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Gene expression signatures are used in the clinic as prognostic tools
to determine the risk of individual patients with localized breast
tumors developing distant metastasis. We lack a clear understand-
ing, however, of whether these correlative biomarkers link to a
common biological network that regulates metastasis. We find that
the c-MYC oncoprotein coordinately regulates the expression of 13
different “poor-outcome” cancer signatures. In addition, functional
inactivation ofMYC in human breast cancer cells specifically inhibits
distant metastasis in vivo and invasive behavior in vitro of these
cells. These results suggest that MYC oncogene activity (as marked
by “poor-prognosis” signature expression)may be necessary for the
translocationofpoor-outcomehumanbreast tumors todistant sites.

breast cancer | biomarkers | invasion and migration | transcriptional
profiling

Over the past decade, 13 different multigene “poor-outcome”
cancer signatures havebeen identifiedusingDNAmicroarray–

based gene expression profiling (1–12). Quantitative increases in
the expression of these different signatures within a primary tumor
are correlated with its likelihood of metastasis to distant sites
across a spectrum of different solid tumor types (Fig. 1A). Some of
these prognostic signatures, including the 21-gene Oncotype Dx
and 70-gene MammaPrint gene sets, were derived from breast
tumors and have been deployed as biomarkers for risk strat-
ification in patients with newly diagnosed breast cancer (6, 9–11).
However,many other such signatureswere originally derivedusing
a variety of experimental approaches, have individually been
associated with varying aspects of cancer progression (i.e., trans-
formation, proliferation, dedifferentiation/stemness, genetic
instability, and metastasis), are prognostic in malignancy beyond
breast cancer, and appear to overlap minimally with respect to
component genes (Fig. S1 and Table S1). Thus, whether these 13
different signatures as a set link to a common biological network
related to metastasis remains unclear.

Results
Although these 13 “poor-prognosis” signatures were derived in
various ways, many without any relation to breast cancer, most are
prognostic across different breast tumor expression data sets. A few
of these signatures also are coordinately expressed in the same high-
risk human breast tumors (13). Importantly, many poor-prognosis
signatures contain genes whose expression correlates with estrogen
receptor (ER) status in breast cancer, and estrogen signaling is
known to drive the growth and survival of breast cancer cells from
the earliest stages of disease (14). These observations led to the
hypothesis that estrogenic signaling may regulate the expression of
both signatures derived from breast tumors and other diverse sig-
natures derived in non–breast cancer contexts. To test this hypoth-
esis, we assayed the expression of the 13 poor-outcome tumor

signatures using Affymetrix microarrays in estrogen-dependent
ERα+/β−MCF7breast cancer cells after experimentalmanipulation
of estrogenic signaling (15).
Detailed statistical analysis revealed that a significant proportion

of genes in each of these 13 different transcriptional signatures was
indeed expressed by MCF7 cells and was tightly and coordinately
regulated by signaling through theER (Fig. 1B, Figs. S2 and S3, and
Table S2). Different signatures overlapped by no more than 10%
with respect to individual component genes (Fig. S1). Furthermore,
even this minimal overlap between different signatures could not
account for the coordinate pattern that we observed, which was far
beyond chance based on permutation analysis using both random
and unrelated, experimentally derived signature sets (Table S3).
Overall, approximately 40% of all poor-outcome signature genes
were estrogen-regulated in MCF7 cells, with proportions in indi-
vidual signatures ranging from around 30% to nearly 100% (Table
S2).These initialfindings ina cancer cell–autonomousexperimental
system demonstrated that the ER can functionally regulate the
coordinate expression of a majority of poor-prognosis signatures.
Beyond ER, we also observed similar transcriptional effects with

other oncogenes. For example, ERBB2 overexpression and EGF
stimulation in MCF10A breast epithelial cells, which are immor-
talized but untransformed, both induced coordinated expression of
all 13 poor-outcome signatures (Fig. 1C andD), and stimulation of
LNCaP prostate cancer cells with dihydrotestosterone (DHT) via
the androgen receptor (AR) produced a similar transcriptional
pattern, albeit somewhat more weakly than ERBB2 or EGF sig-
naling with respect to the “DOWN” metagenes from different sig-
natures (Fig. 1E). These results suggested that increased activity of
four different oncogenic pathways known to independently regulate
cancer cell growth and survival in different cellular contexts could
pushdifferent epithelial cell types toward a common transcriptional
state defined by the coordinate expression of 13 different poor-
outcome signatures.
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We next investigated whether poor outcome signature regu-
lation reflected direct or indirect effects of these oncogenes on
transcription. ERBB2 and EGFR, as membrane-bound receptor
tyrosine kinases, almost certainly induced poor-outcome signature
expression indirectly by signaling through downstream tran-
scription factors. In contrast, ERα and AR are nuclear hormone
receptors whose transcriptional activity can be modulated by the
EGFR and ERBB2 pathways, raising the possibility that these
transcription factors might directly regulate poor-outcome sig-
nature expression. But treatment ofMCF7 cells with 17β-estradiol
in the presence of cycloheximide (CHX), a general inhibitor of
new protein translation, destroyed coordinated signature induc-
tion by estrogen (Fig. 1F) (16). These results demonstrated that
ERα might modulate poor-outcome signature expression indi-
rectly, at least in part through a common transcriptional regulator
downstream of the ERα, ERBB2, EGFR, and AR pathways.
Consequently, weanalyzed theERα-, ERBB2-,EGFR-, andAR-

regulated transcriptional profiles in further detail, to identify can-
didate genes from the 13 poor-outcome signatures whose expres-
sion was commonly induced in response to these four different
stimuli. Overall, approximately 50%of the poor-outcome signature
genes were regulated by these different pathways across different
cellular contexts. Although some poor-outcome genes were regu-
lated uniquely by one of these pathways, others were commonly
regulated by multiple pathways. In particular, ERα, ERBB2,
EGFR, and AR commonly induced the expression of a “core gene
set” of 20 poor-outcome genes, which was far beyond random (P=
1.6 × 10−12) (Fig. 2A).
Although this core gene set did not contain any obvious candidate

transcriptional regulators, all of the genes in this setwere linked intoa
single and highly-connected “core interactome” using the IPA algo-
rithm and database of literature-based molecular interactions (Fig.
2B) (17). This core interactome was highly connected to the MYC
transcription factor, which was not a member of any poor-outcome
signature and thus was not in the core gene set itself. This correlation
fit with the observation that at least 10 of 20 core interactome genes
are knowndirectMYCtargets (www.myccancergene.org). It alsowas
consistent with previous reports implicating MYC as a regulator of
poor-prognosis signature expression in breast cancer (18–22). Taken
together, this evidence raised the hypothesis that MYC, which is
downstreamof theERα, ERBB2,EGFR, andARpathways,may act
as a common transcriptional regulator for expression of the 13 dif-
ferent poor-outcome signatures that we studied.
Consistentwith this hypothesis, overexpressionofMYCinMCF7

cells was sufficient to induce coordinated poor-prognosis signature
expression (Fig. 1G) (23). In contrast, overexpression of ZIP (a
MYC mutant lacking the two N-terminal transactivation domains)
in MCF7 cells failed to induce this expression pattern (Fig. 1H).
Furthermore, siRNA knockdown of endogenous MYC in MCF7
(ER+) reversed this coordinated pattern of signature expression
(Fig. 1I) (24, 25). Overall, these transcriptional changes involved
20% of all poor-outcome signature genes in MCF7 cells, ranging

A F

B G

C H

D I

E J

Fig. 1. Molecular regulation of 13 poor-outcome human cancer signatures.
(A) Thirteen different signatures (designated s1–s13), correlated with dif-
ferent biological processes associated with metastatic progression, reported
to be prognostic in different tumor types (green). To simplify the analysis,
we first created two “metagenes” by separately averaging up-regulated and
down-regulated genes from each multigene poor-outcome cancer signature
(s1–s13). (B–J) Plots displaying UP and DOWN metagenes derived from each
signature in standard deviation units after (B) 17β-estradiol stimulation (red

circles) versus control (blue diamonds) in MCF7 cells, (C) ERBB2 over-
expression (red circles) versus control (blue diamonds) in MCF10A cells, (D)
EGF stimulation (red circles) versus control (blue diamonds) in MCF10A cells,
(E) DHT stimulation (red circles) versus control (blue diamonds) in LNCaP
cells, (F) 17β-estradiol stimulation and CHX treatment (red circles) versus CHX
treatment alone (blue diamonds) in MCF7 cells, (G) overexpression of MYC
(red circles) versus vector control (blue diamonds) in MCF7 cells, (H) over-
expression of ZIP (red circles) versus vector control (blue diamonds) in MCF7
cells, (I) siRNA knockdown of endogenous MYC (red circles) versus vector
control (blue diamonds) in MCF7 cells, and (J) siRNA knockdown of endog-
enous MYC (red circles) versus vector control (blue diamonds) in MDA-MB-
231 cells. Circles and diamonds represent independent replicates. s2, s7, and
s9 are unidirectional signatures that have only up-regulated genes.
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from 10% to 40% across individual signatures (Table S4). In
addition, analysis of genome-wide MYC chromatin immunopreci-
pitation microarray (ChIP-Chip) profiling data, obtained from
MCF7 cells after 17β-estradiol treatment (26), demonstrated a
highly significant enrichment for MYC binding within 5 kb of the
transcriptional start sites of up-regulated poor-outcome signature
genes (P = 6 × 10−8) (Fig. 2C). In contrast, we found no similar
enrichment in MYC binding for down-regulated poor-outcome
genes, suggesting that many down-regulated genes are in fact
indirect MYC targets. Finally, siRNA knockdown of endogenous
MYCinMDA-MB-231 (ER−PR−ERBB2−) breast cancer cells also
reversed coordinated signature expression (Fig. 1J). These results
demonstrated that MYC could powerfully regulate the coordinate
expression of many, but not all, genes from 13 different poor-
outcome transcriptional signatures in breast cancer cells.
MYC is known to regulate a wide spectrum of cancer cell behav-

iors, including proliferation, survival, differentiation, and genetic
stability,whicharegeneral featuresof tumorigenesis (27).Therefore,
one explanation for ourfindingswas thatMYCactivity within cancer
cells, as reflected by poor-prognosis signature expression, might
indirectly influence themetastatic propensity of cancer cells (by, e.g.,

promoting cellular proliferation and survival). Another possibility
was that MYC actually might regulate more specific aspects of
metastatic cell behavior. To test this hypothesis, we focused on the
MDA-MB-231 cell line, which is highly metastatic and stereotypi-
cally forms distant lung metastasis when injected into immunocom-
promised mice. This well-credentialed model has been used to
experimentally identify and manipulate molecular pathways that
regulate various aspects of metastatic cell behavior (28). Fur-
thermore, MYC knockdown in these metastatic breast cancer cells
resulted in the coordinate down-regulation of 13 different poor-
outcome transcriptional signatures, supporting the relevance of this
model system to human cancer metastasis (Fig. 1J). We therefore
investigated whether inhibiting MYC activity would specifically
inhibit the metastatic behavior of MDA-MB-231 cells.
Stable MYC knockdown with two different short-hairpin RNAs

introducedusing a lentiviral vector [hairpin1 (HP1)≈95%;hairpin 2
(HP2)≈70%]didnot significantlyalter thegrowthkineticsofMDA-
MB-231 cells after serial passage in vitro (Fig. 3A andB). It must be
noted, however, that immediately after MYC knockdown, HP1 and
HP2 cells did show mildly decreased proliferation that then nor-
malized after 1–2 weeks of passage, suggesting that these cells
depended on MYC for proliferation to some degree but were still
able to preserve their proliferative drive in the face of stable MYC
inhibition, presumably through compensatory changes. Importantly,
stable MYC knockdown also did not significantly affect the kinetics
of primary tumor formation after orthotopic injection into the
mammary fat pad of immunocompromised NOD/SCID mice (Fig.
3C). Nine of 10 control mice and 8 of 10 experimental mice had
similar-sized tumors 8 weeks after injection, whereas the remaining
animals did not form tumors.
In contrast,MYC knockdown greatly inhibited the formation of

distant lung metastasis (Fig. 3D). Whereas two animals had no
lung metastases, four other animals had a small number of meta-
stases compared with control animals at 8 weeks. One otherMYC
knockdown animal died of unknown causes at 5.5weeks and sowas
not fully evaluable, but only had a small primary tumor and no
signs of macroscopic metastasis at autopsy. Curiously, the last
MYCknockdown animal was an outlier and was similar to animals
in the control population in forming numerous lung metastases
(Fig. 3D). To address this paradoxical finding, we examinedMYC
protein expression in the primary and metastatic tumors from this
outlier by immunohistochemistry.Whereas the primary tumorwas
negative for MYC expression, confirming stable knockdown in
cells at the point of orthotopic injection, metastatic cells in the
lungs of this animal were strikingly positive for MYC expression,
suggesting that rare cells had somehow reactivated MYC expres-
sion, enabling metastasis of these cells from the mammary fat pad
to the lungs (Fig. 3E). Further histopathologic examination of
primary tumors from MYC knockdown versus control animals
revealed that both tumor types were high-grade carcinomas con-
taining round polygonal cells with comparable levels of MKI-67,
TUNEL, vimentin, and E-cadherin staining, which mark cell
proliferation, apoptosis, and mesenchymal/epithelial cell state,
respectively (Fig. 3F). Taken together, these in vivo results dem-
onstrated that MYC activity was specifically required to maintain
the metastatic state rather than the proliferative, apoptotic, or
differentiation state of these highly metastatic breast cancer cells.
Given these findings in vivo, we finally examined whether

MYC activity was necessary for fundamental and hallmark fea-
tures of metastatic cell behavior, namely, cancer cell invasion and
migration.We used a novel microfluidic device developed to study
cell migration and invasion at the single-cell level, where loco-
motion is mechanically constrained along predefined paths (29).
Each device contained an array of linear microcapillaries each
10 μmtall, 20 μmwide, and 600 μm long. IndividualMDA-MB-231
cells were visualized using live-cell time-lapse videomicroscopy
after seeding into microcapillaries either filled with Matrigel
(to simulate some of the three-dimensional microenvironmental

Fig. 2. MYC-centered core interactome. (A) Venn diagram illustrating der-
ivation of the core gene set. (B) A highly connected network of the 20 genes
in the core gene set (orange) and 13 associated genes identified using the
IPA algorithm (17). MYC is highlighted in red. (C) Statistical analysis of
genome-wide MYC-binding site data obtained from MCF7 cells after stim-
ulation with 17β-estradiol, generated using ChIP-Chip (chromatin immuno-
precipitation and tiling microarrays spanning the entire nonrepetitive
human genome) (26). UP and DOWN poor-outcome signature genes with at
least one MYC binding site within ± 5 kb of their transcription start site
(orange) versus the same for all other genes on the tiling array (green).
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conditions that cancer cells encounter in vivo) or simply coated
with collagen IV (to study unimpeded migration). We specifically
performed these experiments in the absence of a chemogradient,
which allowed us to examine intrinsic cell behavior. Quantitative
analysis of single-cell velocities in this device revealed that MYC
knockdown greatly impeded MDA-MB-231 invasion in Matrigel
but had only mild effects on migratory velocities compared with
control cells (Fig. 4 A–F, andMovies S1–S4). As was most evident
in the time-lapse movies of migrating cells, however, knockdown
cells were rounded, moved less efficiently and persistently,
exhibited frequent and disordered changes in direction compared
with control cells, and did not exit microcapillaries efficiently
(Movies S3 and S4). We also assessed the quantitative effect of
MYC knockdown on MDA-MB-231 cell invasion in more tradi-
tional Boyden chamber assays.We found thatMYCknockdown in
this experimental system led to a ≈50% decrease in invasion (Fig.
S4). These findings demonstrated that in highly metastatic MDA-
MB-231 breast cancer cells, MYC is necessary to specifically
maintain an invasive and migratory state.

Discussion
MYC is one of the most important somatically mutated oncogenes
in human cancer. Recent studies suggest that inherited poly-
morphisms on 8q24 that powerfully modify solid tumor predis-
position also influence MYC transcriptional regulation (30).
Deregulation of the MYC oncoprotein confers a selective advant-
age on cancer cells in differing contexts by promoting proliferation,
cell survival, differentiation blockade, epithelial to mesenchymal
transition, and genetic instability, all of which can contribute to
metastasis (27, 31–33). In fact, a recent report suggested that MYC
functions as an indirect regulator of metastasis in a c-RAF–driven
mouse model of non–small cell lung cancer by modulating growth,
differentiation, and angiogenesis (34). MYC also has been impli-
cated as a potentially important regulator of cancer stem cell growth
and survival (22). Our findings add to these foundational observa-
tions by demonstrating that MYC activity also may be necessary for

cancer cell invasion, migration, and thus ultimately metastasis in
certain contexts. In our experimental system, MYC’s direct effects
on invasion, migration, and metastasis are separate from its effects
on survival, proliferation, and differentiation, presumably because
of compensatory changes that maintain the proliferative drive of
MDA-MB-231 cells after MYC knockdown in vitro and in vivo. To
illustrate this point, MDA-MB-231 cells contain a mutation in
KRAS that has been shown to maintain primary breast tumori-
genesis in the setting of experimentalMYC inactivation (35). In the
natural human tumor setting, however, it seems likely that MYC
coordinately regulates these many different cellular functions,
which in combination are necessary for successful invasion, trans-
location, seeding, and growth at distant sites. Furthermore, whereas
MYCactivity is required for the invasive behavior ofMDA-MB-231
cells, MYC overexpression in itself is not sufficient to induce inva-
sion in noninvasive MCF10A cells, suggesting that other molecular
pathways must cooperate with MYC to fully trigger the invasive
phenotype during cancer progression (18, 36, 37). Further work is
needed to precisely define the mechanisms through which MYC
specifically regulates cancer cell translocation.
These results may partially explain why patients with early-stage

primary tumors that express poor-prognosis transcriptional sig-
natures are more likely to progress to distant metastasis. Previous
work has focused mainly on prognostic signatures as genomic cor-
relates of tumor proliferation, survival, and differentiation (9, 23,
38). Others have noted that four of the prognostic signatures in our
analysis coordinately flag the same high-risk primary tumors (13).
Moreover, independent groups have reported that (i) MYC regu-
lates a few individual poor-outcome signatures in our analysis, (ii) a
MYC-driven gene expression signature has prognostic value in
primary human breast tumors, and (iii) poor-outcome signatures
can be linked to MYC using alternative bioinformatic approaches
(18–22).Consistentwith theseobservations,wedemonstrate that 13
different poor-prognosis cancer signatures, including the 70-gene
MammaPrint and 21-gene Oncotype Dx biomarkers, coordinately
reflectMYCactivity within humanbreast cancer cells, that in turn is

Fig. 3. MDA-MB-231 primary tumorigenesis and metastasis in vivo with stable MYC knockdown. (A) Western blot for MYC protein after stable, lentiviral-mediated
knockdownwith twodifferentMYChairpins (HP1 andHP2) comparedwith pLKOempty vector control after serial passage inMDA-MB-231 cells. (B) Proliferation curves
for empty vector control (pLKO),HP1, andHP2 cells after serial passageover 4days, showingabsorbanceasameasureof cell number (n=3, 95%CI). (C) Tumorgrowthof
control (pLKO)andHP1cell xenografts inNOD/SCIDmice(pLKO,n=9;HP1,n=7;95%CI). (D)Boxplotof thenumberof lungmetastasespermouse incontrolandMYCHP1
knockdown tumor-bearing mice (pLKO, n = 9; MYC HP1, n = 7; P value calculated from the two-sided, two-sample Wilcoxon test). (E) Representative immunohis-
tochemistry for MYC protein expression in primary and metastatic tumor sections from the outlier animal in the MYC HP1 knockdown group. (F) Representative light
microscopy (H&E) and immunohistochemistry (MKI67, TUNEL, vimentin, and e-cadherin) in pLKO control andMYCHP1 knockdown primary tumors. (Scale bars: 20 μm.)
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required for their invasion andmetastasis to distant sites. Increased
MYCactivity within human tumors presumably canbedriven either
by somatic mutation or by alterations in its myriad upstream regu-
latory pathways. This model is consistent with recent work dem-
onstrating that the transition from in situ to invasive breast
carcinoma within individual tumors is often associated with ampli-
fication of theMYC locus, which correlates with shortermetastasis-
free and overall survival and is an independent prognostic factor in
multivariate analysis of clinical outcome (39, 40). Finally, many of
thepoor-outcome signatures inouranalysis haveprognostic value in
other solid tumor types in which MYC deregulation is known to
occur. This raises the possibility that MYCmay in fact be generally
necessary for the invasion, migration, and metastasis of other
human solid tumor types beyond breast cancer.

Materials and Methods
More detailed information is available in SI Methods.

Cross-Platform Gene Mapping. Data sources, in priority order, were the “best”
versions of the Array Comparison Spreadsheets available on the Affymetrix
website, Affymetrix annotation files for the appropriate array (version
na24), UniGene file Hs.data (build 209), Entrez file gene2accession.gz
(downloaded February 3, 2008), and www.rii.com/publications/data/Array-
Nomenclature_contig_accession.xls (downloaded February 2, 2008). See SI
Methods for more details.

Derivation and Statistical Significance of the Core Gene Set. ForeachofFig.1B–
E, the set of genes regulated by the corresponding experiment was determined
as follows. For each probe set from each of the 13 signatures, the pooled-
variance t-statistic was computed so that red samples higher than blue would
yield a positive t-statistic. A one-sided P valuewas then defined as P( t>T) for an
UP probe set and as P( t >−T) for a DOWN probe set, where t is drawn from a t
distributionwithn−2degrees of freedomandn is thenumberof samples in the
experiment. The P values were then adjusted by the method of Benjamini and
Hochberg (41), anda thresholdwaschosento limit the falsediscovery rateto5%.
The probe sets below the threshold were then mapped to Entrez GeneIDs as
described above. The resulting individual four sets of genes (corresponding to
experiments shown inFig. 1B–E)were intersected to form the coregene set. The
statistical significance of this observed intersection was defined to be the
probability of randomly getting an intersection of size equal to or greater than

that of the core gene set. The computation of this probability is described in
SI Methods.

Network Analysis Using the IPA Algorithm and Database. Network analysis
using the IPA algorithm and database was performed as described
previously (17).

Gene Expression Profiles. Gene expression data from the following references
were analyzed: 17β-estradiol treatment of MCF7 cells with and without pre-
treatment with cycloheximide (16), MYC and ZIP overexpression in MCF7 cells
(42), and knockdown of MYC in MCF7 and MDA-MB-231 cells (24). Gene
expression profiles for MCF10A cells were obtained by transducing the cells
with retroviruses encoding vector control (pBabe) or pBabe-ErbB2 (obtained
from Danielle Carroll), using polybrene as described previously (43). After
infection, cells were switched to assay medium supplemented with only 2%
horse serum without EGF. For EGF stimulation, MCF10A cells transduced with
empty vector were treated with 50 ng/mL EGF for 2 h before harvesting. All
cells were harvested for RNA extraction 26 h after infection. Expression
microarrays were Affymetrix U133Plus2.0. Gene expression profiles of LNCaP
cells upon androgen stimulation were obtained bymaintaining LNCaP cells in
phenol red-free RPMI supplementedwith 10% charcoal/dextran–stripped FCS
for 3days before stimulationwith100nMDHT for 48h. Expressionmicroarrays
were Affymetrix U133Plus2.0.

MYC Knockdown in MDA-MB-231 Cells. MDA-MB-231 breast cancer cells were
purchased from American Type Culture Collection and maintained in DMEM–

10%FCSat37 °Cand5%CO2. Cellswere infectedwith lentivirus encodingeither
empty pLKO vector or pLKO containing one of two different hairpins against
MYC (MYC HP1: TRCN0000174055; MYC HP2: TRCN0000010390). After 24 h of
infection, the cellswere selected inpuromycin for48handpassaged for2weeks,
after which target knockdown was assessed by Western blot analysis (Cell Sig-
naling Technology). Films were scanned and knockdown was estimated, nor-
malized to GAPDH using the National Institutes of Health’s ImageJ software.

Cellular Proliferation. Control (pLKO)andMYCknockdown(MYCHP1andHP2)
MDA-MB-231 cells were seeded at 103 cells/well in a 96-well plate in triplicate.
Cell numbers weremeasured using the CellTiter 96AqueousOne Solution Cell
Proliferation Assay (Promega). The experiment was repeated three times.

In Vivo Metastasis Assay. Cells were harvested at 60–70% confluence using
trypsin, and then counted and washed twice in PBS and resuspended in
HBSS/30% Matrigel (BD Biosciences). The cells (1.5 × 106) were injected s.c.

Fig. 4. MDA-MB-231 invasion and migra-
tion in vitro with stable MYC knockdown.
(A) Representative light microscopy images
of control (pLKO) and MYC knockdown
(MYC HP1) MDA-MB-231 breast cancer cells
migrating through Matrigel-filled micro-
capillaries. (B) Position of individual pLKO
and MYC HP1 cells invading through Matri-
gel-filled microcapillaries over 24 h plotted
against time. (C) Bar plot representing the
average invasionspeedthroughMatrigel for
pLKO andMYCHP1 cells, 13.9±1.1 μm/h for
pLKO (n = 33) and 9.1 ± 0.9 μm/h for MYC
HP1(n=31)and10.9±0.7μm/hforMYCHP2
(n=33).P valueswere computedby the two-
sided Walsh t test. (D) Representative light
microscopy images of pLKO and MYC HP1
MDA-MB-231 breast cancer cells migrating
throughcollagen IV–coatedmicrocapillaries.
(E) Positionof individualpLKOandMYCHP1
cells migrating along collagen IV–coated
microcapillaries over 12 h plotted against
time. (F) Bar plot representing the average
migration speed through collagen-coated
microcapillaries for pLKO and MYC HP1
knockdown cells, 82.5 ± 7.5 μm/h for pLKO
(n=17) and70.4±6.4μm/h forMYCHP1 (n=
21). P values were computed by the two-
sidedWalsh t test. Also see Movies S1–S4.
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over the nipple of 4-week-old female NOD/SCID mice (Jackson Laboratory).
Tumors were measured weekly by caliper, and the mice were killed 8 weeks
after tumor injection. Tumors and lungs were collected, fixed, and stained.
H&E slides of formalin-fixed, paraffin-embedded material were used to
assess the morphological integrity and geographical variation in morphology
of tissue samples, as well as count the number of lung metastases. Lung
metastases were defined as tumor cell clusters ≥1 mm in size and morpholog-
ically identical to the primary tumor. Indirect immunoperoxidase analysis was
performed on tumors for Ki67 (M7240, diluted 1:1,000; Dako) and c-Myc (1472-
1, diluted 1:50; Epitomics). The APopTag Apoptosis Kit (Millipore) was used for
indirect TUNEL staining. Each tissue section was evaluated by a board-certified
pathologist (R.F.). Mouse experiments were carried out under a Massachusetts
General Hospital Institutional Review Board–approved protocol.

Invasion and Migration Assays. Microcapillary arrays were fabricated as descri-
bed previously (29). Immediately after bonding, and while the PDMS was still
hydrophilic,deviceswerecoatedwitheitherMatrigelorcollagen IV.Withina few
hours after device fabrication, 2 μl of cell suspension was loaded in the device at

106–107 cells/ml, and individual wells on the plate werefilled with 3ml of media
(DMEM/10% FCS), completely covering the microfluidic devices. The multiwell
plate was mounted on the automated stage of an Zeiss Axiovert microscope
equipped with an environmental chamber set at 37 °C and 5% CO2. Cells were
imagedusinga10×objective andphase contrastwith individual framesacquired
from three different locations of each device every 6 min for 24–72 h.
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