 2, 1 and 20 min to run BETA-basic, BETA-minus and BETA-plus, respectively. The run time is closely 
related to the number of binding events (users can set top binding sites by using the parameter --pn) and the number the 
differentially expressed genes (which depends on –da and --df).

ANTICIPATED RESULTS
BETA-basic
BETA-basic rapidly analyzes a factor’s function and its direct targets. The resulting output files are listed here:

File name Description Function (PROCEDURE Steps)

NA_byscores.R R script for function prediction Up or down or both Steps 11A(i, iii and iv),  
11B(ii, iii and iv)

NA_score.pdf PDF file for function prediction Up or down or both Steps 11A(i, iii and iv),  
11B(ii, iii and iv)

NA_uptarget.txt Upregulated direct targets Up Steps 11A(i and iv), 11B(ii and iv)

NA_uptarget_associate_peaks.bed Associated peaks of upregulated targets Up Steps 11A(i and iv), 11B(ii and iv)

NA_downtarget.txt Downregulated direct targets Down Steps 11A(iii and iv), 11B(iii and iv)

NA_downtarget_associate_peaks.bed Associated peaks of downregulated targets Down Steps 11A(iii and iv), 11B(iii and iv)

Functional prediction results are presented as a cumulative distribution function plot; direct target genes can be  
downloaded as a tab-delimited text file with the first six columns in standard BED format. In addition to these outputs,  
the file basic_score.pdf predicts whether the factor has an activating or repressive function or both (Figs. 2a and 3).  
Among the three data sets used in Step 11, BETA found AR to have an activating function in the prostate cancer cell line 
LNCaP (Fig. 2a), Tet1 to have a repressing function in mouse ES cells (Fig. 3a) and ESR1 to have both activating and  
repressing functions in the breast cancer cell line MCF-7 (Fig. 3b); these finding are consistent with the previous studies5,39. 
Direct upregulated targets or downregulated targets are listed in the NA_uptarget.txt or NA_downtarget.txt file, and the  
associated peaks named NA_uptarget_associated_peaks.bed or NA_downtarget_associated_peaks.bed will be output as well. 
All the output results have the same format with the AR output shown in the Experimental design.

BETA-plus
BETA-plus runs function prediction, target detection and binding motif analysis step by step. Motif results are deposited into 
a directory named ‘motifresult’, which is under the BETA results directory defined by the parameter -o. If a factor functions 
as both an activator and a repressor of gene expression (e.g., ESR1 in MCF7 cells), BETA will perform motif searches in both 
upregulated and downregulated target gene regions, enrichment analysis of motifs in up- or down-target over nontarget 
regions and identification of upregulation- and downregulation-specific motifs. The binding motif analysis file betamotif.
html summarizes all significant binding motif results on a web page. The result of the ESR1 analysis are shown in Figure 4, 
with Figure 4a,b depicting binding motifs found in upregulated and downregulated target gene regions, respectively. The 
ESR1 binding motif was the most significant one in both up- and down-target regions. The retinoid X receptor alpha (RXRA) 
binding motif was found to have a negative t score, which represents RXRA enriched in downregulated genes. Motifs with a 
positive t score represent enrichment in upregulated genes (Fig. 4c). In addition, binding motifs found in upregulated and 

downregulated genes (compared with nontargeted genes) 
represent potential collaborating factors to ESR1 (Fig. 4d,e).

In addition to .html summarized files, the original  
tab-delimited text files include analysis of motifs in  
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Figure 3 | Activating and repressive function prediction of Tet1 in mouse  
ES cells and ESR1 in MCF-7 cells. (a) BETA-basic analysis of the Tet1  
binding and expression data sets from the mouse ES cell line identifies 
upregulated (red) and downregulated (purple) genes. The dashed line 
indicates the non-differentially-expressed (NON) genes as background.  
(b) BETA-basic analysis of ESR1 targets in MCF-7 breast cancer cells.  
P values represent the significance of difference in the UP or DOWN  
groups compared with the NON group by the Kolmogorov-Smirnov test. 
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upregulated and downregulated gene regions: UP_MOTIFS.txt and DOWN_MOTIFS.txt. Additional files display the results of 
motif comparisons: UP_NON_MOTIFS.txt and DOWN_NON_MOTIFS.txt. BETA also summarizes the differential motifs between 
upregulated and downregulated gene regions in the UP_DOWN_DIFFERENTIAL_MOTIFS.txt file. The common format of 
these files is shown below (using ESR1 UP motifs as an example). Motif ID, species and DNA-binding domain provide basic 
information for the binding motif. PSSM (an example is shown below) can be used to draw a motif logo, to perform motif 
similarity comparisons or to get the motif sequence for further analysis; t scores and P values represent the statistical 
values for the enrichment.

Results of motif analysis:
MotifID	 Species	 Symbol	 DNA BindDom	 PSSM	 Tscore	 Pvalue

MC00335	 Homo sapiens	 ESR1	 Hormone-nuclear Receptor Family	 PSSM	 20.94	 1.39e–81

MC00333	 Homo sapiens	 ESR2	 Hormone-nuclear Receptor Family	 PSSM	 19.49	 2.88e–73

MS00657	 Homo sapiens	 NR2F1	 Hormone-nuclear Receptor Family	 PSSM	 15.64	 3.59e–51

MA0066	 Homo sapiens	 PPARG	 Hormone-nuclear Receptor Family	 PSSM	 12.12	 3.61e–32

MS00081	Homo sapiens	 MEIS1	 Homeodomain Family	 PSSM	 11.45	 2.96e–29

MS00829	 Homo sapiens	 ESRRA	 Hormone-nuclear Receptor Family	 PSSM	 10.88	 1.03e–26

PART1: UP TARGET GENES

Symbol DNA BindDom Species Pvalue (T Test) T Score Logo

Symbol DNA BindDom Species Pvalue (T Test) T Score Logo Symbol DNA BindDom Species Pvalue (T Test) T Score Logo

Symbol DNA BindDom Species Pvalue (T Test) T Score Logo

Symbol DNA BindDom Species Pvalue (T Test) T Score Logo
ESR1

ESRRB

NR4A2

ESRRG

ESRRA

RARA

PPARG

NR2F1

ESR2

MEIS1

RXRA

RUNX1 Runt Domain Family

Forkhead Domain FamilyFOXH1

TFEC Helix-Loop-Helix Family

Homo sapiens 1.69e-58 17.54

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family
ESR1

ESRRB

ESRRG

ESRRA

RARA

PPARG

NR2F1

ESR2

NR4A1

RARG

GATA4

SRF MADS Box Family Homo sapiens 8.65e-08 5.37

GATA Domain Family Homo sapiens 1.96e-03

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Hormone-nuclear Receptor Family

Homeodomain Family

PART3: UP VS DOWN MOTIF SCAN

Homo sapiens

Homo sapiens

Homo sapiens

Homo sapiens

Homo sapiens

Homo sapiens 3.22e-29 11.33

1.14e-133 27.12

2.14e-06

4.48e-06 -4.61

3.554.05e-04

-4.76

1.21e-20 9.45
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Figure 4 | Screenshots of summarized BETA-plus analysis of ESR1 motifs in html format. (a) BETA-plus combines factor-binding data and differential gene 
expression data to analyze sequence motifs in upregulated target genes (UP). ESR1, ESR2 and six other human estrogen receptor family members are classified 
into one group because of their high similarity scores. (b) Motifs in downregulated target genes (DOWN). (c) Differential motifs found in the UP and DOWN 
groups. A t score of >0 indicates motifs enriched in upregulated target genes, whereas a t score of <0 indicates enrichment in downregulated target genes.  
(d) Motif comparison between UP and NON regions. (e) Motif comparison between DOWN and NON regions.
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Format of PSSM:
M00179: ATF2
0.143 0.143 0.714 0.551 0.01 0.01 0.01 0.97 0.01 0.01 0.01 0.286
0.143 0.286 0.143 0.01 0.01 0.97 0.01 0.01 0.97 0.01 0.571 0.418
0.286 0.561 0.01 0.429 0.143 0.01 0.97 0.01 0.01 0.01 0.286 0.286
0.428 0.01 0.133 0.01 0.837 0.01 0.01 0.01 0.01 0.97 0.133 0.01

BETA-minus
BETA-minus predicts factor target genes from binding data only, and provides as output two text files: a target file and a list 
of target-associated peaks. The target-associated peaks file has the same format as BETA-basic output files. A sample output 
for the target gene file is shown below, where score refers to the regulatory potential calculated with the same method we 
described above:

Argument List:

# Name = NA 

# peak file = 3656_peaks.bed

# distance = 100000 bp

#Chromsome	 TSS	 TTS	 RefseqID	 Score	 Strand	 GeneSymbol

chr5	 180630119	 180632177	 NM_033342	 2.991	 -	 TRIM7

chr5	 180620923	 180632177	 NM_203293	 2.991	 -	 TRIM7

chr5	 180620923	 180631340	 NM_203294	 2.969	 -	 TRIM7

chr5	 180620923	 180631340	 NM_203296	 2.969	 -	 TRIM7

chr5	 180620923	 180631340	 NM_203295	 2.969	 -	 TRIM7

chr5	 180620923	 180627930	 NM_203297	 2.916	 -	 TRIM7 

chr6	 26538571	 26547164	 NM_006353	 2.469	 +	 HMGN4

chr5	 180649565	 180649633	 NR_039781	 2.446	 -	 MIR4638 

chr6	 35541361	 35696360	 NM_001145775	 2.406	 -	 FKBP5

The three subprotocols provided by the BETA package have a wide applicability for the integration of ChIP-seq and  
transcriptome analysis. Target genes predicted by BETA and the prediction of their activating or repressing functions help 
researchers to understand the regulatory mechanisms of the analyzed factors. Furthermore, efficient binding motif analysis 
provides a new way to detect co-regulators.
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