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Genome function is regulated dynamically in part by chromatin, which consists of the 

histones, non-histone proteins and RNA molecules that package DNA. Studies in C. elegans 

and D. melanogaster have contributed significantly to our understanding of molecular 

mechanisms of genome function in humans, and revealed conservation of chromatin 

components and mechanisms1–3. Nevertheless, the three organisms have prominent 

differences in genome size, chromosome architecture, and gene organization. On human and 

fly chromosomes, for instance, pericentric heterochromatin flanks single centromeres, 

whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the 

distal chromosomal ‘arms,’ and centromeres distributed along their lengths4,5. To 

systematically investigate chromatin organization and associated gene regulation across 

species, we generated and analyzed a large collection of genome-wide chromatin datasets 

from cell lines and developmental stages in worm, fly and human. Here we present over 800 

new datasets from our ENCODE and modENCODE consortia, bringing the total to over 

1400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-

associated domains, organization of large-scale topological domains, chromatin environment 

at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals 

many conserved features of chromatin organization among the three organisms. We also 

find significant differences, notably in the composition and locations of repressive 

chromatin. These datasets and analyses provide a rich resource for comparative and species-

specific investigations of chromatin composition, organization, and function.
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We used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) or 

microarray hybridization (ChIP-chip) to generate profiles of core histones, histone variants, 

histone modifications, and chromatin-associated proteins (Fig. 1, Supplementary Fig. 1, 

Supplementary Tables 1, 2). Additional data include DNase I hypersensitivity sites in fly 

and human cells, and nucleosome occupancy maps in all three organisms. Compared to our 

initial publications1–3, this represents a tripling of available fly and worm datasets and a 

substantial increase in human datasets (Fig. 1b,c). Uniform quality standards for 

experimental protocols, antibody validation, and data processing were used throughout the 

projects6. All data are freely available at modMine (http://intermine.modencode.org), the 

project data portal (http://data.modencode.org), the ENCODE Data Coordination Center 

(http://genome.ucsc.edu/ENCODE), or our database and web application (http://encode-

x.med.harvard.edu/data_sets/chromatin/) with faceted browsing that allows users to choose 

tracks for visualization or download. Detailed analyses of related transcriptome and 

transcription factor data are presented in accompanying papers7,8.

We performed systematic cross-species comparisons of chromatin composition and 

organization, focusing on targets profiled in at least two organisms (Fig. 1). Sample types 

utilized are human cell lines H1-hESC, GM12878 and K562; fly late embryos (LE), third 

instar larvae (L3) and cell lines S2, Kc, BG3; and worm early embryos (EE) and stage 3 

larvae (L3). Our conclusions are summarized in Extended Data Table 1.

Not surprisingly, the three species show many common chromatin features. Most of the 

genome in each species is covered by at least one histone modification (Supplementary Fig. 

2), and modification patterns are similar around promoters, gene bodies, enhancers, and 

other chromosomal elements (Supplementary Figs. 3 –12). Nucleosome occupancy patterns 

around protein-coding genes and enhancers are also largely similar across species, although 

we observed subtle differences in H3K4me3 enrichment patterns around transcription start 

sites (TSSs) (Extended Data Fig. 1a, Supplementary Figs. 12–14). The configuration and 

composition of large-scale features such as lamina-associated domains (LADs) are similar 

(Supplementary Figs. 15 –17). LADs in human and fly are associated with late replication 

and H3K27me3 enrichment, suggesting a repressive chromatin environment (Supplementary 

Fig. 18). Finally, DNA structural features associated with nucleosome positioning are 

strongly conserved (Supplementary Figs. 19, 20).

Although patterns of histone modifications across active and silent genes are largely similar 

in all three species9, there are some notable differences (Extended Data Fig. 1b). For 

example, H3K23ac is enriched at promoters of expressed genes in worm, but is enriched 

across gene bodies of both expressed and silent genes in fly. H4K20me1 is enriched on both 

expressed and silent genes in human but only on expressed genes in fly and worm (Extended 

Data Fig. 1b). Enrichment of H3K36me3 in genes expressed with stage- or tissue-specificity 

is lower than in genes expressed broadly, possibly because profiling was done on mixed 

tissues (Supplementary Figs. 21–23; see Supplementary Methods). While the co-occurrence 

of pairs of histone modifications are largely similar across the three species, there are clearly 

some species-specific patterns (Extended Data Fig. 1c, Supplementary Figs. 24, 25).
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Previous studies showed that in human9,10 and fly1,11 prevalent combinations of marks or 

‘chromatin states’ correlate with functional features such as promoters, enhancers, 

transcribed regions, Polycomb-associated domains, and heterochromatin. ‘Chromatin state 

maps’ provide a concise and systematic annotation of the genome. To compare chromatin 

states across the three organisms, we developed and applied a novel hierarchical non-

parametric machine learning method called hiHMM (see Supplementary Methods) to 

generate chromatin state maps from eight histone marks mapped in common, and compared 

the results with published methods (Fig. 2; Supplementary Figs. 26–28). We find that 

combinatorial patterns of histone modifications are largely conserved. Based on correlations 

with functional elements (Supplementary Figs. 29–32), we categorized the 16 states into six 

groups: promoter (state 1), enhancer (states 2–3), gene body (states 4–9), Polycomb-

repressed (states 10–11), heterochromatin (states 12–13), and weak or low signal (states 14–

16).

Heterochromatin is a classically defined and distinct chromosomal domain with important 

roles in genome organization, genome stability, chromosome inheritance, and gene 

regulation. It is typically enriched for H3K9me312, which we used as a proxy for identifying 

heterochromatic domains (Fig. 3a, Supplementary Figs. 33, 34). As expected, the majority 

of the H3K9me3-enriched domains in human and fly are concentrated in the pericentromeric 

regions (as well as other specific domains, such as the Y chromosome and fly 4th 

chromosome), whereas in worm they are distributed throughout the distal chromosomal 

‘arms’11,13,14 (Fig. 3a). In all three organisms, we find that more of the genome is associated 

with H3K9me3 in differentiated cells/tissues compared to embryonic cells/tissues (Extended 

Data Fig. 2a). We also observe large cell-type-specific blocks of H3K9me3 in human and 

fly11,14,15 (Supplementary Fig. 35). These results suggest a molecular basis for the classical 

concept of “facultative heterochromatin” formation to silence blocks of genes as cells 

specialize.

Two distinct types of transcriptionally-repressed chromatin have been described. As 

discussed above, classical ‘heterochromatin’ is generally concentrated in specific 

chromosomal regions and enriched for H3K9me3 and also H3K9me212. In contrast, 

Polycomb-associated silenced domains, involved in cell-type-specific silencing of 

developmentally regulated genes11,14, are scattered across the genome and enriched for 

H3K27me3. We found that the organization and composition of these two types of 

transcriptionally silent domains differ across species. First, human, fly, and worm display 

significant differences in H3K9 methylation patterns. H3K9me2 shows a stronger 

correlation with H3K9me3 in fly than in worm (r= 0.89 vs. r= 0.40, respectively), whereas 

H3K9me2 is well correlated with H3K9me1 in worm but not in fly (r= 0.44 vs. r= −0.32, 

respectively) (Fig. 3b). These findings suggest potential differences in heterochromatin in 

the three organisms (see below). Second, the chromatin state maps reveal two distinct types 

of Polycomb-associated repressed regions: strong H3K27me3 accompanied by marks for 

active genes or enhancers (Fig. 2, state 10; perhaps due to mixed tissues for fly and worm), 

and strong H3K27me3 without active marks (state 11) (see also Supplementary Fig. 31). 

Third, we observe a worm-specific association of H3K9me3 and H3K27me3. These two 

marks are enriched together in states 12 and 13 in worm but not in human and fly. This 
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unexpected strong association between H3K9me3 and H3K27me3 in worm (observed with 

several validated antibodies; Extended Data Fig. 2b) suggests a species-specific difference 

in the organization of silent chromatin.

We also compared the patterns of histone modifications on expressed and silent genes in 

euchromatin and heterochromatin (Extended Data Fig. 2c, Supplementary Fig. 36). We 

previously reported prominent depletion of H3K9me3 at TSSs and high levels of H3K9me3 

in the gene bodies of expressed genes located in fly heterochromatin14, and now find a 

similar pattern in human (Extended Data Fig. 2c, Supplementary Fig. 36). In these two 

species, H3K9me3 is highly enriched in the body of both expressed and silent genes in 

heterochromatic regions. In contrast, expressed genes in worm heterochromatin have lower 

H3K9me3 enrichment across gene bodies compared to silent genes (Extended Data Fig. 2c, 

Supplementary Figs. 36, 37). There are also conspicuous differences in the patterns of 

H3K27me3 in the three organisms. In human and fly, H3K27me3 is highly associated with 

silent genes in euchromatic regions, but not with silent genes in heterochromatic regions. In 

contrast, consistent with the worm-specific association between H3K27me3 and H3K9me3, 

we observe high levels of H3K27me3 on silent genes in worm heterochromatin, while silent 

euchromatic genes show modest enrichment of H3K27me3 (Extended Data Fig. 2c, 

Supplementary Fig. 36).

Our results suggest three distinct types of repressed chromatin (Extended Data Fig. 3). The 

first contains H3K27me3 with little or no H3K9me3 (human and fly states 10 and 11 and 

worm state 11), corresponding to developmentally regulated Polycomb-silenced domains in 

human and fly, and likely in worm as well. The second is enriched for H3K9me3 and lacks 

H3K27me3 (human and fly states 12 and 13), corresponding to constitutive, predominantly 

pericentric heterochromatin in human and fly, which is essentially absent from the worm 

genome. The third contains both H3K9me3 and H3K27me3 and occurs predominantly in 

worm (worm states 10, 12, and 13). Co-occurrence of these marks is consistent with the 

observation that H3K9me3 and H3K27me3 are both required for silencing of 

heterochromatic transgenes in worms16. H3K9me3 and H3K27me3 may reside on the same 

or adjacent nucleosomes in individual cells17,18; alternatively the two marks may occur in 

different cell types in the embryos and larvae analyzed here. Further studies are needed to 

resolve this and determine the functional consequences of the overlapping distributions of 

H3K9me3 and H3K27me3 observed in worm.

Genome-wide chromatin conformation capture (Hi-C) assays have revealed prominent 

topological domains in human19 and fly20,21. While their boundaries are enriched for 

insulator elements and active genes19,20 (Supplementary Fig. 38), the interiors generally 

contain a relatively uniform chromatin state - active, Polycomb-repressed, heterochromatin, 

or low signal22 (Supplementary Fig. 39). We found that chromatin state similarity between 

neighboring regions correlates with chromatin interaction domains determined by Hi-C (Fig. 

3c, Supplementary Fig. 40, Supplementary Methods). This suggests that topological 

domains can be largely predicted by chromatin marks when Hi-C data are not available 

(Supplementary Figs. 41, 42).
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C. elegans and D. melanogaster have been used extensively for understanding human gene 

function, development, and disease. Our analyses of chromatin architecture and the large 

public resource we have generated provide a blueprint for interpreting experimental results 

in these model systems, extending their relevance to human biology. They also provide a 

foundation for researchers to investigate how diverse genome functions are regulated in the 

context of chromatin structure.

Methods

For full details of Methods, see Supplementary Information.

Extended Data

Extended Data Fig. 1. Chromatin features at TSSs and gene bodies and co-occurrence of histone 
modifications
a, Comparative analysis of promoter architecture at Transcription Start Sites (TSSs). From 

the top, H3K4me3 (human GM12878, fly L3, and worm L3), DNase I hypersensitivity sites 

(DHS), GC content, and nascent transcript (GRO-seq in human IMR90 and fly S2 cells). 

Human promoters, and to a lesser extent worm promoters (as defined using recently 

published capRNA-seq data23), exhibit a bimodal enrichment for H3K4me3 and other active 

marks around TSSs. In contrast, fly promoters clearly exhibit a unimodal distribution of 

active marks, downstream of TSSs. Since genes that have a neighboring gene within 1 kb of 

a TSS or TES (Transcription End Site) were removed from this analysis, any bimodal 

histone modification pattern cannot be attributed to nearby genes. This difference is also not 
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explained by chromatin accessibility determined by DNase I hypersensitivity (DHS), or by 

fluctuations in GC content around the TSSs, although the GC profiles are highly variable 

across species. b, Average gene body profiles of histone modifications on protein-coding 

genes in human GM12878, fly L3, and worm L3. c, Genome-wide correlations between 

histone modifications show intra- and inter-species similarities and differences. Upper left 

half: pairwise correlations between marks in each genome, averaged across all three species. 

Lower right half: pairwise correlations, averaged over cell types and developmental stages, 

within each species (pie chart), with inter-species variance (grey-scale background) and 

intra-species variance (grey-scale small rectangles) of correlation coefficients for human (h), 

fly (f), and worm (w). Modifications enriched within or near actively transcribed genes are 

consistently correlated with each other in all three organisms. In contrast, we found a major 

difference in the co-occurrence pattern of two key repressive chromatin marks (black cell in 

bottom left): H3K27me3 (related to Polycomb (Pc)-mediated silencing) and H3K9me3 

(related to heterochromatin). These two marks are strongly correlated at both developmental 

stages analyzed in worm, whereas their correlation is low in human (r = −0.24 ~ −0.06) and 

fly (r = −0.03 ~ −0.1).

Extended Data Fig. 2. Histone modifications in heterochromatin
a, Genomic coverage of H3K9me3 in multiple cell types and developmental stages. 

Embryonic cell lines/stages are marked with an asterisk and a black bar. b, Evidence that 

overlapping H3K9me3 and H3K27me3 ChIP signals in worm are not due to antibody cross-

reactivity. ChIP-chip experiments were performed from early embryo (EE) extracts with 

three different H3K9me3 antibodies (from Abcam, Upstate, and H. Kimura) and three 

different H3K27me3 antibodies (from Active Motif, Upstate, and H. Kimura). The 

H3K9me3 antibodies show similar enrichment profiles (upper panel) and high genome-wide 

correlation coefficients (lower left). The same is true for H3K27me3 antibodies. There is 

significant overlap between the H3K9me3 and H3K27me3 ChIP signal, especially on 

chromosome arms, resulting in relatively high genome-wide correlation coefficients 

(Extended Data Fig. 1c). The Abcam and Upstate H3K9me3 antibodies showed low level 

cross-reactivity with H3K27me3 on dot blots24, and the Abcam H3K9me3 ChIP signal 

overlapped with H3K27me3 on chromosome centers. The Kimura monoclonal antibodies 
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against H3K9me3 and H3K27me3 showed the least overlap and smallest genome-wide 

correlation. In ELISA assays using histone H3 peptides containing different modifications, 

each Kimura H3K9me3 or H3K27me3 antibody recognized the modified tail against which 

it was raised and did not cross-react with the other modified tail25,26, providing support for 

their specificity. Specificity of the Kimura antibodies was further analyzed by 

immunostaining germlines from wild type, met-2 set-25 mutants (which lack H3K9 HMT 

activity16), and mes-2 mutants (which lack H3K27 HMT activity27) in the lower right panel. 

Staining with anti-HK9me3 was robust in wild type and in mes-2, but undetectable in met-2 

set-25. Staining with anti-HK27me3 was robust in wild type and in met-2 set-25, but 

undetectable in mes-2. Finally, we note that the laboratories that analyzed H3K9me3 and 

H3K27me3 in other systems used Abcam H3K9me3 (for human and fly) and Upstate 

H3K27me3 (for human), and in these cases observed non-overlapping distributions. 

Chandra et al. also reported non-overlapping distributions of H3K9me3 and H3K27me3 in 

human fibroblast cells using the Kimura antibodies26. The overlapping distributions that we 

observe in worms using any of those antibodies suggest that H3K9me3 and H3K27me3 

occupy overlapping regions in worms. Those overlapping regions may exist in individual 

cells or in different cell sub-populations in embryo and L3 preparations. c, Average gene 

body profiles of H3K9me3 and H3K27me3 on expressed and silent genes in euchromatin 

and heterochromatin in human K562 cells, fly L3, and worm L3.

Extended Data Fig. 3. Organization of silent domains
a, The correlation of H3K27me3 and H3K9me3 enrichment for human K562 (left most), fly 

L3 (second left), and worm EE chromosome arms (second right) and centers (right most) 

with a 10 kb bin (upper) and a 1 kb bin (lower). The density was calculated as a frequency 

of bins that fall in the area in the scatter plot (darker grey at a higher frequency). r indicates 

Pearson correlation coefficients between binned H3K27me3 fold enrichment (log2) and 

H3K9me3 fold enrichment (log2). Worm chromosome arms have a distinctly high 

correlation between H3K27me3 and H3K9me3. The lower correlation in worm chromosome 

centers is due to the overall absence of H3K9me3 in these regions. b, Schematic diagrams of 

the distributions of silent domains along the chromosomes in human (H1-hESC), fly (S2), 

and worm (EE). In human and fly, the majority of the H3K9me3-enriched domains are 

located in the pericentric regions (as well as telomeres), while the H3K27me3-enriched 
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domains are distributed along the chromosome arms. H3K27me3-enriched domains are 

negatively correlated with H3K36me3-enriched domains, although in human, there is some 

overlap of H3K27me3 and H3K36me3 in bivalent domains. CENP-A resides at the 

centromere. In contrast, in worm the majority of H3K9me3-enriched domains are located in 

the arms, while H3K27me3-enriched domains are distributed throughout the arms and 

centers of the chromosomes and are anti-correlated with H3K36me3-enriched domains. In 

arms and centers, domains that are permissive for CENP-A incorporation generally reside 

within H3K27me3-enriched domains.

Extended Data Table 1

Summary of key shared and organism-specific chromatin features in human, fly, and worm.

Chromatin features Human Fly Worm Figures

Promoters

 H3K4me3 enrichment pattern 
around TSS

Bimodal peak Unimodal peak* Weak bimodal peak ED1a,b,S12

 Well positioned +1 
nucleosome at expressed genes

Yes Yes Yes S13

Gene bodies

 Lower H3K36me3 in 
specifically expressed genes

Yes Yes Yes S21–S23

Enhancers

 High H3K27ac sites are 
closer to expressed genes

Yes Yes Yes S5–6

 Higher nucleosome turnover 
at high H3K27ac sites

Yes Yes ND S7

Nucleosome positioning

 10-bp periodicity profile Yes Yes Yes S19a

 Positioning signal in genome Weak Weak Less weak S19b

LADs

 Histone modification in short 
LADs

H3K27me3 H3K27me3 H3K27me3 S17

 Histone modification in long 
LADs

H3K9me3 
internal, 
H3K27me3 
borders

ND H3K9me3 +H3K27me3 S15

 Associated with late 
replication in S-phase

Yes Yes ND S18

Genome-wide correlation

 Correlation between 
H3K27me3 and H3K9me3

Low Low High (in arms) ED1c,ED3a

Chromatin state maps

 Similar marks and genomic 
features at each state

Yes Yes Yes 2,S29–32

Silent domains: constitutive heterochromatin
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Chromatin features Human Fly Worm Figures

 Composition H3K9me3 H3K9me3 H3K9me3 +H3K27me3 2,ED3b

 Predominant location Pericentric+chrY Pericentric+chr4/Y Arms 3a,ED3b

 Depletion of H3K9me3 at 
TSS of expressed genes

Yes Yes Weak ED2c

Silent domains: Polycomb-associated

 Composition H3K27me3 H3K27me3 H3K27me3 2

 Predominant location Arms Arms+Chr4 Arms+Centers 3a,ED3b

Topological domains

 Active promoters enriched at 
boundaries

Yes Yes ND S38

 Similar chromatin states are 
enriched in each domain

Yes Yes ND S39

*
Unimodal peak enriched downstream of TSS

ND: No Data

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Dataset overview
a, Histone modifications, chromosomal proteins, and other profiles mapped in at least two 

species (see Supplementary Fig. 1 for full dataset and Supplementary Table 1 for detailed 

descriptions). Different protein names for orthologs are separated by slash. (see 

Supplementary Table 2). b, Number of all datasets generated by this and previous consortia 

publications1–3 (new: 815; old: 638). Each dataset corresponds to a replicate-merged 

normalized profile of a histone, histone variant, histone modification, non-histone 

chromosomal protein, nucleosome, or salt-fractionated nucleosome. c, Number of unique 

histone marks or non-histone chromosomal proteins profiled.

Ho et al. Page 14

Nature. Author manuscript; available in PMC 2014 November 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. Shared and organism-specific chromatin states
16 chromatin states derived by joint segmentation using hiHMM (hierarchical HMM; see 

Supplementary Methods) based on enrichment patterns of 8 histone marks. The genomic 

coverage of each state in each cell type or developmental stage is also shown (see 

Supplementary Figs. 26–32 for detailed analysis of the states). States are named for putative 

functional characteristics.
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Fig. 3. Genome-wide organization of heterochromatin
a, Enrichment profiles of H3K9me1/me2/me3 and H3K27me3 and identification of 

heterochromatin domains based on H3K9me3 (illustrated for human H1-hESC, fly L3, and 

worm L3). For fly chr2, 2L, 2LHet, 2RHet and 2R are concatenated (dashed lines); C: 

centromere, Het: heterochromatin. b, Genome-wide correlation among H3K9me1/me2/me3, 

H3K27me3, and H3K36me3 in human K562 cells, fly L3, and worm L3; no H3K9me2 

profile is available for human. c, Comparison of Hi-C-based and chromatin-based 

topological domains in fly LE. Heatmaps of similarity matrices for histone modification and 

Hi-C interaction frequencies are juxtaposed (see Supplementary Fig. 40).
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