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Analyzing ’omics data using hierarchical 
models
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Hierarchical models provide reliable statistical estimates for data sets from high-throughput experiments where 
measurements vastly outnumber experimental samples.

Interpreting ’omics data often involves sta-
tistical analysis of large numbers of loci 

such as genes, binding sites or single-nucle-
otide polymorphisms (SNPs). Although the 
data set as a whole may be rich in informa-
tion, each individual locus is typically only 
associated with a limited amount of data. 
Statistical inference in this context is chal-
lenging. A hierarchical model is a useful 
statistical tool to more efficiently analyze 
the data, and it is increasingly being used in 
computational genomics.

A motivating example
Consider a hypothetical microarray experiment 
with ten genes. For each gene, log2 expression 
fold-changes (hereafter referred to as simply 
‘expression’) are observed between tumor and 
normal tissues in three biological replicates 
(Table 1). To select a gene for follow-up study 
that is differentially expressed in tumor com-
pared with normal cells, which gene should be 
the top candidate?

A simple solution is to rank the genes by 
t-statistics

t
i
 = x

i
 �   √s2 / n−

i

 
Here n (= 3) is the number of replicates, xi

−  is the 
average expression of gene i, and si

2 is the sample 

variance. Based on the absolute values of t-statis-
tics, gene 2 is the top candidate (Table 1).

The data in this example, however, are simu-
lated, with each gene having a ‘true’ expression 
µi whose measurement is confounded by experi-
mental or biological variability represented by 
the parameter σi

2. (In fact, each expression 
measurement was randomly drawn from a bell 
curve–shaped normal distribution with a mean 
µi and variance σi

2). The true values of µi and σi
2, 

which are unknown to you, are shown in Table 1. 
It turns out the only truly differentially expressed 
gene is gene 10, which has a nonzero µi. Gene 2 
thereby represents a false-positive call.

What causes this mistake? Small sample size 
and the multiplicity of the problem are the rea-
sons. To understand why, it may be helpful to 
briefly review the key ideas behind statistical 
inference. The first concept to understand is 
that of the ‘distribution’. Briefly, in the presence 
of biological or experimental noise and vari-
ability, repeated biological measurements are 
unlikely to be identical, giving rise to a collec-
tion, or distribution, of data values. This dis-
tribution can be characterized by parameters, 
such as its mean (or average value) and vari-
ance (which quantifies how far the measure-
ments are expected to be from the mean). The 
parameters are properties associated with infi-
nitely many measurements. In a real scenario, 
when only a finite number of measurements 
are available, the true parameter value cannot 
be obtained. Statistical inference seeks to make 
statements about the true, also referred to as 
‘unobserved’, parameter value based on the 
observed data which are called by statisticians 
as ‘samples’ drawn from the distribution.

In a t-statistic, the sample mean x
i

−  repre-
sents an estimate of the true mean µi of the 
distribution from which gene i’s data are sam-
pled, and the sample variance si

2 represents an 

estimate of the true variance σi
2. If the true 

mean is zero (that is, gene i is not differentially 
expressed), it is unlikely to obtain a t-statistic 
with a large magnitude. 

When the sample size is small, however, the 
observed sample variance is an unreliable esti-
mate of the true variance of the system. To see 
why, imagine randomly selecting three data 
points from a normal distribution with mean 
0 and variance 1, which results in the values 0.1, 
0.09 and 0.11 (Fig. 1a, blue dots). As a result, 
the observed variance is 0.0001 (or approxi-
mately 0) even though the true variance is 1 
(that is, much bigger than 0). Another random 
draw of three data points from the same distri-
bution may give you –1.1, –0.2 and 0.7 (Fig. 1a, 
orange dots) and a totally different observed 
variance of 0.81. Although the probability 
that the observed variance significantly devi-
ates from the true variance is small for each 
individual gene, in a genomic study with many 
genes, the chance to encounter such deviants 
for some genes is high.

Small sample variances obtained by chance 
give rise to large t-statistics, which can incor-
rectly rank nondifferentially expressed genes at 
the top. This is what happened in our example. 
The true variance of gene 2 is 1, but the sam-
ple variance is 0.005 (Table 1); as a result, the 
t-statistic incorrectly ranked gene 2 (t2 = 17.5) 
on top of the truly differentially expressed gene 
10 (t10 = 3.42). In general, when data analysis 
involves estimating many parameters or testing 
many hypotheses but the sample size is small, 
it is difficult to reliably estimate all parameters 
or to make correct decisions for all tests simul-
taneously. This problem is less serious if more 
samples are available, as more reliable estimates 
of parameters can be obtained for each gene.

Real gene expression microarray experiments 
with tens of thousands of genes are examples 
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heterogeneity from the data. The top-level 
distribution is usually assumed to be a mem-
ber of a broad family of distributions. In other 
words, a large number of candidate distribu-
tions with the same mathematical form but 
different parameter values are considered. 
By varying the parameter values, members 
in the family are able to describe a variety 
of distribution patterns of the gene-specific 
parameters. The analysis starts by finding the 
distribution (through identifying the param-
eter value) in the family that fits the data well, 
and then using the identified distribution 
to help infer the gene-specific parameters. 
Commonly used top-level distribution fami-
lies include ‘conjugate priors’ and mixtures of 
simple distributions (e.g., mixture of normal 
distributions)5. The former is typically used if 
developing a simple computational algorithm 
is required, and the latter is used if one needs 
flexibility to describe very complex cross-
gene variation patterns.

Next, the top-level distribution is used to 
adjust the parameter estimate of every gene 
(Fig. 1e). If cross-gene heterogeneity is small, 
the adjustment will make the parameter esti-
mates of different genes more similar to each 
other. Here, the hierarchical model borrows 
from Bayesian inference, a general approach 
to make statistical inference by combining 
prior information with observed data5,6, with 
the top-level distribution being treated as the 
prior knowledge about the unobserved mean 
and variance parameters of individual genes.

Algorithmically, finding the top-level distri-
bution and inferring gene-specific parameters 
can be implemented simultaneously using 
standard Bayesian or empirical Bayes tech-
niques5,6, which sometimes requires advanced 
and computation-intensive techniques such as 
Markov chain Monte Carlo5.

Naturally, this model describes two sources 
of variation in the observed expression data. 
At the top of the hierarchy, the intrinsic simi-
larities and differences between the expression 
of different genes is mathematically modeled 
using a distribution (that is, F0) of the unob-
served gene-specific parameters. At the bottom 
of the hierarchy, the cross-sample variability 
within a single gene is modeled using a gene-
specific distribution with parameters gener-
ated from the top-level distribution (Fig. 1c). 
In effect, the top-level distribution describes 
which gene-specific parameter values are com-
mon and which are unusual. The data contain 
information about the distributions at both 
levels because there are several replicates for 
each gene over many different genes.

Although the top-level distribution is usu-
ally unknown, it can be estimated using data 
from the thousands of genes available. Then, 
using this distribution, the hierarchical model 
allows one to ‘borrow’ information across 
genes to facilitate inference. How much infor-
mation to borrow is determined by how similar 
the genes are relative to the cross-sample vari-
ability. The intuition is that if the heterogeneity 
across genes is small, then data from all genes 
could be informative about the parameters of 
a particular gene (Fig. 1c). Borrowing informa-
tion across genes essentially increases the effec-
tive sample size for making inferences about 
individual genes4. In contrast, the t-statistic 
approach only uses information from a single 
gene to estimate the mean and variance of the 
bottom-level distribution for that gene.

Inference using the hierarchical model
The first step in using the hierarchical model 
is to find a top-level distribution that fits 
the data (Fig. 1d). This process can be intui-
tively interpreted as learning the cross-gene  

of a ‘large p, small n’ problem, where p refers to 
the number of genes and n refers to the number 
of samples. In addition to the multiplicity issue 
mentioned before, another potential problem 
is that if the data are not normally distributed, 
applying a t-test can be invalid when the sam-
ple size is small1. However, this problem is not 
the focus of the current primer, in which the 
data in our example are assumed to be nor-
mally distributed.

What is a hierarchical model?
One statistical tool for handling large-p, 
small-n problems is a hierarchical model. 
Such a model describes hierarchical relation-
ships between various sources of data varia-
tion. The model structure effectively makes 
it possible to ‘borrow’ information from all 
genes to make more reliable statistical infer-
ences about a particular gene. Hierarchical 
models are conceptually related to regular-
ization techniques, which include Lasso and 
ridge regression and represent a broad class 
of methods for handling large-p, small-n 
problems (reviewed in refs. 2,3).

In our example, a hierarchical model can 
be built by assuming that the unobserved 
mean and variance parameters (that is, µi and 
σi

2) of different genes are also sampled from 
a distribution (denoted as F0). The distribu-
tion is characterized by parameters, such as 
mean and variance of infinitely many µi and 
σi

2 hypothetically collected from different 
genes. Accordingly, one can imagine that the 
observed expression data are generated hier-
archically by first drawing the mean and vari-
ance parameters for each gene from F0, and 
then drawing expression measurements for 
each gene from a gene-specific distribution 
(that is, a normal distribution with mean µi 
and variance σi

2) (Fig. 1b).

Table 1  Statistical analysis of example data using either t-statistics or a hierarchical model
Gene, i 1 2 3 4 5 6 7 8 9 10

Unobserved 
parameters

Mean, µi 0 0 0 0 0 0 0 0 0 2

Variance, σi
2 2.0 1.0 1.5 0.5 0.7 1.1 1.3 0.9 1.2 1.0

Observed 
expression 
data (log2 fold 
change)

xi1 0.97 0.73 0.63 1.20 –0.57 3.68 –0.45 1.14 0.34 1.31

xi2 –0.47 0.78 –0.41 1.48 0.33 –0.68 –0.06 0.40 –0.08 2.59

xi3 –0.19 0.64 1.93 –0.02 0.26 2.08 –0.74 0.30 1.74 1.03

Gene selection 
by t-statistics

Mean, 
xi
−

0.10 0.72 0.72 0.89 0.01 1.69 –0.42 0.61 0.67 1.64

Sample variance 
si

2
0.58 0.005 1.37 0.64 0.25 4.86 0.12 0.21 0.91 0.69

ti 0.23 17.50 1.06 1.93 0.02 1.33 –2.12 2.32 1.21 3.42

Gene selection 
by hierarchical 
model

Adjusted 
variance, 
o2

i
ˆ

0.84 0.65 1.09 0.85 0.73 2.22 0.69 0.72 0.95 0.88

New ti 0.20 1.53 1.19 1.66 0.01 1.97 –0.87 1.25 1.19 3.04
aNumerals in bold italics indicate the gene for which the absolute value of the t-statistic (ti) is the largest. 
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Figure 1  Hierarchical modeling. (a) Many analysis techniques, such as t-statistics, consider each gene separately. Owing to different sources of biological 
and experimental variation, if triplicate measurements of the expression of the same gene are collected twice (blue dots and orange dots), the measurements 
may yield different estimates of the mean and variance of the true distribution that describes the gene’s expression (gray). (b) A hierarchical model helps 
produce more reliable estimates of the mean and variance by considering all genes together. It models different sources of biological variation hierarchically. 
A top-level distribution (F0) models variation across genes and a bottom-level distribution models variation of the same gene between samples. Data are 
described by first drawing µ and σ2 from F0 for each gene and then drawing expression fold-changes for each gene. (c) If different genes have similar mean 
and variance, data from one gene are informative about the mean and variance of another gene. It is not known a priori whether genes are similar (left, F0 
is tightly clustered) or not (right, F0 is more spread out). However, this can be learned by looking at the data of many different genes. If genes are similar, 
the observed gene-to-gene differences can be largely explained by the sampling variability within a gene (bottom, left); otherwise genes are heterogeneous 
(bottom, right). (d) The hierarchical model is applied by first using the observed data to estimate cross-gene variation (that is, F0), then comparing it to 
within-gene sampling variability to determine a rule to combine the characteristics shared by all genes with the data specific to each gene for estimating µ 
and σ2 (solid lines). In our example, this yields an adjusted variance estimate in the form of a weighted average between the sample variance and the mean 
of variances σ2 in F0 (that is, σ0

2) (dashed lines). The model was not applied to estimate the gene-specific mean µ. (e) The genes’ true variances in our 
example are similar (as in the left side of c), which is perceived by the model. As a result, the adjusted variance estimates (red) are closer than the original 
variance estimates (blue) to the mean variance σ0

2 (dotted line), which incorporates data from all genes. Overall, the adjusted variance estimates are also 
closer to the unobserved true variances listed in Table 1 (black ‘+’).
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of background and modules, and the modules 
in turn consist of background and binding 
sites, hence binding sites only occur within 
modules; given the binding site locations, 
nucleotides are generated according to either 
the motif or background probability models. 
Using this hierarchical model, one can first 
infer the top-level module status by check-
ing sequences from nearby genomic loci, and 
then combine the module status as prior and 
the DNA sequence at each locus to infer its 
binding status. The module status estimated 
using information across loci helps eliminate 
many false-positive binding site predictions. 
In ref. 10, it was shown that the improved 
estimates of binding site locations increase 
the power of de novo motif discovery.

We conclude by providing two other exam-
ples where hierarchical models might be use-
ful yet have not been fully explored. First, if 
you want to estimate the fold enrichment at 
ChIP-seq binding loci, but each ChIP and con-
trol library has only one replicate sequenced 
not so deeply, you may estimate a more robust 
background read count at one locus by bor-
rowing information from other loci. Second, 
if you want to estimate the binding motif 
matrices for several transcription factors in the 
same protein family, but have only a handful of 
known binding sites for each factor, you can 
estimate more robust motif matrices by bor-
rowing information across the family. What 
are other examples? Looking at your own data 
might reveal the answer.
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Other applications
Hierarchical models can be applied to many 
other problems besides gene expression 
microarrays and ChIP-chip. For example, in 
genome-wide association studies, hundreds of 
thousands of SNPs are tested for association 
with a phenotype. In a simple scenario, the 
association can be studied in a linear regres-
sion “phenotype = αi + βi *genotype + noise,” 
where a nonzero coefficient βi (i indexes SNPs) 
indicates association. With a limited number 
of samples and many SNPs to evaluate, this 
approach often lacks the power to distinguish 
relevant SNPs from random associations. 
Because SNPs with similar characteristics, 
such as those that reside in genes in the same 
pathway or that show a similar degree of evo-
lutionary conservation, have similar potentials 
to be associated with the phenotype, one can 
build a hierarchical model to borrow infor-
mation from similar SNPs to increase the sta-
tistical power of association studies9. To use 
this information, one can assume that βi from 
different SNPs follow a top-level distribu-
tion N (µ + η*zi, τ2), where zi is an observed 
characteristic of SNP i, such as conservation 
score. Here, µ + η*zi describes the relationship 
between a SNP’s characteristic and its poten-
tial association with the phenotype, and τ2 
describes the heterogeneity among SNPs with 
the same characteristic. The model can be 
generalized to incorporate multiple charac-
teristics. One can use data from all SNPs to 
estimate this top-level distribution (that is, µ, 
η, τ2), and make an inference based on new 
estimates of βi that combines the top-level dis-
tribution with the SNP-specific data.

Application of hierarchical models is not 
limited to large-p-small-n data. The models 
are useful in a broad spectrum of large-p 
problems where the amount of information 
per locus is limited, with small sample size 
being a special case. For example, predicting 
transcription factor binding sites in DNA 
sequences can be viewed as a problem that 
probabilistically assigns a 0–1 label to each 
locus by matching the sequence to a motif 
model as opposed to a background model. 
If the sequences are long, there could be 
random matches to the motif, which leads 
to false-positive predictions. However, func-
tional transcription factor binding sites tend 
to cluster in the genome to form regulatory 
modules. One can build a hierarchical model 
by assuming that the input sequences consist 

In our example, applying the hierarchical 
model yields a new estimate of the variance 
parameter of a gene. The new estimate of σi

2 is 
a weighted average between the sample variance 
si

2 and the estimated mean variance of all genes 
(that is, the mean of all variances σ2 in the esti-
mated F0, also denoted as σ0

2) (ref. 7). The sam-
ple variance is an estimate of σi

2 based on gene 
i’s data, and σ0

2 represents a shared property of 
all genes. These two pieces of information are 
combined using a weight determined automati-
cally by comparing the magnitude of cross-gene 
variation (with respect to σi

2) with that of the 
within-gene sampling variability (with respect 
to si

2). If the variability among genes is low rela-
tive to the sampling variability within a gene, 
the mean variance σ0

2 will receive a high weight. 
On the other hand, if the cross-gene variation 
is high compared to the within-gene sampling 
variability, more weight will be given to si

2.
The new estimates shift the sample variances 

toward the common population mean of σi
2, 

and pulls small variances by chance away from 
zero. Compared with the old estimates si

2, the 
sum of squared error of the new estimates o2

i
ˆ  

from the true values is much smaller (3.50 
versus 19.46). When the sample variances 
si

2 in the t-statistics are replaced by the new 
estimates, the new t-statistics correctly rank 
gene 10 before gene 2 (Table 1). This weighted 
average technique to estimate the variance is 
called variance stabilization. It is widely used 
in analyses of gene expression microarrays4,8 
and chromatin immunoprecipitation on til-
ing microarrays (ChIP-chip)7 to detect dif-
ferentially expressed genes and protein-DNA 
binding sites, respectively. Naturally, real 
microarray experiments are more complicated 
and contain more sources of variation than 
our example; thus, they can benefit from more 
sophisticated hierarchical models that capture 
those types of variation.

The validity of model assumptions, such 
as those on the hierarchical structure and the 
distributions at the top and bottom levels, 
is crucial for the successful application of 
hierarchical models. When the assumptions 
hold true, the model brings additional power. 
Otherwise, the model may not use the infor-
mation optimally, or may introduce bias that 
leads to misleading results. Therefore, it is 
always wise to check the model assumptions 
by exploring characteristics of the raw data 
and testing the analysis results using inde-
pendent information or cross-validation2.
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