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ABSTRACT

Histone modifications play important roles in
regulating eukaryotic gene expression and have been
used to model expression levels. Here, we present a
regression model to systematically infer mRNA stabil-
ity by comparing transcriptome profiles with ChIP-seq
of H3K4me3, H3K27me3 and H3K36me3. The results
from multiple human and mouse cell lines show that
the inferred unstable mRNAs have significantly longer
30Untranslated Regions (UTRs) and more microRNA
binding sites within 30UTR than the inferred stable
mRNAs. Regression residuals derived from RNA-seq,
but not from GRO-seq, are highly correlated with the
half-lives measured by pulse-labeling experiments,
supporting the rationale of our inference. Whereas,
the functions enriched in the inferred stable and
unstable mRNAs are consistent with those from
pulse-labeling experiments, we found the unstable
mRNAs have higher cell-type specificity under func-
tional constraint. We conclude that the systematical
use of histone modifications can differentiate
non-expressed mRNAs from unstable mRNAs, and
distinguish stable mRNAs from highly expressed
ones. In summary, we represent the first computa-
tional model of mRNA stability inference that
compares transcriptome and epigenome profiles,
and provides an alternative strategy for directing
experimental measurements.

INTRODUCTION

In eukaryotic cells, DNA winds around histone octamers
to form the basic chromatin structure. Combinatorial
modifications of the histone N-terminals, such as acetyl-
ation, methylation and phosphorylation, are related to

distinct chromatin states (1–4). Histone modifications
are also implicated in a wide range of biological processes,
especially with transcriptional gene regulation (2,5,6).
Transcription starts with the pre-initiation complex for-
mation, then proceeds to a dynamic cycle of Pol II initi-
ation, elongation and termination (5,7,8). All these events
are closely associated with different histone modifications.
For example, H3K4me3 is associated in transcription
initiation (9), H3K36me3 with transcription elongation
(10,11) and H3K27me3 with RNA polymerase pausing
and elongation repression (12–14). Although it is unclear
whether histone modifications are the cause or conse-
quence of transcription (15), they do play a key role in
regulating gene expression (1,16–19).

A number of computational methods have been
proposed to model histone modification profiles. These
methods have been used to identify differential histone
modification sites (20), find key transcription factors
(21,22), predict tissue-specific gene regulation (23) and
infer relationships among different histone modifications
(24). Most notably, quantitative models have been
developed to show that histone modifications are predict-
ive of gene expression levels (25–27). Karlic et al. (27)
proposed a linear regression model that successfully
demonstrated the predictive power of histone marks
with respect to gene expression. Cheng et al. (25) con-
structed support vector regression models to integrate
histone modifications and reported that histone modifica-
tions and transcription factors are statistically redundant
for predicting gene expression levels (26). These studies
focused on the predictive power of their models but
largely ignored the deviations between the model predic-
tions and the mRNA levels.

Steady-state mRNA levels, as assessed by microarrays
or RNA-seq, represent the dynamic balance between
transcript production and degradation at specific cell
conditions. We assume that, in a non-stimulus environ-
ment, statistical models of histone modification levels
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could represent a stable transcription rate, and that the
mRNA degradation rate is independent of the transcrip-
tion rate. Under this assumption, the difference between
the mRNA levels predicted from histone modifications
and the mRNA levels measured from microarrays or
RNA-seq could be used to infer RNA stability. The
mRNAs that are more abundant than predicted from
histone marks are inferred to be stable mRNAs with low
degradation rates whereas those that are less abundant
than predicted are inferred to be unstable mRNAs with
high degradation rates.

In this study, we proposed, for the first time, that the
computationalmodels systematically comparing epigenome
and transcriptome profiles could be used to infer mRNA
stability. For the epigenome, we used ChIP-seq data of
three widely profiled histone methylations, H3K4me3,
H3K27me3 and H3K36me3, all of which have well-defined
roles in transcription. We selected specific features to
optimize the linear models of the histone marks to fit the
transcriptome profiles in multiple human (ENCODE:
K562, GM12878, HepG2, HSMM, Huvec, NHEK) and
mouse (MEF and NPC) cell lines. Using residuals between
the mRNA levels predicted from histone marks and the
levels measured by microarrays or RNA-seq, we inferred
the mRNA stability in each cell line. We investigated the
sequence features, functional characteristics and cell-type
specificity of the stable and unstable mRNAs. Our
computational inference yielded very consistent results
with the mRNA half-life measurements from pulse-labeling
experiments, supporting this method as a cost-effective
alternative strategy.

MATERIALS AND METHODS

Data sources

The RefSeq gene annotations for hg19 and mm9 were
downloaded from the UCSC genome browser (http://
genome.ucsc.edu). The gene expression and ChIP-seq
data were downloaded from the NCBI Gene Expression
Omnibus database. The expression data include micro-
array data for the ENCODE cell lines K562, GM12878,
HepG2, Huvec, HSMM and NHEK [Accession designa-
tion: GSE26312 (28)], RNA-seq and GRO-seq data for
MEFs [GSE27843 (29), GSE27037 (30)] and RNA-seq
data for NPCs [GSE20851 (31)]. The binding data for
the histone modifications include ChIP-seq data for the
ENCODE cells [GSE26320 (32)], mouse embryonic
fibroblasts (MEFs) [GSE12241 (12)] and Neural
progenitor cell (NPCs) [GSE16256 (33)]. The averaged
half-life data of 5029 transcripts in NIH3T3 cells are
from the Supplementary data of Global quantification of
mammalian gene expression control (34).

Data pre-processing

The microarray data were processed by the limma package
in the R program (35). The fastq files for the RNA-seq
data were mapped back to the corresponding genome
using hg19 or mm9 with tophat v1.1.4 (36). The FPKMs
(fragments per kilobase of exon per million mappable
fragments) were calculated as the expression level by

cufflinks (37). The fastq files for the ChIP-seq data were
mapped to the human (hg19) or mouse (mm9) genome by
bowtie (38). A software to generate genome-wide mapped
reads intensity and call peaks (MACS) was used to
generate wiggle files (39).

Defining the histone modification features for linear
regression

We defined 15 regions that cover 5 kb upstream of the
transcription start sites (TSSs) to 1 kb downstream of the
transcription termination sites (TTSs) for each gene,
including up to 1000, up to 2000, up to 5000 (1000/
2000/5000-bp regions upstream of the TSSs), TSS 1000,
2000, 2500 (2000, 4000 or 5000 bp centered at the TSSs),
exon, gene-body (downstream of the TSS to upstream of
the TTS), TTS region 30%, TTS region 50%, TTS region
70% (30, 50 and 70% of the length of the gene body
upstream of the TTS), TTS 30%, TTS 50%, TTS 70%
(0.3, 0.5, 0.7 % of the exons closest to the TTS), and
TTS1000 (2000-bp regions centered at the TTSs).
For each transcript, the read coverage of each histone

modification in the 15 regions (read count per bp) was
calculated and normalized according to the sequencing
library sizes. To reflect the relative contribution of each
histone modification in our model, each feature was
centered and scaled to have a mean of 0 and a standard
deviation of 1 in multiple transcripts. We take log2
(FPKM+1) as the expression index measured by RNA-seq
so that the microarray and RNA-seq data are comparable.
In total, 20 421 transcripts from ENCODE cell lines and
26 400 transcripts from MEFs and NPCs were used to
build the linear models.

Studentized residuals

In our regression model:

mRNA level � b0+b1NH3K4me3

+b2NH3K27me3+b3NH3K36me3+e

where the errors e are assumed to independently follow a
normal distribution N(0, �2). The residuals ê, unlike the
errors, are the deviations between the model predictions
and the mRNA levels. Under the assumption of the
distribution of errors, the residuals may have different
variances. To reasonably compare the residuals among
multiple mRNAs, the residuals should be normalized to
studentized residuals.

Prediction of microRNA-binding sites

The predicted microRNA binding sites were downloaded
from TargetScanHuman (http://www.targetscan.org/
vert_61/) and TargetScanMouse (http://www.targetscan
.org/mmu_61/) (40). The TargetScan database includes
both conserved and non-conserved targeting sites within
the 30UTRs.

Gene ontology analysis

The DAVID functional annotation tool (http://david
.abcc.ncifcrf.gov/) was used to analyze the gene function
enrichment (41). The P-value cutoff was set as 0.01.
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RESULTS

Histone modifications are predictive of mRNA levels
in multiple cell lines

We first investigated the quantitative relationship between
histone modification and expression profiles in eight dif-
ferent human and mouse cell lines with consistent data
format. The expression data are measures of exon arrays
for six human ENCODE cell lines and RNA-seq for two
mouse cell lines. The histone mark profiles include
ChIP-seq of H3K4me3, H3K36me3 and H3K27me3,
which are the most frequently profiled in published
studies. To assign histone modification signals to genes,
we used ChIP-seq reads from 5kb upstream of TSSs to
1 kb downstream of TTSs. To identify the distinct histone
mark features that are predictive of mRNA levels, we
defined 15 features across each gene for each histone
mark, such as read coverage in promoters, exons or tails
of gene bodies (details in section ‘Materials and
Methods’). We fitted the mRNA level as a linear combin-
ation of individual histone mark features:

mRNA level � b0+b1NH3K4me3+NH3K27me3+NH3K36me3+e

where N represents the normalized read coverage and e
indicates error, which is assumed to independently follow
a normal distribution.
We tested all of the possible triple combinations of the

three histone mark features and used the Bayesian infor-
mation criterion (BIC) to evaluate the performance of
each model. In the K562 cell line, the model with
H3K4me3 reads in TSS1000 (defined as the 2000 bps

centered at the TSSs), H3K36me3 in gene bodies and
H3K27me3 in exons yielded the lowest and optimal
BIC score. Our computational model with only three
histone mark features fits very well with the mRNA
levels in the K562 cell line, as measured by Pearson cor-
relation (Figure 1A) and regression P-value (<2.2 e-16).
The regression coefficients in the model (Figure 1B)
indicate that H3K4me3 and H3K36me3 contribute
most to the prediction model, consistent with its role
in transcriptional initiation and elongation. We found
that including non-linear terms in the model did not
significantly increase the R-square fitting or change
any of the downstream conclusions, so we kept the
simple linear model for efficiency. The same method
was applied to the other cell lines, and each produced
a high correlation between the expression levels
predicted from the histone marks and the mRNA
levels (Supplementary Figure S1). The relative contribu-
tions of the individual histone marks to the regression
model are also similar in different cells (Supplementary
Figure S2).

Deviations between model predictions and mRNA levels
can infer mRNA stability

To investigate the fitness of our model, we examined the
studentized residuals to identify mRNAs whose expression
levels significantly deviate from the model predictions
(details in section ‘Materials and Methods’, Figure 2A).
For example, DNAJC24 and RERE exhibited similar
profiles for all the three histone marks, yet their expression
levels measured by microarrays differed by two orders of

Figure 1. Fitting level and regression coefficients. (A) The scatter plot of the measured mRNA levels against the fitted RNA levels of the optimal
model with the least BIC score in K562 cells. Each dot represents a transcript involved in our model. (B) The regression coefficients for H3K36me3,
H3K27me3 and H3K4me3. The corresponding histone modification features are gene-body, exon and TSS1000 (1000 bp centered on the TSS),
respectively.
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magnitude (Figure 2B). Because our model predicts
expression from histone marks, it resulted in a high
positive residual for DNAJC24 and a high negative
residual for RERE.

Previous studies have shown that the three histone modi-
fications used in our model are tightly associated with the
transcription cycle (9–14). Our computational model based
on these histone marks is statistically correlated with
mRNA levels. Therefore, we speculate that the model pre-
diction somewhat represents a stable transcription level. In
contrast, the mRNA level, as measured by microarrays or
RNA-seq, reflects a balance between transcript production
and degradation. Assuming that the degradation rate is
independent of the transcription rate, we hypothesize
that mRNAs with high negative and positive studentized
residuals represent those that are degraded faster (defined
as the unstable group, with residual <�1) and slower
(defined as the stable group, with residual >1), respectively
(Figure 2A).

Inferred unstable mRNAs harbor sequence signatures
associated with more microRNA targeting

It is well known that microRNAs, a type of endogenous
�22-ntRNAs, play an important role in posttranscriptional
gene regulation (42). These RNAs direct mRNA degrad-
ation, primarily by matching �7 nt seeds to the 30UTRs of
target mRNAs (43). Although recent techniques, such as
HITS-CLIP and PAR-CLIP, could accurately measure
genome-wide microRNA target sites (44–48), such data
are not available for the cell lines in our study (49).
Because TargetScan is among the best and most widely
used tools for the computational prediction of microRNA
targets, we used its predictions to investigate themicroRNA
targeting of our inferred mRNAs (40).
Studies have shown that proliferating and cancer cells

express mRNA isoforms with shorter 30UTRs (50,51) and
that mRNAs with longer 30UTRs are more likely to be
targeted by microRNAs (52). Indeed, we found that the
inferred unstable mRNAs have significantly longer 30UTRs

Figure 2. Definition of inferred stable RNAs and inferred unstable RNAs. (A) The mRNAs that are more highly expressed relative to the prediction
values (studentized residual >1) are defined as stable mRNAs and shown as red dots. Conversely, the blue dots represent the mRNAs with
studentized residual <�1, referred to as unstable. (B) Two randomly selected transcripts, NM_001042682 and NM_181706, separately from unstable
RNAs and stable RNAs. The distributions of H3K36me3, H3K27me3 and H3K4me3 over these two genes are visualized below. The y-axes represent
the read counts. Note that these two genes are quite similar in overall histone modification patterns and are predicted to have similar mRNA levels in
the regression model (NM_001042682: 6.20; NM_181706: 5.95). Nevertheless, their real mRNA levels, as measured by microarray, are significantly
different (NM_001042682: 3.58; NM_181706: 8.68).
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than the stable ones in all of the cell lines (Figure 3A–B and
Supplementary Figure S3). In addition, the 30UTRs of the
unstable mRNAs harbor significantly larger numbers of all
(conserved + non-conserved) microRNA-binding sites in
multiple cell lines (Figure 3C–D and Supplementary
Figure S4). Additionally, in the ENCODE cell lines,
unstable mRNAs have larger numbers and a higher density
of conserved microRNA binding sites within their 30UTRs
(density refers to the amount of binding sites divided by the
30UTR length) than stable mRNAs (Supplementary
Figures S5 and S6). These results suggest that the inferred
unstablemRNAs are preferentially targeted bymicroRNAs.

Half-lives are highly correlated with residuals in an RNA-
seq model but independent of those in a GRO-seq model

Recently, many studies (53–56) have used pulse labeling to
examine the half-lives and degradation rates of mRNAs.
In these studies, a pulse of radioactive nucleotides is used
to label newly synthesized RNA. By measuring radio-
active mRNA and total mRNA levels over a time
course, researchers can accurately compute mRNA syn-
thesis and degradation rates. Schwanhäusser B et al. (53)
reported the half-life data for 5028 mRNAs in the mouse
embryonic fibroblast cell line NIH3T3. Because ChIP-seq
data for H3K4me3, H3K27me3 and H3K36me3 in

NIH3T3 are not publicly available, we compared their
results with our computationally predicted degradation
rates from another mouse embryonic fibroblast cell line,
MEFs.

In MEFs, the correlation between the mRNA levels
measured by RNA-seq and our model predictions from
the histone marks in MEFs is 0.7 for all of the transcripts.
The reported half-lives (53) are significantly correlated
with the residuals between the mRNA levels and the
model predictions (�=0.322, P-value< 2.2e-16,
Figure 3E), supporting the rationale for our definitions
of stable and unstable transcripts. When we incorporated
the half-life information to re-derive a regression model
for the 5028 mRNAs with half-life data, the model was
able to better fit the mRNA levels (R=0.54 for the model
based only on histone modifications, r=0.62 for the one
based on both histone marks and half-lives).

To further validate our predictions of stable as
compared with unstable transcripts, we examined the
GRO-seq data from MEFs. GRO-seq is a global run-on
experiment to measure nuclear nascent RNAs that are
associated with transcriptionally engaged polymerases
(57). We refitted the regression model using H3K4me3,
H3K27me3 and H3K36me3 to the GRO-seq data in
MEFs and examined the residual between GRO-seq and
the model prediction. Because GRO-seq effectively

Figure 3. The sequence signatures and half-lives correlations of model inference. The boxplots in (A–D) represent the distribution of certain sequence
signatures for specific groups (unstable or stable ones), and the P-values were calculated by the Wilcox-test. These boxplots indicate that the inferred
unstable mRNAs have sequence signatures in favor of post-transcriptional degradation. (A–B) The comparison of 30UTR length in K562 cells and in
MEFs, separately. (C–D) The comparison of the number of all binding sites (conserved+ non-conserved) within the 30UTRs in K562 cells and in
MEFs, separately. (E) The half-lives of mRNAs are positively correlated with studentized residuals in RNA-seq model, in which all of the transcripts
are modeled on histone marks to fit the mRNA levels measured by RNA-seq. � refers to Pearson Correlation coefficients. (F) The half-lives are little
correlated with the studentized residuals in a GRO-seq model, in which histone modifications are fitted to nascent mRNA levels.
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measures nascent mRNA production, the residues derived
from GRO-seq should be independent of the mRNA
degradation rates and half-lives. Indeed, we found little
correlation between the GRO-seq model residuals and
the half-lives reported by pulse-labeling experiments
(�=0.0058, Figure 3F). This observation further
validates the idea that the residuals can be used to infer
transcript stability, which is independent of the transcrip-
tion rate.

Inferred unstable and stable mRNAs are enriched
for distinct biological processes

To investigate whether genes with varying mRNA degrad-
ation rates are enriched for specific biological processes or
functions, we conducted aGeneOntology (GO) analysis for
the inferred stable and unstable mRNAs.We found that the
inferred unstable mRNAs are consistently enriched in
transcription, regulation of RNA metabolism and chroma-
tinmodification in all the cell lines examined (Figure 4A, the
complete list is shown on Supplementary Table S1). This
finding is in agreement with previous studies that identified
many transcription factors (e.g. Klf7, Dmtf1), especially
those targeted by microRNAs (e.g. Foxo1, Hif1a, p53), to
have short mRNA half-lives (54).

In contrast, the inferred stable mRNAs are also consist-
ently enriched in constitutive cellular processes in all of the
cell lines. These processes include the generation of pre-
cursor metabolites and energy, translation, oxidation-
reduction, oxidative phosphorylation, cellular respiration
and the electron transport chain (Figure 4B, the complete
list is shown in Supplementary Table S2). Translation and
protein synthesis have been implicated to account for
>90% of cellular energy consumption (53), and electron
transport chains are also known to maximize electron flux

and minimize energy expenditure (58). These findings
suggest that the stable mRNAs are all enriched in consti-
tutive cellular processes that are associated with energy.
Notably, our GO analysis results for both stable and
unstable mRNAs are very consistent with those from
pulse-labeling experiments (53), which further validates
our computational inference.

Inferred unstable mRNAs have higher cell-type
specificity under functional constraint

To investigate the consistency of the stable and unstable
mRNAs in different cell conditions, we compared the
mRNAs with the inferred stability from different
ENCODE cell lines that fall in the same GO terms and
calculated their overlaps. We found that the unstable
mRNAs under each enriched GO term significantly overlap
among different cell lines (pairwise overlaps >50%, hyper-
geometric test, P-values <2.2e-16). In addition, the stable
mRNAs also show significant pairwise overlap, and the
overlap level is much higher than that in the unstable
mRNAs (Figure 5). This difference might arise from the
cell-type-specific expression of microRNAs and RNA-
binding proteins involved in RNA degradation. These
results suggest that, whereas the functional processes of
stable and unstable mRNAs are consistent among different
cell types, the unstable mRNAs have much higher cell-type
specificity.

Histone modifications are informative for inferring mRNA
stability

Because our model residuals have a positive correlation
with the measured mRNA levels, as shown in Figure 2A,
one might question of whether the inferred mRNA

Figure 4. Differentially Enriched GO Terms for unstable mRNAs (A) and stable mRNAs (B) in multiple ENCODE and mouse cell lines. The y-axis
represents a negative logarithmic scale of the P-values, so the higher they are, the more significantly the corresponding GO term is enriched.
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stability arises solely from gene expression levels. To assess
this possibility, we defined four zones in the residual plot of
MEFs (Figure 6A). Zone A accounts for 44% of the total
26 400 expressed transcripts in MEFs and is significantly
enriched in functions with unclear half-lives (Figure 6A,
top left). In fact, most of the mRNAs (10 859/11 572) in
Zone A are not expressed at all (the GRO-seq FPKMs are
equal to 0).
Compared with Zone A, the mRNAs in Zone B are

expressed at similarly low levels. Nevertheless, signifi-
cantly larger numbers of mRNAs in Zone B are actually
expressed (the GRO-seq FPKMs of 53.81% of the
transcripts in Zone B are not equal to 0 versus 6.16%
for Zone A, two proportion z-test, P-value <2.2e-16). In
addition, the functional enrichments from Zone B are con-
sistent with those from the unstable transcripts obtained
from pulse-labeling experiments (Figure 6A, bottom left).
In fact, a large proportion of genes are expressed at very
low levels in most of the cells, e.g. the RNA-seq levels of
55% of the mRNAs are less than one FPKM in MEFs.
Our analysis suggests that our computational model from
histone marks could differentiate two distinct classes of
genes with low expression levels: the majority is transcrip-
tionally silenced (Zone A), and the remainders are
efficiently transcribed but rapidly degraded (Zone B).
Similarly, histone modification levels are informative to

distinguish the more stable mRNAs from the highly
expressed ones. The mRNAs in Zone C are enriched for
constitutive gene functions, whereas the mRNA sets
identified as unstable from pulse-labeling experiments
are significantly enriched in Zone D (Figure 6A).
Furthermore, the mRNAs in Zone C have significantly

longer half-lives than those in Zone D (P-value=1.6e-86,
Figure 6B). In summary, the inclusion of histone modifi-
cations can differentiate between silenced mRNAs and
unstable mRNAs and distinguish stable mRNAs from
highly expressed ones.

DISCUSSION

In this article, we report the first computational approach to
systematically infer global mRNA stability on the basis of a
comparison of mRNA levels and histone modification
profiles. Three lines of evidence support our inference on
mRNA stability. First, the inferred unstable mRNAs
harbor sequence signatures associated with more
microRNA targeting. Second, the half-lives are positively
correlatedwith the residualswhen our computationalmodel
is fitted to RNA-seq but independent of the residuals when
fitted to GRO-seq. Third, functional annotations of the
enriched gene sets produced consistent results with
previous reports based on pulse-labeling experiments. Our
analysis conducted on multiple human and a mouse cell
lines suggests that unstable mRNAs have higher cell-type
specificity than stable ones. Finally, we found histone
modification levels can distinguish unstable mRNAs from
silenced ones and differentiate stable mRNAs from highly
expressed ones.

Histone modifications are implicated in transcriptional
regulation in eukaryotic cells, and a number of reports have
illustrated the predictive power of integrating multiple
histone modifications on gene expression (25–27). Our
study showed that carefully selected features combining
only three histone modifications, H3K4me3, H3K27me3

Figure 5. Unstable mRNAs have higher cell-type specificity than stable ones under functional constraint. The mRNAs with inferred stability from
different ENCODE cells that fall onto the same GO terms are pairwise compared, and the overlapped proportions were calculated in each term
separately (each overlap corresponds to two proportions based on a pair of compared sets). The unstable gene sets are shown in blue and the stable
gene sets are shown in red. The boxplot represents the distribution of the pairwise overlap proportions under the GO term.
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and H3K36me3, could already explain 40–50% of the
mRNA expression variance. We chose these three
modifications because they are the most widely profiled
and have been shown to be the most informative for gene
expression prediction (26). As genome-wide histone modi-
fication profiles accumulate over time (59,60), we could
improve our model by integrating more histone modifica-
tions. It is worth noting that in this study we evaluate
significance mostly in the statistical sense, and biological
significance needs to be confirmed by further experimental
investigations.

Our computational model relies on two important
assumptions, both of which depend on steady-state con-
ditions. The first assumption is that histone modification is
reflective of the steady-state transcription rate. In MCF7
cells, E2 treatment has significant transcriptional effect in
only 10min (61). Thus, transient transcriptional changes
in response to outside stimuli may be faster than changes
of the three histone marks we selected. The second

assumption is that mRNA transcription rates and degrad-
ation rates are independent. This assumption is supported
by the observation that the transcription rate measured by
GRO-seq has little correlation (0.0058) with the half-lives
measured by pulse-labeling experiments. Upon cell
differentiation or environmental stimulation, the tran-
scription rate could be coupled with the degradation rate
(56,62–64). Further studies are needed to refine the
computational models for better prediction of degradation
during non-steady-state conditions.
Steady-state mRNA levels represent a balance between

transcription and degradation. Although our analysis
revealed that unstable mRNAs are significantly more
likely to be targeted by microRNAs, incorporating
microRNA binding sites or AU-rich elements within the
30UTRs (65) only marginally improved the fitness of our
model. For mRNAs with available half-life data, the most
informative sequence feature (the number of all microRNA
binding sites within the 30UTR) merely explains 1% of the

Figure 6. Histone modification levels are informative for inferring mRNA stability. (A) Zones A–D are defined in the middle plot according to the
measured RNA level (FPKM cutoff of the mRNAs with low expression is 1, whereas that of the highly expressed mRNAs is 7) and the studentized
residual (cutoff is �1 and 1). Zone A refers to mRNAs with lower abundances and absolute value of studentized residuals <1. Those with lower
abundances and residuals <�1 constitute Zone B. Zone C is defined as highly expressed RNAs with residuals >1, whereas Zone D is composed of
those highly expressed mRNAs with absolute values of studentized residuals <1. The four tables contain GO significantly enriched for Zones A–D,
respectively. The red color denotes that mRNAs involved in the GO term tend to have longer half-lives, whereas the blue color indicates shorter
half-lives. Green denotes no tendency on half-lives, and black means that the information about half-lives is unclear. All the half-life data are from
Schwanhäusser B et al. (B) Comparing mRNA half-lives between Zone C and Zone D. The half-life data are available for 48% of the mRNAs in
Zone C and 53% in Zone D, separately.
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variance of the residuals whereas half-lives could explain
13% of the variance. This finding suggests that other
factors, such as RNA-binding proteins or the secondary
structure of the 30UTR, may also be involved in regulating
mRNA stability and decay (65–67).
In summary, we propose the first computational

method for inferring mRNA stability by comparing
transcriptome and histone modification profiles. As
histone mark ChIP-seq data continue to grow, our
approach provides a cost-effective alternative to the
direct measurement of RNA stability by pulse-labeling ex-
periments (53–56) or transcriptional inhibition (62,68,69).
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