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ABSTRACT

Syngeneic mouse models are tumors derived from
murine cancer cells engrafted on genetically iden-
tical mouse strains. They are widely used tools for
studying tumor immunity and immunotherapy re-
sponse in the context of a fully functional murine im-
mune system. Large volumes of syngeneic mouse tu-
mor expression profiles under different immunother-
apy treatments have been generated, although a lack
of systematic collection and analysis makes data
reuse challenging. We present Tumor Immune Syn-
geneic MOuse (TISMO), a database with an exten-
sive collection of syngeneic mouse model profiles
with interactive visualization features. TISMO con-
tains 605 in vitro RNA-seq samples from 49 syn-
geneic cancer cell lines across 23 cancer types, of
which 195 underwent cytokine treatment. TISMO also
includes 1518 in vivo RNA-seq samples from 68 syn-
geneic mouse tumor models across 19 cancer types,
of which 832 were from immune checkpoint block-
ade (ICB) studies. We manually annotated the sam-
ple metadata, such as cell line, mouse strain, trans-
plantation site, treatment, and response status, and
uniformly processed and quality-controlled the RNA-
seq data. Besides data download, TISMO provides in-

teractive web interfaces to investigate whether spe-
cific gene expression, pathway enrichment, or im-
mune infiltration level is associated with differen-
tial immunotherapy response. TISMO is available at
http://tismo.cistrome.org.

INTRODUCTION

Immunotherapies targeting co-inhibitory pathways have
shown remarkable clinical success but only demonstrate ef-
ficacy in a subset of cancer patients (1). The underlying
mechanisms of heterogeneous response to immune check-
point blockade (ICB) therapy remain unclear. Clinical sam-
ples from patient tumors accurately represent the tumor mi-
croenvironment (TME), but are difficult to access and con-
duct controlled experiments. Pre-clinical models that faith-
fully recapitulate the complexity of cancer cells and their
interactions with the immune system are essential for inves-
tigating potential resistance mechanisms to ICB (2). Com-
monly used in vitro systems for cancer research, such as
conventional 2D cell culture or 3D organoids, are inade-
quate to model the complexity of the TME. Instead, syn-
geneic tumors transplanted into immunocompetent mice
are readily available and provide reproducible results for
cancer immunology research. Syngeneic mouse models
have been widely used in cancer immunology studies, and
a large volume of tumor expression profiles under vari-
ous immunotherapy treatments have been generated (3,4).
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However, lack of systematic collection and variation in
analysis of individually published syngeneic tumor profiles
makes data reuse challenging.

Multiple existing data resources are available for mouse
models of cancer, such as MPD (5,6), MMHCdb (7,8),
MGD (9), GXD (10), PDX Finder (11) and NCI OMF
(https://oncologymodels.org/annotatedDataSets). Among
these databases, only NCI OMF contains syngeneic tumor
model studies, although it solely provides meta-information
of these studies without expression profiles. Similar to NCI
OMF in providing study-level meta-information, GXD (10)
focuses on expression profiles of wild-type and genetic mu-
tant mice, but its scope is limited to embryonic stages and
postnatal period. MPD (5,6) focuses on phenotypes of dif-
ferent mouse strains under specific experimental treatments,
with strain-specific genotyping and microarray gene ex-
pression data for selected samples, although does not in-
clude syngeneic tumor models. MMHCdb (7,8) focuses
on genetically engineered mouse models, inbred strains,
and patient-derived xenograft models of human cancer and
provides information about specific mutations/allelic vari-
ants in mouse tumors. MGD (9) is a major component of
Mouse Genome Informatics (MGI) and provides descrip-
tive annotations about mouse genes and other genome fea-
tures such as nucleotide, protein sequences, and SNPs. Both
MMHCdb (7,8) and MGD (9) explore the association be-
tween human diseases and mouse models by linking genetic
background to phenotype, but neither include syngeneic tu-
mor models. PDX Finder (11) is a searchable catalogue con-
taining information for 1985 PDX models of diverse can-
cers, but as the name implies, this resource is limited to
PDX models. To the best of our knowledge, there is no
published database with a comprehensive collection of syn-
geneic mouse tumors that provides expression profiles and
phenotypic data.

Herein, we present Tumor Immune Syngeneic MOuse
(TISMO), a large-scale publicly accessible resource of syn-
geneic mouse models. TISMO (http://tismo.cistrome.org)
is a comprehensive database with over two thousand uni-
formly processed and quality-controlled RNA-seq samples
of syngeneic mouse cancer cell lines and tumor models.
These datasets were uniformly processed from raw sequenc-
ing reads using a standardized workflow. In addition, im-
mune cell infiltration and pathway enrichment levels have
been inferred and phenotypic metadata have been manu-
ally annotated. TISMO provides interactive web interfaces
for users to compare and visualize gene expression, pathway
enrichment, and immune infiltration level across syngeneic
mouse models, treatments, and response groups. The con-
tinued maintenance of TISMO will be of great utility to the
cancer immunology and immuno-oncology research com-
munity.

MATERIALS AND METHODS

Data collection and meta information curation

We developed a parser to query datasets deposited in the
Gene Expression Omnibus (GEO) (12) between 2016 and
2021. Using this parser, we performed keyword searches to
identify studies matching a list of manually curated syn-
geneic mouse models or syngeneic cancer cell lines (Sup-

plementary Table S1). For matched studies, meta-files con-
taining study design and sample information were down-
loaded through the parser. We manually curated and con-
firmed each sample for database inclusion. We also anno-
tated syngeneic mouse model phenotypes through literature
searches. In total, we collected 1868 syngeneic tumor or cell
line RNA-seq samples from 137 published studies. We also
included 255 in-house RNA-seq samples generated by our-
selves which have not been published before.

Transcriptome data processing

To ensure consistency, we downloaded raw sequencing
reads from each study and processed the data through
a standardized pipeline called RNA-seq IMmune Anal-
ysis Pipeline (RIMA, https://liulab-dfci.github.io/RIMA).
RIMA is an automated Snakemake pipeline developed by
our group to streamline the processing of RNA-seq data,
including but not limited to read alignment, quality con-
trol, expression qualification, batch effect removal, and im-
mune cell infiltration inference. FASTQ files containing the
raw reads were downloaded or transferred. Read align-
ments were performed with STAR (13) (v.2.4.2a) against
the mm10 reference genome assembly (mm10, Genome Ref-
erence Consortium Mouse Build 38) from the NCI Ge-
nomic Data Commons (GDC). RNA-seq quality control
(QC) was performed on the aligned BAM files using RSeQC
(14) (v2.4). With the reads appropriately aligned, expres-
sion levels were quantified by SALMON (15) (v.0.14.0) on
the BAM files. Ensemble IDs were converted to mouse gene
symbols (GRCm38.p6).

We also characterized pathway enrichment for each sam-
ple to enable comparison between conditions. From Molec-
ular Signatures Database (MSigDB) (16), we first collected
17456 gene-sets, including 7479 GO biological processes,
996 GO cellular components, 1704 GO molecular func-
tions (17), 186 Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (18), 4872 immunologic signatures (16),
615 wiki pathways, and 1604 Reactome pathways (19). Then
for each RNA-seq profile, we evaluated the level of each
pathway by single sample gene set enrichment analysis (ss-
GSEA) (20). For user-defined gene set with weights, we cal-
culate the weighted sum expression of the gene set follow-

ing the equation of p =
n∑

i=1
ki log(ei ) , where p denotes the

pathway level, ki denotes the weights, and ei denotes the
transcripts per kilobase million (TPM) of the ith gene in
the pathway.

Samples collected from different studies were processed
with different protocols and platforms, and subject to tech-
nical bias. Even though TISMO conducts all sample com-
parisons within each cohort, we normalized the data for
consistency across cohorts. Specifically, for each cohort we
pre-computed false discovery rates (FDR) using DESeq2
(21) for each gene and comparison condition. To aid visu-
alization, we normalized the transcriptome TPM data by
quantile normalization to calibrate the scaling and distri-
bution differences across samples, separately in each syn-
geneic model. We then performed batch effect correction
between studies using ComBat within each syngeneic model
(22). Notably, the combination of quantile normalization
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and ComBat was reported to achieve the best performance
for batch effect removal in a recent benchmark study (23).
In an evaluation, we observed that after quantile normaliza-
tion and batch effect removal, the samples’ housekeeping-
gene-signatures, averaged by 600 housekeeping genes (24),
are less scattered between samples from different studies
(Supplementary Figure S1A–D). The coefficient of varia-
tions reduced from 0.12 to 0.06 and from 0.14 to 0.09 for
the in vitro samples and in vivo samples, respectively.

To make reliable and robust immune cell infiltration es-
timations, we utilized Immunedeconv (25), an R package
that integrates state-of-the-art algorithms for immune de-
convolution, including TIMER (26), xCell (27), CIBER-
SORT (28), EPIC (29), quanTIseq (30). We also incor-
porated a murine-specific immune infiltration deconvolu-
tion tool, mMCPcounter (31). Although each algorithm
has unique properties and strengths (25), immune infil-
tration estimations supported by multiple algorithms pro-
vide more confident results. The source code to search
mouse-related studies, download sequencing data, perform
batch effect correction and infer immune infiltration were
deposited at the Github repository (https://github.com/
zexian/TISMO data).

Website development

To enable users to systematically explore the curated
datasets, we developed a user-friendly web interface to host
the TISMO database. The TISMO website is freely avail-
able at http://tismo.cistrome.org without any registration or
login restriction. It is implemented with the R-Shiny frame-
work (R version 3.6.3) on an Apache2 HTTP server, and
is compatible with smartphones and tablets. The website
consists of seven functional components: ‘Home’, ‘Data
Browser’, ‘Gene’, ‘Pathway’, ‘Infiltrates’, ‘Data Download’,
and ‘Documentation’. ‘Home’ includes a tutorial video with
step-by-step instructions on using the database and web-
site. Users could browse or search the curated metadata us-
ing the ‘Data Browser’ module to locate relevant syngeneic
models. ‘Gene’, ‘Pathway’ and ‘Infiltrates’ modules enable
users to select and compare gene expression, pathway en-
richment, and immune infiltration level between treatments,
response groups, and models. Users could explore and de-
rive gene expression programs or immune infiltrates consis-
tently associated with ICB treatment and response in these
modules. In the pathway module, users could also upload
and evaluate self-defined gene sets. In the ‘Data Download’
module, users could download phenotypic metadata, quan-
tified gene expression, and immune cell infiltration for all
samples in the database. The documentation page summa-
rizes the data processing steps and the number of samples
in different models and treatment conditions.

RESULTS

Data summary

The current TISMO database includes 605 in vitro RNA-
seq samples from 49 syngeneic cancer cell lines across 23
cancer types. TISMO also contains 1518 in vivo RNA-seq
samples from 68 syngeneic mouse tumor models across
19 cancer types (Figure 1A and B). Many samples within

the TISMO database have undergone different treatments,
including anti-PD1, anti-PDL1, anti-PDL2, anti-CTLA4,
interferon � (IFN� ), IFN�, tumor necrosis factor alpha
(TNF�), or in combination with other treatments (Supple-
mentary Tables S2 and S3). We manually annotated phe-
notypic data for each sample by referencing the original
article, including cancer type, cancer cell line, cell treat-
ment, cell genotype, mouse genotype, mouse strain, implan-
tation type, implantation site, mouse ICB treatment, and
response status (Supplementary Tables S2-S3). In addition,
we have collected available survival information from pub-
lished studies (Supplementary Figure S2). Gene expression
levels were quantified for all samples, and immune cell infil-
tration levels for each in vivo sample were inferred based on
expression profiles (Supplementary Table S4). All curated
metadata, expression data, and immune infiltration estima-
tion data can be downloaded from the ‘Data Download’
module in the TISMO database.

Exploration of gene expression and pathway enrichment
changes induced by cytokine treatment

Cytokines, including IFN and TNF, play essential roles in
adaptive immunity in the TME (32–35). Due to their crit-
ical roles in anti-tumor immunity, it is of great interest to
know how gene expression or pathway enrichment is differ-
entially regulated by IFN or TNF stimulation. In TISMO,
the in vitro data allow users to explore the effects of cytokine
treatments on syngeneic cancer cell lines. After a user selects
a gene or gene set, cytokine, and cell line, the TISMO web-
server displays box plots of gene expression or pathway en-
richment before and after cytokine treatment. For example,
Figure 2A demonstrates how a user could investigate the
‘MHC PROTEIN COMPLEX ASSEMBLY’ pathway af-
ter cytokine stimulation in syngeneic cancer cell lines. After
selecting the pathways, cytokines, and cell lines of interest,
and submitting the query, a summary boxplot of the path-
way level before and after cytokine treatment is generated
together with statistical comparisons. As expected, there is
a significant increase in major histocompatibility complex
(MHC) protein complex after IFN� and IFN� stimulation
(32,36). In addition to the curated pathways, users could
compare gene expression in the ‘Gene’ module or upload
their own gene set of interest in the ‘Upload pathway’ mod-
ule. The differentially expressed genes and pathway enrich-
ment between comparison groups are statistically evaluated
by the Wald test using DESeq2 (21) and the Student’s t-test,
respectively. In TISMO, we have curated 17456 pathways
from MSigDB (16) and have characterized pathway enrich-
ment for each sample using ssGSEA (20), which users can
explore interactively through the web interface. Users could
also upload self-defined gene sets with the flexibility to ad-
just these gene weights. If a user uploads a customized gene
set, TISMO will calculate its level in each in vitro and in vivo
sample (Materials and Methods), allowing users to evaluate
them across models, treatments, and response groups.

Comparison of gene expression, pathway enrichment, and im-
mune infiltration between ICB treatment and response groups

ICB treatments, including anti-CTLA4 and anti-PD1/L1
provide clinical benefits in only a subset of patients (37).
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A

B

Figure 1. Overview of the TISMO database and summary of data available for download. (A) The datasets hosted at the TISMO database were curated
from public domains and in-house data. In total, TISMO contains 605 in vitro samples, of which 195 were cytokine treated. TISMO also contains 1518
in vivo samples, of which 832 samples were from immune checkpoint blockade (ICB) studies. All samples were uniformly processed from raw sequencing
reads within a standardized workflow, including alignment, quality control, expression qualification, batch effect removal, and immune cell infiltration
inference. In addition, sample metadata, including cell line, mouse strain, transplantation site, ICB treatment, survival and response status were manually
annotated from publications. The metadata, expression profiles, and immune cell expression profiles for all samples can be downloaded from the TISMO
database. (B) TISMO contains in vitro RNA-seq samples from 49 syngeneic cancer cell lines across 23 cancer types. TISMO also contains in vivo samples
from 68 syngeneic mouse tumor models across 19 cancer types. Samples treated with cytokines (IFN� , IFN�, TNF�) are labeled in pink; samples treated
with ICB (anti-PD1, anti-PDL1, anti-PDL2, antiCTLA4 or their combinations) are labelled in green.

Mechanisms underlying heterogeneous ICB response re-
main an open question and the association between im-
mune infiltration and ICB response is of great interest to
many researchers (26). In addition to gene expression pro-
files and pathway enrichment, the TISMO database in-
tegrates inferred immune infiltrations from six state-of-
the-art immune cell deconvolution algorithms, including

TIMER (26), xCell (27), CIBERSORT (28), EPIC (29),
quanTIseq (30) and mMCPcounter (31). We have anno-
tated treatment and response information for ICB study
samples (N = 832), allowing users to explore whether spe-
cific gene expression programs or immune infiltrations are
robustly associated with ICB response or resistance. Us-
ing TISMO, users could select a specific gene, pathway, or
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A

B

C

Figure 2. Examples of TISMO features exploring factors associated with cytokine treatment and immunotherapy response. (A) Users could select pathways,
cytokines, and syngeneic cell lines to evaluate their expressions before and after cytokine treatment. (B, C) Users could select a gene (B) and immune cell
infiltration (C) to evaluate whether its level changes upon ICB treatment, and compare it between ICB responders and non-responders. Immune cell
infiltration levels were inferred by six different state-of-the-art deconvolution algorithms. The generated figures could be downloaded in jpg, pdf, and table
formats.

immune cell infiltration, evaluate whether its level changes
upon ICB treatment, and compare it between ICB respon-
ders and non-responders (Figure 2B, C). For example, Fig-
ure 2B shows how the IFN� gene expression in CT26 model
is stimulated by different ICB treatments. After a user se-
lects genes, ICB treatments, and syngeneic mouse models
of interest, TISMO website will generate a box plot summa-
rizing the gene expression levels before and after ICB treat-
ments in different comparison conditions. The expression
levels are grouped by syngeneic model, treatment group,
and response status in the figure. After ICB treatment, the
IFN� expression levels in CT26 model are significantly
upregulated in the ICB responders, but not in the non-
responders (Figure 2B) (32). In addition to gene expression
levels, users could also compare pathway enrichment levels
in the ‘Pathway’ module or immune cell infiltration in the
‘Infiltrate’ module (Figure 2C). The differential gene expres-
sion between groups is statistically evaluated by the Wald
test in DESeq2 (21), and the differential pathway enrich-

ment (characterized by ssGSEA) (20)) and immune infiltra-
tion are evaluated by the Mann–Whitney U test. Compared
to clinical samples, syngeneic tumor models allow scientists
to evaluate immunotherapy response in a more controlled
and reproducible manner. TISMO’s website enables users to
efficiently evaluate genes, pathways, and immune cell infil-
tration in the context of ICB treatment, to generate or vali-
date hypotheses on immunotherapy response.

Exploration of meta information, figure generation and data
download

TISMO’s website hosts a data browser module to help users
locate relevant mouse models from our collection. Users
could query sample Study ID (the majority representing
the GSE ID, a study identification number for the GEO
database), sample metadata, treatment condition, response
status and the number of replicates in each design. The data
browser module aids researchers in selecting the most rel-
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evant syngeneic mouse models to supply evidence for hy-
pothesis generation or validation. On the TISMO website,
data cohorts and treatment types could be selected for sta-
tistical comparison and visualization. The interactive filter-
ing and visualization features enable users to systematically
compare different models, cell lines, treatments, and re-
sponse groups. The generated figures could be downloaded
in jpg, pdf, and table formats. The download page provides
access to the expression matrices of all 2123 RNA-seq pro-
files, immune cell infiltration estimations of the in vivo sam-
ples, and the manually annotated metadata for all samples.

DISCUSSION

Syngeneic mouse models are essential in immunotherapy re-
search as they enable the study of cancer cells in the context
of immunocompetent hosts. Large amounts of syngeneic
mouse model profiles have been generated, but these data
are scattered, making data reuse challenging. There is still
no comprehensive, intuitive, and convenient database with
user-friendly, interactive web features for researchers to ex-
plore syngeneic mouse model data. TISMO (http://tismo.
cistrome.org) is the first comprehensive database for users to
investigate and visualize gene expression, pathway enrich-
ment, and immune cell infiltration levels in syngeneic mouse
models across different ICB treatment and response groups.
Expression profiles hosted on TISMO were uniformly pro-
cessed from the raw sequencing reads. The immune infil-
tration levels were inferred by six state-of-the-art deconvo-
lution algorithms, and the metadata were manually anno-
tated from publications. TISMO provides web interfaces to
help users explore the syngeneic mouse model data interac-
tively. In summary, TISMO is a comprehensive database of
syngeneic mouse models that will help users select relevant
syngeneic mouse tumor models, provide data to generate
and test hypotheses, and reveal novel mechanisms of ICB
response and resistance.

DATA AVAILABILITY

TISMO is available at http://tismo.cistrome.org to all users
without restrictions. Annotated mouse syngeneic metadata
are available on the website. All expression data and im-
mune infiltration estimation can be downloaded from the
data download page.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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