
Technologies such as ChIP–seq1–4, MNase-seq1,5,6, FAIRE–seq,  
DNase-seq7–9, Hi-C10,11, ChIA-PET12 and ATAC-seq13 combine 
next-generation sequencing (NGS) with new biochemi-
cal techniques or modifications of established methods 
to enable genome-wide investigations of a broad range 
of chromatin phenomena (FIG. 1). Inevitably, the under-
standing of data produced by these techniques lags 
behind their development, and sometimes phenomena 
observed through newly minted techniques are later 
understood to result from biases. In the initial excite-
ment over NGS technologies themselves, there was a 
common misconception that the digital readout of read 
counts could give unbiased results. However, it is now 
clear from data that have been produced from increas-
ingly sophisticated NGS experiments that substantial 
biases are indeed common.

In this Review, we summarize the most important 
lessons learned about the systematic artefacts that have 
been observed in NGS chromatin profiling experiments 
and describe the analytical strategies that have been 
developed to handle such artefacts. Although RNA also 
has an important role in chromatin structure and func-
tion, we have limited the scope of this Review to DNA-
centric assays. These considerations are of interest to 
experimental and computational biologists alike, and are 
also central to experimental design, protocol selection 
and data analyses. We first describe common sources of 
bias that arise in NGS chromatin profiling experiments 
and continue with a discussion on experimental design 
considerations, including the use of controls, the need 
for replicates and methods to mitigate batch effects. 

Finally, we discuss the emerging methods that have 
been developed for various analytical tasks and outline 
how they can be used to handle biases in genome-wide 
investigations.

Sources of bias
Genomic approaches for chromatin biology are under 
continual development — protocols are frequently 
refined, and new questions are constantly being posed. 
In some cases, applying appropriate software that 
accounts for bias effects is sufficient to obtain sound 
results. However, further experiments, controls and anal-
yses are often needed to account for technical artefacts. 
Below, we describe the main sources of bias, including 
chromatin structure, enzymatic cleavage, nucleic acid 
isolation, PCR amplification and read mapping effects.

Chromatin fragmentation and size selection: sonication.  
Chromatin structure itself is a major source of bias 
in chromatin profiling experiments. In ChIP–seq in 
which the aim is to quantify the protein–DNA interac-
tions of a specific protein, DNA fragmentation (usu-
ally by sonication) is required before protein-bound 
fragments are isolated by immunoprecipitation14. The 
mechanical characteristics of chromatin vary across 
the genome, which creates fluctuations in DNA fragil-
ity. Heterochromatin, which is not generally associated 
with transcription factor (TF) binding, tends to be more 
resistant to shearing than euchromatin15. Moreover, the 
way in which sonication is carried out can result in dif-
ferent fragment size distributions and consequently 
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Abstract | Next-generation sequencing (NGS) technologies have been used in diverse ways 
to investigate various aspects of chromatin biology by identifying genomic loci that are 
bound by transcription factors, occupied by nucleosomes or accessible to nuclease 
cleavage, or loci that physically interact with remote genomic loci. However, reaching 
sound biological conclusions from such NGS enrichment profiles requires many potential 
biases to be taken into account. In this Review, we discuss common ways in which biases 
may be introduced into NGS chromatin profiling data, approaches to diagnose these 
biases and analytical techniques to mitigate their effect.
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FAIRE –seq
(Formaldehyde-assisted 
isolation of regulatory elements 
followed by sequencing). A 
method to determine regulatory 
regions of the genome.

DNase-seq
A method in which DNase I 
digestion of chromatin is 
combined with next-generation 
sequencing to identify 
regulatory regions of the 
genome, including enhancers 
and promoters.

sample-specific biases that are induced by chromatin 
configuration. As a result, it is not recommended to use 
a single input sample as a control for ChIP–seq peak call-
ing if it is not sonicated together with the ChIP sample. 
Input samples from many different batches of ChIP–seq 
experiments that are produced from the same cell line 
under consistent conditions and using the same protocol 
may be combined as a control.

Chromatin fragmentation and size selection: enzy-
matic cleavage. Enzymatic cleavage approaches are also 
strongly influenced by chromatin structure, although 
the detailed nature of the effect varies between enzymes. 

For example, nucleosome-associated DNA is particu-
larly insensitive to digestion by micrococcal nuclease 
(MNase), and this enzyme is thus particularly useful for 
nucleosome occupancy characterization in MNase-seq. 
MNase induces single-strand breaks and subsequently 
double stranded ones by cleaving the complementary 
strand in close proximity to the first break16. MNase con-
tinues to digest the exposed DNA ends until it reaches 
an obstruction, such as a nucleosome, a stably bound 
TF17 or a refractory DNA sequence18. In MNase-seq 
studies, fragments of approximately one nucleosome 
length (~147 bp) are typically selected for sequencing6. 
Different size ranges of MNase-digested fragments have 
been shown to reveal different patterns of enrichment19. 
Therefore, MNase-seq data ought to be interpreted 
relative to fragment length distribution. Studies have 
found that nucleosomes occupy regions that are more 
GC rich than their neighbouring regions20–22 and that 
they are intrinsically depleted at transcription termina-
tor regions23. However, bias in MNase digestion towards 
AT-rich sequences23,24 suggests that MNase cleavage bias 
might be at least partially responsible for this effect. 
As a further complication, the degree to which DNA 
sequence influences MNase cleavage is affected by the 
cleavage reaction temperature18.

Similarly to MNase, the nuclease DNase I generates 
double-strand breaks by nicking complementary strands 
of DNA one strand at a time25. However, unlike MNase, 
DNase I has not been reported to have substantial 
exonuclease activity, and it operates in a ‘hit-and-run’  
mode rather than ‘nibbles’ at the ends of DNA until an 
obstruction is reached. The efficiency of DNase-seq 
in identifying TF binding sites is highly dependent on 
fragment size and, for several TFs, it is more efficient to 
use shorter fragments (<100 bp) than longer ones. By 
contrast, longer fragments (>150 bp) tend to span entire 
nucleosomes26,27 and are less likely to cluster around 
open chromatin regions (FIG. 2).

Sites of DNase I cleavage are strongly affected by 
the precise sequence of the three nucleotides on either 
side of the cleavage site, and this bias is strand spe-
cific28. Intrinsic DNase I cleavage bias is particularly 
evident when analysing a set of sites in aggregate, in 
which the genomic loci are aligned by the TF motif on 
DNase I-hypersensitive sites. This issue is not limited  
to DNase I; other nucleases, including MNase22,24, cyanase 
and benzonase29, also cleave DNA in a sequence-sensitive 
way. The Tn5 transposase used in ATAC-seq13 is also 
known to cleave DNA in a sequence-dependent manner.

Nucleic acid isolation. Whole-genome sequencing, 
which should be free of chromatin effects, sometimes 
produces tissue-specific patterns of high- and low-
coverage across the genome. This phenomenon occurs 
as a result of the phenol–chloroform extraction step 
that is commonly used to separate nucleic acids from 
proteins30. Differential solubility is the principle of 
this separation step: nucleic acids are more soluble in 
the aqueous chloroform phase, whereas proteins tend  
to be more soluble in the organic phenol phase. Prior to 
phenol–chloroform extraction, protein is digested using 

Figure 1 | An overview of ChIP–seq, DNase-seq, ATAC-seq, MNase-seq and FAIRE–seq 
experiments. A genomic locus analysed by complementary chromatin profiling 
experiments reveals different aspects of chromatin structure: ChIP–seq reveals binding 
sites of specific transcription factors (TFs); DNase-seq, ATAC-seq and FAIRE–seq reveal 
regions of open chromatin; and MNase-seq identifies well-positioned nucleosomes.  
In ChIP–seq, specific antibodies are used to extract DNA fragments that are bound to  
the target protein, either directly or through other proteins in a complex that contains the  
target factor. In DNase-seq, chromatin is lightly digested by the DNase I endonuclease. 
Size selection is used to enrich for fragments that are produced in regions of chromatin 
where the DNA is highly sensitive to DNase I attack. ATAC-seq is an alternative method to 
DNase-seq that uses an engineered Tn5 transposase to cleave DNA and to integrate 
primer DNA sequences into the cleaved genomic DNA (that is, tagmentation). 
Micrococcal nuclease (MNase) is an endo–exonuclease that processively digests DNA 
until an obstruction, such as a nucleosome, is reached. In FAIRE–seq, formaldehyde is used 
to crosslink chromatin, and phenol–chloroform is used to isolate sheared DNA.
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Hi-C
An extension of chromosome 
conformation capture that uses 
next-generation sequencing to 
observe long-range interaction 
frequencies between different 
regions of the genome.

ChIA-PET
(Chromatin interaction analysis 
by paired-end tag sequencing). 
A method that combines 
chromatin immunoprecipitation-
based enrichment and 
chromatin proximity ligation 
with paired-end 
next-generation sequencing  
to determine genome-wide 
chromatin interactions.

the proteinase K enzyme. However, incomplete digestion 
can result in DNA-binding proteins carrying a fraction 
of DNA into the phenol phase, which leads to uneven 
genome coverage owing to chromatin effects30. A simi-
lar differential solubility phenomenon has been used in 
FAIRE–seq31 as an alternative method to DNase-seq to 
determine regions of open chromatin.

PCR amplification biases and duplications. Multiple 
instances of the same sequence read in an NGS data 
set can originate from mistaking one feature for two 
in sequencing image analyses, from sequencing PCR 
amplicons derived from the same original fragment or 
from the presence of multiple fragments in the original 
sample. This issue is particularly troublesome with small 
amounts of starting material32.

PCR amplification biases arise because DNA 
sequence content and length determine the kinetics 
of annealing and denaturing in each cycle of this pro-
cedure. The combination of temperature profile, poly-
merase and buffer used during PCR can therefore lead 

to differential efficiencies in amplification between dif-
ferent sequences33, which could be exacerbated with 
increasing PCR cycles. This is often manifested as a bias 
towards GC-rich fragments, although not necessarily in 
regions with extremely high GC levels34. Although the 
sequence read is the end product of sequencing, the frag-
ment of DNA amplified in PCR, which is usually longer 
than the read itself, is the relevant entity in the analysis of 
PCR amplification effects34. We recommend limited use 
of PCR amplification because bias increases with every 
PCR cycle.

Read mapping. The short sequence reads that are pro-
duced by NGS experiments are typically mapped onto 
a reference genome before subsequent analysis steps 
are carried out. Repetitive elements, duplications of 
genomic sequences35 (including paralogous genes) and 
differences between the sequenced genome and the ref-
erence genome can all introduce coverage bias between 
different regions of the genome. Efficient mapping algo-
rithms that take advantage of the short read length to 
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Figure 2 | Fragmentation effects in DNase-seq and ChIP–seq.  
Chromatin structure and fragmentation interact to produce biased patterns 
of enrichment across the genome. a | Some transcription factors (TFs), such 
as CCCTC-binding factor (CTCF), typically bind in short nucleosome-
depleted regions that are flanked by arrays of nucleosomes. When carrying 
out DNase-seq, shorter fragments are much more efficient than longer ones 
for identifying such sites. b | Histones and other factors that associate with 
DNA in nucleosomes rather than linker regions may also be located in 

DNase I-hypersensitive regions. Longer fragments may be more efficient for 
detecting the binding of such factors. c | Some factors bind in linker regions 
that are flanked by loosely packed and unorganized nucleosomes. Such 
regions can be enriched in both long and short fragments in DNase-seq.  
d | In ChIP–seq, chromatin is typically fragmented by sonication. Similar to 
DNase digestion, sonication is more efficient in regions of open chromatin. 
Factors bound in open chromatin contexts are more likely to be identified 
by ChIP–seq.
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ATAC-seq
(Assay for transposase- 
accessible chromatin using 
sequencing). A method that 
combines next-generation 
sequencing with in vitro 
transposition of sequencing 
adapters into native chromatin.

Random barcoding
A technique that ligates a 
diverse assortment of short 
random DNA sequences to  
an unamplified DNA sample, 
which can be used to 
distinguish duplicates 
produced by PCR from those 
originating from the 
unamplified DNA.

align NGS reads with the reference genome — includ-
ing MAQ36, Burrows–Wheeler Alignment (BWA)37, 
Bowtie38, mrFAST39 and SOAP2 (REF. 40) — introduce 
algorithm-specific biases when finding imperfect or 
ambiguous matches to the genome. As a result, there are 
algorithm-specific ‘unmappable’ regions of the genome 
to which no reads can be aligned. These regions may be 
approximated by systematically attempting to map every 
possible read in the reference genome back to the entire 
reference genome41.

The proportion of a genome to which a sequence read 
may be uniquely assigned depends on both the length 
of the sequence reads and the accuracy of the sequenc-
ing. Longer reads and paired-end reads with known 
insert sizes allow read mapping with greater coverage 
and greater uniformity of coverage41. Regions to which 
reads cannot be mapped have often been considered as 
less likely to be functional, and they are often repetitive 
elements associated with transposon activity. Although 
most investigators ignore such regions, analyses of 
repeats using specialized methods42,43 have revealed sig-
nificant associations between chromatin marks44 and 
TFs45 with particular repeat families.

Incompleteness and inaccuracies in the genome 
assembly can result in regions of low and high coverage 
that cannot be explained by an analysis of mappability. 
For example, a region that is unique in the assembled ref-
erence genome may have multiple copies in the genome 
of the experimental sample. This occurs occasionally 
in studies of non-cancerous human samples and, to a 
greater extent, in more recently assembled genomes that 
are of lower quality than the human reference genome. 
In the human genome, such artefact-derived ‘sticky’ 
regions are frequently observed as ChIP–seq and DNase-
seq peaks46, sometimes as the ‘strongest’ peaks, and such 
regions are often close to centromeres and telomeres. We 
expect that recently updated genome assemblies, such as 
HG38 and MM10, will mitigate some mappability issues.

Genomic variation — including single-nucleotide 
polymorphisms (SNPs), insertions and deletions 
(indels), and rearrangements — may produce sequence 
reads that cannot be mapped to the reference genome. 
In cancer cell lines, genomic loci with high copy num-
bers are more likely to be determined as enriched in 
ChIP–seq and other chromatin assays47,48. When map-
ping allele-specific reads to a reference genome, there is 
a greater likelihood of aligning a short SNP-containing 
read if the SNP variant is consistent with the reference 
genome. This situation is exacerbated when the read 
contains sequencing errors49. Simply masking known 
SNP positions in the genome can lead to other artefacts 
owing to a combination of factors, including the pres-
ence of multiple SNPs in close proximity, unknown SNPs 
and similar sequences in other regions of the genome50.

TF binding characteristics. The characteristics of TF 
binding to DNA differ substantially between TFs51. The 
observed signals can be influenced by nucleosome posi-
tioning relative to the TF binding site, strength of binding,  
binding kinetics and the tendency of a TF to bind in 
conjunction with other factors or potentially through 

the recognition of histone post-translational modifica-
tions. Some TFs are therefore more readily detected by 
TF binding inference techniques based on ATAC-seq, 
DNase-seq or MNase-seq.

Classic DNase I footprinting studies have shown 
that TF binding often modulates the pattern of DNase I 
cleavage at the site of protein–DNA interaction and at the 
flanking nucleotides, usually in a way such that DNase I  
cleavage is impeded at central positions where the  
DNA–protein interaction occurs and facilitated at  
the flanking positions. Close examination of DNase-seq 
read positions within regions of DNase I hypersensitivity 
reveals highly non-homogeneous patterns. Factors that 
contribute to these complex patterns include nucleosome 
occupancy, DNA sequence-dependent cleavage and 
other biases, as well as the effect of TF binding itself 26.

Experimental design considerations
To maximize discovery using limited research budgets, 
investigators tend to carry out minimal controls and 
replicates in NGS experiments. Nevertheless, controls 
are required to accurately evaluate the effects of biases, 
and replicates are needed to make an assessment of data 
variability. In experiments that involve comparison of 
multiple samples, bias effects often produce observ-
able differences between sample batches. Success in 
correcting for such batch effects is dependent on good 
experimental design. In particular, it is suggested that 
biologically distinct treatment groups need to be distrib-
uted evenly over processing batches so that experimental 
effects and batch effects can be distinguished. In addi-
tion, in order to obtain meaningful results from differ-
ential analyses between conditions, the experimental 
protocol needs to be carried out in a highly consistent 
manner for all samples (FIG. 3). Below, we detail some 
of the considerations that should be taken into account 
when designing NGS chromatin profiling experiments 
to obtain the most meaningful results (TABLE 1).

Sequencing depth and read length. Several sequencing 
options are available, including selection of read length, 
single-end or paired-end reads and the expected num-
ber of reads. In single-end sequencing, duplicates that 
arise from PCR amplification can often be confused 
with multiple fragments that have one end in common 
in the original sample. Paired-end sequencing can help 
to distinguish between these, as the probability of sam-
pling two fragments with the exact same start and end 
is much lower than the probability of identifying a sin-
gle common end. Some commercial library construc-
tion kits, such as the Rubicon ThruPLEX-FD Prep Kit, 
are more efficient in making sequencing libraries with 
less duplication bias from very little starting material. 
Random barcoding is another technique that can be used 
to distinguish PCR duplicates from duplicates in the 
unamplified DNA52.

The number of informative reads produced from an 
NGS experiment depends on sample quality, sequenc-
ing technology and protocol, among other factors. As 
a result, NGS data sets can differ substantially in read 
count, as well as in the observed number and distribution 
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Spike-in
Controls that are known 
quantities of readily 
identifiable nucleic acids,  
which are added to a sample 
prior to critical steps in an 
experimental protocol. Such 
controls may be used for bias 
assessment and calibration 
purposes.

of different DNA species, which reflects library com-
plexity. Deep sequencing of low-complexity libraries 
produces repeated observations of some DNA species, 
which yields less information than high-complexity 
libraries, and methods to characterize library complex-
ity are therefore useful diagnostic tools for NGS analy-
ses53. In addition, the Encyclopedia of DNA Elements 
(ENCODE) consortium54 PCR bottleneck coefficient 
(PBC) metric — the ratio of genomic locations with a 
single uniquely mapped read over the total number of 
genomic locations with uniquely mapped reads — is an 
informative measure of library complexity if evaluated 
at similar sequencing depths.

Controls to detect and correct biases for ChIP–seq. In 
ChIP–seq it is common to use a chromatin ‘input’ con-
trol, in which sonicated chromatin is assayed without 
enrichment of specific binding sites through immuno-
precipitation. A recurrent issue in the selection and 
interpretation of controls for bias correction in NGS 
applications is the occurrence of biological signal in  
the controls themselves. In input controls, weak TF bind-
ing signals may be observed because regions of TF binding 
also tend to be regions where chromatin is more amenable 
to fragmentation15. Owing to cost considerations, input 
controls are often sequenced to lower depths than the 

ChIP samples. However, this is not recommended, as 
the broader genomic distribution of signal in chroma-
tin input DNA requires this input to be sequenced to a 
higher coverage than ChIP–seq for accurate results55,56.

Another issue is the potential difference in bias 
between the samples of interest and the controls. 
Although information on mappability can be provided 
by ChIP–seq input controls, copy-number effects, broad 
chromatin accessibility and other sources of bias have 
been found to vary substantially between control and 
ChIP samples48,56. To minimize these sources of tech-
nical variation, it is advised to use input controls that 
are processed together with ChIP samples to correct for 
background bias.

Addition of a ‘spike-in’ reference chromatin sample to 
the study sample before immunoprecipitation provides 
a reference for quality control and bias characterization, 
and could enable the identification of global yet uniform 
TF binding changes. To discriminate spike-in sample 
reads from those derived from the study sample itself, 
the spike-in must originate from a different genome. In 
ChIP–seq, the foreign chromatin material needs to be 
bound by a homologous protein that is targeted by the 
antibody as efficiently as the protein in the study sample. 
The principle of this approach has been shown by spiking 
chromatin of HeLa cells into mouse samples for ChIP 
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Figure 3 | Variability of H3K4me3 ChIP–seq in human embryonic stem 
cells and differentiated cell lines. Several factors — including 
fragmentation, immunoprecipitation conditions and PCR biases — can lead 
to different patterns of histone H3 lysine 4 trimethylation (H3K4me3) 
enrichment at gene promoters in the same cell line. Coarse characteristics 
of H3K4me3 enrichment, such as the depletion of H3K4me3 immediately 
upstream of the transcription start sites of a core set of genes, are consistent 
between samples. Closer inspection reveals clear qualitative and 
quantitative differences between samples. For example, some samples 
show sharper peaks, perhaps owing to differences in micrococcal nuclease 
(MNase) digestion conditions and fragment selection. Regions that seem to 

be different between embryonic stem cells (ESCs) and differentiated cells 
in ChIP–seq samples produced by laboratory B also show variability in ESC 
ChIP–seq replicates produced by laboratory A. These differences cannot be 
eliminated simply by scaling read counts to account for differences in read 
depth, as the effects are not uniform across all genes. Quantitative 
comparisons of ChIP–seq signal are problematic unless biological replicates 
are done and protocols are carried out in a highly consistent manner to 
produce data with comparable characteristics. Modelling biases can help 
to reduce the amount of unexplained variability and increase sensitivity in 
detecting true differences between sample groups. NANOG, nanog 
homeobox; TEAD4, TEA domain family member 4.
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that targets subunits of RNA polymerases II and III57. 
This control may be especially useful in ChIP–seq studies 
of histone modifications. Although we believe that this 
type of control may be useful, it has not been extensively 
tested, and balancing the amount of spike-in relative 
to the chromatin of interest might still be challenging.

In a ChIP–seq experiment using an untested anti-
body, it is crucial to carry out various control experi-
ments to establish the specificity of the antibody in 
genome-wide experiments14,58. Such experiments 
include the use of different antibodies and the knock-
down or knockout of the target protein. Antibody 

Table 1 | Considerations in designing next-generation sequencing chromatin profiling experiments

Factor Common options Considerations

Chromatin 
profiling 
assay

• ChIP–seq 
and antibody 
enrichment

• DNase-seq
• ATAC-seq
• MNase-seq
• MNase-ChIP–seq 

and antibody 
enrichment

• ChIP–seq requires good and specific antibodies14,58

• Differences in data quality of ChIP–seq using different antibodies prevent all but the roughest comparisons 
between data sets

• DNase-seq requires careful calibration of digestion conditions and fragment selection26

• DNase-seq or ChIP–seq samples obtained using the same antibody may be compared, provided that protocols 
are followed consistently, and that bias effects and variability are taken into account78,109

• ATAC-seq requires fewer cells and less experimental calibration13, but bias characteristics are not as well 
understood as those of DNase-seq26

• MNase-ChIP–seq using antibodies specific to enhancer features (such as H3K4me and H3K4me2) or promoter 
features (such as H3K4me3) can be more efficient than global MNase-seq for identifying nucleosome 
occupancy at regulatory regions of the genome6

Sequence 
length

• Read length of 
25–150 bp

• Single-end reads
• Paired-end reads

• Read length is less important for chromatin profiling assays than studies of genomic or RNA transcript assembly110

• Longer reads are suggested for studies that seek to identify allele-specific chromatin events49

• In highly specialized studies of chromatin (for example, investigations of transposable elements44), longer reads 
and paired-end reads would be useful in improving mappability43,55

• Paired-end reads have three advantages over single-end reads: they increase the mappable proportion of the 
genome, allow PCR duplicates to be more easily identified and enable the precise ends of fragments to be 
identified26,55

• Sequencing costs of generating longer reads and paired-end sequencing need to be balanced against the 
value of more informative reads

Read depth • Multiplexing
• Number of lanes
• Sequencing 

machine

• Multiplexing allows several samples to be sequenced in a single lane to a lower read depth110

• Sequencing multiple biological replicates or sample replicates to a lower sequencing depth is preferable  
to sequencing a single sample to a greater depth

• Information per read decreases as a function of read number: ChIP–seq targeting TFs that bind with high 
specificity reaches saturation at lower read depths than more broadly bound histone modifications111; 
DNase-seq also requires greater sequencing depths, and fragments longer than 147 bp saturate at much higher 
levels than shorter reads26

• Even at low sequence depth, chromatin profiling should be informative for regions with strong signals, and pilot 
studies at low coverage are recommended before sequencing to higher coverage

• It is important to examine library complexity in sequenced libraries, as low-complexity data sets that are 
sequenced to greater depths can be less informative than high-complexity ones sequenced to lower depths14,53

• It is better to sequence a high-quality sample at low depth than a low-quality sample to high depth
• Sample quality control can be carried out rapidly on MiSeq

Replicates • Biological 
replicates

• Technical 
replicates 
starting from the 
same biological 
material

• Sequencing 
replicates

• Many technical bias effects accumulate before library preparation and sequencing; therefore, sequencing the 
same library multiple times is generally not informative

• Biological replicates are essential to characterize variability between samples
• Technical replicates starting from the same biological material can help to understand the degree to which 

technical biases contribute to variability
• When processing samples, it is important to avoid processing replicates of the same treatment condition in the 

same batch, as this would result in batch effects confounding treatment effects101,102

ChIP–seq 
controls

• Input control
• IgG control
• Condition 

controls
• ‘Spike-in’ controls

• Input controls are suggested in ChIP–seq experiments to distinguish real peak regions from artefacts; they 
ought to be sequenced to greater depths than immunoprecipitated samples to obtain adequate coverage55

• Input controls are preferred to IgG, as they produce more complex libraries14

• Conditions under which a TF is not induced may be used as a control for ChIP–seq in the induced condition; 
however, induction can lead to chromatin state changes in places where the TF binds and also elsewhere90

• Spike-in controls have rarely been used in ChIP experiments, and their value is thus not well tested; naked  
DNA spike-ins would not capture chromatin effects, so for human study samples standardized chromatin 
spike-ins derived from yeast, fly or mouse may be useful57

DNase-seq, 
ATAC-seq 
and MNase 
controls

• Naked DNA
• Condition 

controls

• In DNase-seq or ATAC-seq footprinting studies and MNase nucleosome positioning studies, naked DNA 
controls are useful for characterizing the DNA sequence bias of enzymatically induced cleavage26,28,112

• To be informative, such experiments need to be done at high levels of coverage
• Although analyses of DNase-seq in chromatin are already highly informative for predicting bias effects26, 

naked DNA data could provide additional information about sequence bias effects that are not considered in 
current models

H3K4me, histone H3 lysine 4 methylation; IgG, immunoglobulin G; TF, transcription factor.
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Splines
Flexible smooth nonlinear 
functions that are defined 
piecewise by polynomials  
for fitting nonlinear trends.

Locally estimated 
scatterplot smoothing
(LOESS). A simple yet robust 
method for fitting nonlinear 
trends.

Quantile regression
A statistical regression method 
that estimates the median or 
other quantile of the response 
variables and that is robust 
against outliers.

effects, such as epitope masking, can result in  
antibody-specific biases for the same TF58.

Controls for enzymatic cleavage assays. Genomic assays 
that are based on the selection of fragments produced 
from enzymatic DNA cleavage — including ATAC-
seq, DNase-seq and MNase-seq — may be influenced 
by the tendency of the enzyme to cleave some DNA 
sequences more efficiently than others. Controlling for 
such effects is particularly important when considering 
features at nucleotide resolution. DNase I cleavage bias  
due to DNA sequence at either end of the cleavage 
site can be estimated from DNase I digestion of naked 
genomic DNA, but systematic sequence features of the 
chromatin sample itself may also be used, as they can 
capture the sample-specific aspects of this type of bias. 
It has been shown through yeast naked DNA controls 
that MNase has cleavage biases that may be mistaken 
as nucleosome positioning signals24.

Analytical techniques for bias correction
Below, we discuss issues that are generally applicable 
in NGS chromatin profiling analyses and methods 
that are implemented as software for specific analyti-
cal tasks. The general issues include identifying biases 
that are most likely to confound results, character-
izing bias, adjusting for sequencing depth, handling 
duplicate reads and modelling variations in NGS data. 
Specific analyses include peak detection, DNase-seq 
footprint and chromatin landscape analyses, domain 
calling, ChIP–seq peak deconvolution and differential 
enrichment analysis. TABLE 2 summarizes artefacts that 
might affect various analysis types, as well as ways of 
diagnosing and correcting these effects.

Length scales of biases and biological features. 
Genomic analyses are carried out over length scales 
from 1 bp (in SNP analyses) to ~10 bp (in DNase I 
footprint analyses), ~100 bp (in TF ChIP–seq peak 
calling) and ~100 bp–100 kb (in chromatin domain 
analyses). Bias effects also occur on different length 
scales; for example, read errors occur on the single-
nucleotide scale, whereas PCR amplification biases 
affect fragments of ~100 bp. The biases that are most 
likely to confound results are those manifested on 
length scales that are similar to the studied biological 
phenomena while also considering the spatial cor-
relation structure of genomic features. For example, 
although PCR-amplified fragments tend to be ~100 bp 
long, GC content can fluctuate across more extensive 
regions of the genome; therefore, PCR effects would be  
observable on these broader scales.

Identifying bias. The ChiLin quality control pipeline 
is a good starting point for understanding the quality 
and bias characteristics of ChIP–seq, DNase-seq and 
ATAC-seq samples. ChiLin reports quality control 
characteristics of reads and genome-level measures 
that reflect the tendency of reads to appear in clus-
ters or in peak-like patterns54. These metrics can be 
used to identify low-quality samples and to flag data 

characteristics, such as high read redundancy rates that 
can lead to poor results. As quality control measures 
often depend on sequencing depth, a fixed number of 
reads need to be sampled when comparing the qual-
ity control measures of different data sets. NGS read 
characteristics can also be quantified using alternative 
software packages such as SAMstat59, RNA-SeQC60, 
RSeQC61 and htSeqTools62. The software CHANCE63 
and HOMER64 evaluate alternative enrichment quality 
control characteristics.

In most chromatin profiling applications, it is bet-
ter to characterize bias from the genomic perspective 
instead of the read perspective. A commonly used 
approach for characterizing a single source of bias is as 
follows. First, the genome is partitioned into elements 
such as genes or genomic intervals, and the bias param-
eters such as GC content in each element are computed. 
Second, elements are grouped into bins according to 
these parameters. Finally, reads in each element are 
counted, and robust estimates of bias within each bin 
are calculated. Genomic length scales of the bias and 
the biological features should be taken into consid-
eration when partitioning the genome. As the effects 
of bias are expected to be smooth functions, flexible 
functions such as splines65 or locally estimated scatterplot  
smoothing (LOESS)66 can be used instead of dividing 
data into bins. When there are multiple sources of 
bias and when the data is insufficient to partition the 
parameter space into bins, robust estimates of param-
eters can be calculated using techniques such as quantile 
regression67. Although it may be fairly easy to measure 
the relationship between NGS read counts and genomic 
features, further interpretation is complicated because 
different sources of bias may be correlated with each 
other and with biological factors. In addition, reducing 
the influence of bias requires read count variability to 
be taken into consideration.

Adjusting for sequencing depth. ChIP–seq studies 
usually involve the comparison of immunoprecipi-
tated samples and input control samples, and ChIP–
seq of one condition is sometimes compared with 
that of another condition. Although sequence depth 
represented as total read count is commonly used to 
normalize ChIP–seq data, this ignores differences in 
the proportion of immunoprecipitated reads to back-
ground reads. In PeakSeq, the genome is partitioned 
into 10-kb bins, and linear regression is used to com-
pute the scaling constant between input control and 
immunoprecipitated samples68. Signal extraction scal-
ing (SES) is an alternative global scaling method for 
ChIP–seq that separates reads in immunoprecipitated 
samples into signal and background components and 
that uses the background estimates for scaling63. This 
method partitions the genome into bins of equal size 
(1 kb) and uses the lower tail of the cumulative distri-
bution function of counts within each of these bins 
to estimate the background signal. NCIS (normali-
zation of ChIP–seq) uses a similar strategy69 to select 
both window size and background read cutoff in an  
adaptive yet robust manner.
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When comparing ChIP–seq between treatment 
groups, normalization schemes that are appropri-
ate for normalizing input and immunoprecipitated 
samples may not be suitable for normalization among 

immunoprecipitated samples, especially when the  
signal-to-noise ratio varies between samples. The sim-
plest approach of scaling read counts by the reciprocal 
of the total number of mapped reads may not work, as it 

Table 2 | Diagnosis and mitigation of bias in common analyses of next-generation sequencing chromatin profiling experiments

Analysis type Examples Biases that are likely to 
influence results

Diagnosis and mitigation

Allele specificity ChIP–seq, 
DNase-seq, 
ATAC-seq or 
MNase-seq 
read counts are 
associated with a 
SNP

• Sequencing errors
• Priming efficiency
• Reference genome to 

which reads are mapped
• Read mapping algorithm
• Differential cleavage bias 

in DNase-seq, ATAC-seq 
and MNase-seq

• Estimate sequence error rates modelled on sequence characteristics and 
use error estimates to account for these error rates113

• Check for association with the read rather than the genome; for example, 
check whether the allelic imbalance predominate at 5ʹ or 3ʹ end of 
reads114

• Use special-purpose mapping software50,78,109

• Model nuclease-induced cleavage bias, or discard DNase-seq or 
ATAC-seq reads with 5ʹ ends close to the SNP26

Peak enrichment 
relative to 
genomic feature

ChIP–seq peaks are 
enriched at gene 
promoters, exons  
or CpG islands 
relative to other 
regions of the 
genome

• Chromatin effects
• PCR amplification bias
• Nucleic acid isolation
• Read depth

• Collect statistics on enrichment trends in controls and in unrelated data 
sets that are obtained using the same genomic technology15,115,116

• Model effects of GC or AT DNA sequence content65 
• Examine whether spatial characteristics of read distributions look like 

ChIP–seq peaks117; in ChIP–seq, a single isolated TF binding site is flanked 
by mostly positive strand reads upstream and negative strand reads 
downstream of the site

• Carry out analysis for different numbers of reads and examine trend of 
enrichment as a function of total read count111

Read enrichment 
relative to 
genomic feature

Histone mark 
ChIP–seq read 
distributions 
relative to 
transcription start 
sites

• Chromatin effects
• PCR amplification bias
• Ratio of background read 

counts relative to specific 
ChIP

• Read depth

• Compare with controls and other data sets that are obtained using the 
same genomic technology9

• Examine quality control metrics related to specific versus nonspecific read 
quality63; if quality control metrics differ substantially between samples, 
then repeat the experiment to obtain more consistent data quality14

• Examine spatial distribution of GC or AT DNA sequence content relative to 
genomic feature24

• Carry out analysis on 5ʹ ends of reads separated by strand26

• When using paired-end data, stratify reads by fragment length26

• Carry out analysis using genomic control loci26; for example, exons tend 
to be GC-rich and are surrounded by less GC-rich sequence, and controls 
for exons could be intronic sequences with similar DNA sequence 
characteristics

Differential 
abundance 
between 
conditions

ChIP–seq, 
DNase-seq 
or ATAC-seq 
read-level 
enrichment or 
depletion in 
treatment relative 
to control

• Batch effects
• PCR amplification bias
• Chromatin effects
• Nucleic acid isolation
• Ratio of background read 

counts relative to specific 
ChIP

• Read depth

• Test for association with known batch variables and identify unknown 
effects101,103,104

• Analyse dependence of fragment abundance on DNA sequence 
composition, including GC content34,65,118

• Include known quantitative factors in differential abundance analysis101, 
for example, batch variables such as date of sequencing

• Use unsupervised techniques, such as surrogate variable analysis, to 
remove systematic effects of unknown origin104

Association of 
genomic feature 
with cellular 
or organismal 
phenotype

In ChIP–seq, 
specific binding 
sites are associated 
with disease 
progression

• Batch effects
• Cell-type-specific 

chromatin effects

• Test whether bias-associated variable is related to phenotype using 
surrogate variable analysis104

• Contrast data from general assays such as DNase-seq and ATAC-seq with 
ChIP–seq that targets specific proteins

Association of 
one biological 
phenomenon with 
another

• Overlap of  
ChIP–seq peaks 
 of two TFs

• Claims of 
significant 
association 
between TF 
binding or 
differences in  
TF binding

• Antibody quality
• Relative immunoprecipi-

tation enrichment
• Chromatin effects
• PCR amplification bias
• Read depth

• Check whether common sources of technical bias underlie observations
• Carry out analyses using different levels of read sampling; sites with the 

strongest biological signal will be detected at a low read depth, whereas 
weaker sites will be detected as the read depth increases55

• Choose meaningful background models to discover associations:  
ChIP–seq peaks of different TFs in the same cell line will often overlap 
relative to a background of random genomic loci, and most TF binding 
sites are found in cell-type-specific DNase-seq peak regions26

• Use performance statistics, such as receiver–operator characteristic and 
precision-recall curves, to characterize the trade-off between sensitivity 
and specificity119

DNA motif 
analyses

Identification of 
TF binding sites in 
ChIP–seq

• Chromatin and 
fragmentation effects

• PCR amplification bias
• Nucleic acid isolation

• Evaluate bias and signal variability in controls26

• Compare data with controls and data from other systems116

• Evaluate results using independent data types

SNP, single-nucleotide polymorphism; TF, transcription factor.
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is based on the specific assumption that the proportion 
of reads that map to the enriched portion of the genome 
is consistent between samples. Instead of scaling on the 
basis of total read counts, under the assumption that 
levels of TF binding are similar between samples, one 
could scale counts based on the total read count in peak 
regions. Total read counts may be strongly influenced 
by outliers; therefore, instead of scaling on the basis of 
total read counts, scaling can be based on the median 
read count within peak regions. Alternatively, more 
sophisticated scaling factors implemented in DESeq70 or 
trimmed mean of M values (TMM)71 implemented in 
edgeR72 can be used. These methods calculate normali-
zation factors after a feature-wise comparison between 
samples and the exclusion of outliers71.

Quantile normalization equalizes the full distribution 
of read counts between samples instead of linear scal-
ing. The assumption that enrichment distributions are 
the same between samples may not hold true in many 
chromatin profiling applications, especially when the TF 
of interest has different expression levels between condi-
tions. Quantile normalization might also be adversely 
affected by bias and outlier effects, and could perform 
poorly when some samples contain a higher proportion 
of features with counts of zero than others73.

MAnorm74, which was developed for differential 
analysis of ChIP–seq data, assumes that data sets have a 
substantial number of peaks in common and that there 
is no global change in binding at these common peaks. 
MAnorm normalizes read counts in common peaks using  
robust linear regression to model the relationship between 
the logarithmic ratio of reads in the two samples relative 
to the average logarithmic read counts.

Choosing an appropriate normalization scheme 
requires prior knowledge of the system, and important 
considerations include the expected enriched fraction 
of the genome and the degree of consistency in signals 
between samples. We recommend assessing whether 
consistent results can be obtained using different nor-
malization schemes. Normalization assumptions can 
also be evaluated using alternative technologies such as 
quantitative PCR on selected regions. Finally, chroma-
tin spike-in controls can be included in genomic experi-
ments for normalization purposes57. In many cases, 
although we would ideally want to study the absolute 
levels of binding, we have to accept the limitations of 
ChIP–seq and adapt by designing experiments in such 
a way that meaningful conclusions can be drawn from 
relative levels.

Duplicate reads. It is common to filter out duplicate reads 
in the course of chromatin analysis. Although filtering 
can have a slight impact on sensitivity, retaining these 
duplicates can have substantial and detrimental conse-
quences on specificity55. Instead of either filtering out all 
duplicates or retaining all of them, a threshold of dupli-
cation can be used, above which additional copies are 
discarded. In ChIP–seq, DNase-seq and ATAC-seq, in 
which the coverage of local regions of the genome can be 
high, duplicates are expected and discarding duplicates 
is likely to distort quantification. It may be legitimate to 

handle duplicate reads differently in different analyses  
of the same data. For example, in ChIP–seq peak  
detection using model-based analysis of ChIP–seq 
(MACS), it may be prudent to use the option of dis-
carding duplicates so as to avoid calling false peaks55. 
However, in the comparison of ChIP–seq signal between 
samples, local coverage may be so high that signal would 
be truncated without some inclusion of duplicates.

Modelling variation in NGS profiling data. In addi-
tion to variability due to stochastic counting processes, 
NGS data inevitably show variation that is greater than 
expected (that is, overdispersion) as a result of biases. 
The nature and severity of biases and overdispersion are 
strongly dependent on the scale of the genomic interval 
being analysed. Cleavage biases and sequencing errors 
may be observed at the single-nucleotide scale, PCR 
amplification biases become obvious at the ~100-bp 
scale, and chromatin structure effects are manifested 
across a broad range of scales from ~100 bp to >100 kb. 
Statistical power can be increased through the expla-
nation of some of the bias-induced variation, and sev-
eral distributions have been usefully applied for NGS 
analyses. The Poisson distribution — a simple single- 
parameter model that is suitable for modelling count 
data — tends to underestimate the variance in NGS data  
but can be used to model biases by allowing the param-
eter to vary as a function of genome position75. FIXSEQ, 
which is a preprocessing method for mitigating read 
count overdispersion effects, can improve the perfor-
mance of analyses that are based on Poisson assump-
tions76. Alternatively, NGS data can be described using 
more complex distributions that allow the variance to 
be estimated separately from the mean, for example, the 
negative binomial70,72,77, zero-inflated negative binomial48 
and beta negative binomial distributions78. When repli-
cates are insufficient to allow robust estimates of variance 
to be made, simplifying assumptions about the relation-
ship between the mean and the variance can be used 
to estimate variance by pooling regions with a similar 
mean70,72,77. Standard statistical diagnostics — including 
comparisons of theoretical and empirical distributions, 
analyses of residuals and simulations — are important 
for checking the validity of such models.

Peak detection. In enrichment analyses, when calling 
peaks in ChIP–seq, DNase-seq and ATAC-seq experi-
ments, genomic regions that are associated with protein 
binding, histone modifications or open chromatin are 
determined by read density2,68,75,79–84. In cases of ChIP–seq 
in which input controls are available and representative 
of the bias in immunoprecipitated samples, peak calling 
methods can perform well without explicitly taking GC 
content and mappability into account. GC content and 
mappability are useful considerations when input con-
trol coverage is low or absent. PeakSeq68, Probabilistic 
Inference for ChIP–seq (PICS)84 and MOSAiCS83 take 
mappability into consideration, although PeakSeq con-
siders mappability on a much larger scale than the peak 
scale (~100 bp). Even in analyses that include input 
controls, adjusting for GC content may still be useful, 
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as GC bias can vary substantially from one input sam-
ple to another56. The MACS75 peak detection algorithm 
takes neither GC content nor mappability explicitly into 
account; instead, it makes estimates of background sig-
nals from multiple nearby chromatin windows of dif-
ferent scales from the input controls. For TF ChIP–seq 
data with limited input coverage, the MACS background 
estimate from multiple windows provides a more robust 
ChIP enrichment evaluation than single-window esti-
mates, which leads to consistently good performance 
across many data sets.

In ChIP–seq and MNase-seq, peak shape is another 
concept that can be used to identify peaks. Reads that 
map to the forward and reverse strands form character-
istic patterns near TF binding sites and positioned nucle-
osomes4,85,86. In ChIP–seq, the fragmentation of DNA 
associated with a TF bound at a single isolated locus and 
the subsequent sequencing of fragment ends lead to a 
cluster of forward-strand tags 5ʹ of the binding sites and 
a cluster of reverse-strand tags 3ʹ of the binding sites. The 
distance separating these clusters is dependent on the size 
distribution of sequenced fragments and on the size of 
the local open chromatin region75. Algorithms that are 
designed to recognize the shape of ChIP–seq signal can 
be helpful in distinguishing chromatin- and PCR-induced 
effects from TF binding events. Similarly, in MNase-seq, 
well-positioned nucleosomes are bracketed by 5ʹ and 3ʹ 
reads. However, TFs or modified histones that bind across 
broad regions rather than at precise loci will produce a 
more diffuse distribution of ChIP–seq reads. In DNase-
seq and ATAC-seq, patterns of reads in open chromatin 
regions result from a complex interplay of experimen-
tal effects with TF binding and nucleosome occupancy, 
among other biological factors26. The interpretation of 
these read patterns can help us to improve chromatin 
accessibility protocols and yield insights into ways in 
which chromatin is modified51. Local DNA sequence 
and mappability biases can result in read patterns  
that may be confused with true binding events.

DNase-seq footprint and chromatin landscape analyses. 
Although none of the DNase I footprinting algorithms 
developed so far explicitly take into account biases such 
as nucleosome occupancy, DNA sequence-dependent 
cleavage and TF binding (which can affect the patterns 
of DNase I cleavage), the way in which footprint signifi-
cance is calculated and interpreted acknowledges bias 
effects to different extents.

The first algorithms developed for DNase-seq foot-
print identification reduce sensitivity to the effects of 
sequence and other biases by ranking the read counts 
at each position in the central and flanking regions8,87. 
Although these approaches do not explicitly model 
cleavage bias effects, the rank transformation prevents 
footprints from being identified from outlier signals at 
a few nucleotides. Another method, as a preprocess-
ing step, uses a polynomial to approximate signal over 
several nucleotides to reduce the effects of nucleotide-
specific bias7. A recently developed method9 estimates 
footprint significance on the basis of the observed 
tag count instead of the rank transformation. In this 

approach, P values are computed by shuffling individual 
reads within local regions. The resulting null distribu-
tion severely underestimates the variability of DNase-seq 
data, and the significance of putative footprint regions 
are consequently overestimated, which leads to high 
false discovery rates26,88. Analyses of DNase I cleavage 
patterns or evidence of TF binding at single-nucleotide 
resolution require statistical modelling that accurately 
represents the intrinsic variability of DNase I cleavage.

Another way of distinguishing bona fide TF-induced 
footprints from bias-induced artefacts is to take peak 
shape into account. The Wellington algorithm makes 
use of the observation that DNase I cuts tend to occur 
in a strand-specific way 5ʹ of the TF binding sites and 
computes significance based on the numbers of strand-
specific reads observed in a single flank relative to the 
footprint region88.

Although the occupancy of some TFs, such as 
CCCTC-binding factor (CTCF), is associated with 
DNase-seq footprint patterns, for many TFs these pat-
terns are weak or, in cases such as the androgen receptor, 
non-identifiable using current methods26. TFs interact 
with chromatin in various ways, which results in diverse 
chromatin landscapes near TF binding sites. Some TFs, 
such as CTCF, bind in regions that are nucleosome-free 
and that are flanked by well-organized nucleosome 
arrays89, whereas others bind in such a way that nucleo-
some occupancy is dependent on binding orientation51. 
Yet other TFs, such as the oestrogen receptor, bind in 
a way that does not strongly depend on nucleosome 
occupancy90. CENTIPEDE91 and, more recently, protein 
interaction quantitation (PIQ)51 analyse the shape and 
magnitude of DNase-seq profiles together with TF posi-
tion weight matrices (PWMs). PIQ explores the local 
chromatin environment surrounding TF binding sites 
and has been used to classify TFs in terms of their effect 
on chromatin remodelling.

Domain calling from ChIP–seq. ChIP–seq that targets 
certain histone modifications — including histone 
H3 lysine 9 trimethylation (H3K9me3), H3K27me3 
and H3K36me3 — tends to produce diffuse regions of 
enrichment rather than the sharp peaks that are typi-
cally observed in ChIP–seq of TFs. These broad signals 
are challenging to analyse because the signal is diffuse 
and at times difficult to distinguish from the confound-
ing effects of biases. In addition, these broad regions of 
enrichment can vary greatly in extent and have undu-
lating profiles across the genome. Although most cur-
rent analyses summarize these patterns as genomic 
intervals, other summaries might be more appropriate 
for describing diverse patterns that could be produced  
through various biological mechanisms, including 
co-transcriptional enzymatic activity, local diffusion, 
nucleosome replacement and looping.

Domain calling algorithms typically segment the 
genome into bins before grouping bins together as 
domains92–94. SICER92 identifies broad intervals by first 
identifying bins with read counts above a predefined 
threshold and subsequently computing a statistic for 
the aggregate of several of such bins, which are possibly 
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Surrogate variable analysis
A statistical analysis to identify 
and model variables that are 
not explicitly annotated but 
that have measureable effects.

separated by small numbers of low-read bins92. RSEG 
uses the hidden Markov model framework to specifi-
cally identify the boundaries of broad domains93. In this 
approach, individual sample read counts in genomic 
intervals are modelled using a negative binomial dis-
tribution, and the relationship between the read counts 
in an immunoprecipitated sample and those in an 
input sample is modelled using a difference of nega-
tive binomial distributions. Combinations of histone 
modifications are often observed together in chromatin 
states, which are patterns indicative of distinct modes 
of biological activity. These patterns may be identified 
by integrating multiple ChIP–seq data sets on histone 
modifications using the ChromHMM95 or SegWay96 
algorithms.

ChIP–seq peak deconvolution. Multiple sites of protein–
DNA interaction in close proximity to one another might 
be identified as a single ChIP–seq-enriched region. 
CSDeconv97, Genome Positioning System (GPS)98 and 
PICS84 deconvolute ChIP–seq signal to predict inter-
action loci using estimates of strand-specific read dis-
placement distributions relative to TF binding sites. 
PICS explicitly accounts for mappability, whereas GPS 
can control for biases by including input control data  
in its deconvolution procedure. Paired-end sequencing in  
ChIP–seq produces data in which both ends of every 
fragment are known, and no inference of fragment size 
is necessary. dPeak99 resolves complex paired-end ChIP–
seq peak regions into multiple loci with a higher accu-
racy than single-end analyses. The model used in dPeak 
takes nonspecific binding into account and allows shift 
distributions to be non-uniform across all binding sites.

Differential region identification. In a population of 
cells, TF occupancies at a given locus might differ 
between cells and over time. TF binding is therefore 
better described by a continuous variable rather than a 
binary variable, as changes in binding can be as biologi-
cally relevant as the apparent loss or gain of binding sites. 
Although strong changes in TF binding may be observed 
from single-replicate ChIP–seq comparisons, few studies 
have included the replicates that are required to quantify 
signal variability and to allow detection of more subtle 
differences. Methodologies for identifying differential 
count enrichment, including DEseq70,77 and edgeR72,77, 
model count data in a way that is consistent with the 
counting process. These methods allow the use of offsets 
— parameters that capture artefacts100 such as GC con-
tent — which are taken into account in the computation 
of differential enrichment. Such offsets can be computed 
using methods such as conditional quantile normaliza-
tion (CQN)65. The use of input controls has been sug-
gested to distinguish TF binding signal from background 
levels before comparisons can be made69. A procedure 
for comparative analysis of ChIP–seq peaks is carried out 
in DBChIP69, which uses negative binomial modelling to 
estimate the overdispersion of reads between samples. 
Comparisons of ChIP–seq data obtained using differ-
ent antibodies or from different laboratories are prob-
lematic, as differential TF binding could be confounded 

by systematic biases such as differences in antibodies  
and ChIP conditions.

In studies involving the comparison of multiple 
samples, it is important to look out for batch effects, 
which often arise from unknown sources of technical 
variation101. Statistical techniques may be used to model 
effects that arise from observable batch groupings, such 
as date of sequencing102. Sometimes, these effects can-
not be associated with any particular batch annotation 
but may still be observed in clustering analyses that 
reveal clusters of samples which are inconsistent with 
any biological treatment groupings. Analyses such as  
surrogate variable analysis maybe used to mitigate these 
batch effects of unknown origin103,104.

Chromatin interaction analyses. In Hi-C experiments, 
to quantify the interaction frequency between chromatin 
loci, pairs of DNA sequence fragments that are in close 
three-dimensional proximity to one another in vivo are 
ligated together and sequenced10,11. Although many of 
the biases that arise in this experiment may be modelled 
explicitly105,106, an effective alternative perspective elimi-
nates the need to explicitly account for these factors107. 
This new analysis assumes that the observed interac-
tion frequency between fragments can be factored into 
a product of the visibility of each of the individual frag-
ments and an interaction frequency term that is the vari-
able of interest107. The bias identified in this way agrees 
to a remarkable degree with the bias detected through 
explicit modelling, which adds confidence to both 
approaches. Hi-C interaction analyses in gigabase-scale 
genomes, such as the human genome, require extremely 
high sequencing depths even for ~50 kb-resolution  
of interaction frequencies. Targeted approaches can be 
used to produce higher-resolution interaction maps at 
selected genomic regions. Chromatin conformation 
capture carbon copy (5C) experiments108 target specific 
regions of the genome using PCR primers, and ChIA-
PET12 uses ChIP to pull down loci that interact with 
particular proteins. In the analysis of data from 5C and 
ChIA-PET, biases and noise introduced in the selec-
tion step also need to be taken into consideration in the  
calculation of interaction frequencies.

Conclusion and future directions
The use of NGS technologies in combination with 
adaptations of established experimental protocols is 
deepening our understanding of chromatin biology, 
including epigenetic and post-transcriptional gene 
regulation, mechanisms underlying developmental dif-
ferentiation and cell reprogramming, and the impact of 
genetic variation on phenotypes. Investigators should 
be cautious in analysing NGS data to avoid interpret-
ing biases and technical artefacts as biological phenom-
ena. The lack of standard protocols is a major challenge 
in the analysis of such data, as a source of bias that is 
negligible in one laboratory might be large enough to 
distort results in another. ChIP–seq studies of TFs with 
good antibodies in cell lines are now ubiquitous, and 
lists of several thousand TF binding sites can be reliably 
detected by several available algorithms. Challenges 
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