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Drugs that block the activity of the methyltransferase EZH2 are in
clinical development for the treatment of non-Hodgkin lympho-
mas harboring EZH2 gain-of-function mutations that enhance its
polycomb repressive function. We have previously reported that
EZH2 can act as a transcriptional activator in castration-resistant
prostate cancer (CRPC). Now we show that EZH2 inhibitors can
also block the transactivation activity of EZH2 and inhibit the
growth of CRPC cells. Gene expression and epigenomics profiling
of cells treated with EZH2 inhibitors demonstrated that in addition
to derepressing gene expression, these compounds also robustly
down-regulate a set of DNA damage repair (DDR) genes, especially
those involved in the base excision repair (BER) pathway. Methyla-
tion of the pioneer factor FOXA1 by EZH2 contributes to the acti-
vation of these genes, and interaction with the transcriptional
coactivator P300 via the transactivation domain on EZH2 directly
turns on the transcription. In addition, CRISPR-Cas9–mediated
knockout screens in the presence of EZH2 inhibitors identified
these BER genes as the determinants that underlie the growth-
inhibitory effect of EZH2 inhibitors. Interrogation of public data
from diverse types of solid tumors expressing wild-type EZH2
demonstrated that expression of DDR genes is significantly corre-
lated with EZH2 dependency and cellular sensitivity to EZH2 inhibi-
tors. Consistent with these findings, treatment of CRPC cells with
EZH2 inhibitors dramatically enhances their sensitivity to geno-
toxic stress. These studies reveal a previously unappreciated mech-
anism of action of EZH2 inhibitors and provide a mechanistic basis
for potential combination cancer therapies.

EZH2 inhibitors j DNA damage repair j mechanism of drug action j
cancer therapy

The methyltransferase EZH2 has shown encouraging thera-
peutic potential in cancer (1). Originally identified as the

catalytic subunit of the polycomb repressive complex 2 (PRC2),
EZH2 methylates histone H3 at lysine 27 (H3K27) and leads to
gene silencing (2). EZH2 is frequently up-regulated in a broad
spectrum of aggressive solid tumors and its overabundance is
significantly associated with poor prognosis (3). Gain-of-function
mutations at residues Y641, A677, or A687 within the catalytic
domain of EZH2 have been identified in diffuse large B-cell lym-
phoma (DLBCL) and follicular lymphoma (FL) (4, 5). In view of
these oncogenic features of EZH2, several selective inhibitors
that block EZH2 enzymatic activity were developed (6–8). These
compounds specifically inhibit EZH2-mediated methyltransferase
activities by competing with the methyl donor S-adenosylmethio-
nine for the binding pocket inside the catalytic domain. These
prototype drugs abrogate the growth of non-Hodgkin lym-
phoma (NHL) cells that harbor EZH2 driver mutations,

decrease global trimethylation of H3K27 (H3K27me3), and
reactivate genes that are repressed by the PRC2 complex.
However, it remains unclear whether the efficacy of EZH2
inhibitors will be limited to NHL harboring gain-of-function
mutations or will be efficacious as well on other solid tumors
without somatic mutations of EZH2.

Genotoxic stress, such as that induced by radiation or che-
motherapy, predisposes cells to DNA damages and elicits
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We identified a group of DNA repair genes directly induced
by EZH2 and repressed by EZH2 inhibitors. Expression of
these genes predicts the response of wild-type EZH2-harbor-
ing solid tumors to EZH2 inhibitors. Most importantly, our
findings lay the foundation for the development of a combi-
nation therapy that combines EZH2 inhibitors and DNA dam-
aging agents or drugs that block DNA repair for the
treatment of castration-resistant prostate cancer and other
solid tumors.

Author contributions: C.-H.C., E.V.D., N.S., K.P., P.W.K., S.P.B., X.S.L., M.B., and K.X.
designed research; Y.L., C.-H.C., T.X., B.d.l.P.A., S.G., N.S., M.Y., J.H.L., R.S.P., S.S., T.F.,
M.D., J.Z., and K.X. performed research; P.X., Z.L., and J.E.B. contributed new
reagents/analytic tools; Y.L., C.-H.C., T.X., B.d.l.P.A., E.V.D., N.S., Z.Z., A.F., H.X., W.L.,
S.M., H.L., S.P.B., X.S.L., M.B., and K.X. analyzed data; Y.L., C.-H.C., X.S.L., M.B., and
K.X. wrote the paper; R.S.P., S.S., and T.F. provided technical instructions and
assistance; and J.E.B., K.P., P.W.K., H.L., and S.P.B. provided technical instructions and
intellectual advice.

Reviewers: A.S.-L.C., The Chinese University of Hong Kong; C.-L.W., The Jackson
Laboratory; and J.Y., Northwestern University.

Competing interest statement: N.S. receives research grant funding from AstraZeneca.
J.E.B. is an executive and shareholder of Novartis AG and has been a founder and
shareholder of SHAPE (acquired by Medivir), Acetylon (acquired by Celgene), Tensha
(acquired by Roche), Syros, Regency, and C4 Therapeutics. P.W.K. serves on the
scientific advisory board (SAB) of BIND Biosciences, BN Immunotherapeutics, GE
Healthcare, Janssen, New England Research Institutes, OncoCellMDX, Progenity,
Sanofi, and Thermo Fisher. He shares investment interests in Context Therapeutics,
Druggability Technologies Holdings Ltd. (DRGT), Placon, Seer Biosciences, and Tarveda
Therapeutics. He also serves on the Data and Safety Monitoring Board (DSMB) of
Genetch and Merck. X.S.L. is a cofounder, board member, SAB, and consultant of
GV20 Oncotherapy and its subsidiaries. M.B. is a consultant to and receives sponsored
research support from Novartis and is a consultant to MPM Capital and serves on the
SAB of Kronos Bio, H3 Biomedicine, and GV20 Oncotherapy.

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
1Y.L. and C.-H.C. contributed equally to this work.
2To whom correspondence may be addressed. Email: xsliu@ds.dfci.harvard.edu, myles_
brown@dfci.harvard.edu, or xuk3@uthscsa.edu.

This article contains supporting information online at http://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2105898119/-/DCSupplemental.

Published January 14, 2022.

PNAS 2022 Vol. 119 No. 3 e2105898119 https://doi.org/10.1073/pnas.2105898119 j 1 of 12

M
ED

IC
A
L
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ja
nu

ar
y 

24
, 2

02
2 

https://orcid.org/0000-0001-6793-9838
https://orcid.org/0000-0002-8701-2586
https://orcid.org/0000-0002-7304-8801
https://orcid.org/0000-0002-3679-8945
https://orcid.org/0000-0002-5887-1760
https://orcid.org/0000-0002-7488-3999
https://orcid.org/0000-0003-4736-7339
https://orcid.org/0000-0002-8213-1658
https://orcid.org/0000-0002-2850-2083
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xsliu@ds.dfci.harvard.edu
mailto:myles_brown@dfci.harvard.edu
mailto:myles_brown@dfci.harvard.edu
mailto:xuk3@uthscsa.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105898119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105898119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2105898119&domain=pdf&date_stamp=2022-01-19


diverse biological responses, including DNA repair, cell-cycle
arrest, and apoptosis (9). Deregulation of components critical
for an appropriate DNA damage response leads to genome
instability, a hallmark of most cancers. Therefore, drugs that
induce DNA damage or inhibit DNA damage response, such as
cisplatin and PARP inhibitors, are effective anticancer agents
across a wide array of tumor types. Growing evidence suggests
that EZH2 plays a pivotal role in determining how cancer cells
respond to DNA damage. For instance, knockdown of EZH2
predominantly induced apoptosis in both p53-proficient and
-deficient cancer cells. This was dependent on H3K27me3-
mediated epigenetic silencing of FBXO32, which is required for
p21 protein degradation (10). Another report shows that deple-
tion of EZH2 rapidly prompted senescence via activation of
ATM-p53-p21 pathway. Interestingly, no changes in the pattern
or overall levels of H3K27me3 were observed during the pro-
cess (11). These studies present a diverse and complex picture
of EZH2 functions in regulation of DNA damage response.
Additionally, the role of H3K27me3 in these processes is
unclear, raising the question of how exactly EZH2 triggers the
specific biological responses to DNA damage. Conversely, it is
largely unknown whether components involved in the DNA
damage response, in return, influence the oncogenic functions
of EZH2. Unraveling answers to these questions will have a
profound impact on the development of EZH2 inhibitors and
combination cancer therapies.

In this study, we comprehensively evaluated and confirmed
the therapeutic potentials of EZH2 inhibition in solid tumors
that express wild-type EZH2, using prostate cancer cell models.
Specifically, we found a mechanism of action of EZH2 inhibi-
tors in cancers without EZH2 somatic mutations, which
involves down-regulation of a specific set of DNA damage
repair (DDR) genes that are directly activated by the
FOXA1–EZH2–P300 axis. Our results suggest that DNA repair
mechanism might underlie the growth inhibitory effect of
EZH2 inhibitors in cancer cells that express wild-type EZH2.
More importantly, EZH2 inhibitors potentiated the activity of
DNA-damaging agents and synergistically blocked the growth
of advanced prostate cancer cells. Therefore, our work eluci-
dates a mechanism of action of EZH2 inhibitors in solid tumors
and suggests potential combination therapies.

Results
EZH2 Inhibitors Suppress the Proliferation of Androgen
Receptor–Positive Prostate Cancer Cells. To determine the gene(s)
essential for the sustained proliferation of
androgen-dependent and castration-resistant prostate cancer
(CRPC) cells, we conducted a CRISPR-Cas9 knockout screen
in both parental hormone-dependent LNCaP cells and its
hormone-refractory counterpart LNCaP-abl (abl) cells under
their respective proliferating conditions (Fig. 1A). Positive con-
trol genes that are known to be required for cell proliferation
in general were strongly selected, suggesting that the screens
could reliably identify essential genes (SI Appendix, Fig. S1A).
We used MAGeCK (12, 13) to analyze the CRISPR screen data,
which assigns a beta (β) score to each gene to approximate the
log fold change of CRISPR guide DNA abundance. Therefore,
in the cells grown for 4 wk compared with those on day 0, a
more negative β score represents higher dependency of cell
growth on the target gene. We were particularly interested in
genes that are more essential for the androgen-independent
growth of CRPC cells, so we compared the β scores between
LNCaP and abl. Although most genes possessed similar β scores
between these two prostate cancer cell lines, we did find some,
which are well known for their prominent roles in CRPC (14),
showing significantly lower scores in abl than in LNCaP (Fig.
1B). Interestingly, EZH2 was one of the top hits that exhibit

much stronger dependency in abl cells than in LNCaP (SI
Appendix, Fig. S1B), while EZH1, another mammalian homolog
of Drosophila Enhancer of Zeste, was not required for either
cell line. This result is consistent with our previous report that
genetic inhibition of EZH2 better suppresses growth of CRPC
cells than that of androgen-dependent prostate cancer cells (15).

We then assessed the efficacy of EZH2 inhibitors (EZH2i) in
prostate cancer cells. We tested two compounds, GSK126 (GSK)
(6) and EPZ-6438 (EPZ) (7), in a panel of human prostate cell
lines, including two benign prostate epithelial cells, two androgen
receptor (AR)-null prostate cancer cells, and eight AR-positive
cancer cells. Only malignant cells with intact AR signaling, espe-
cially the hormone-refractory lines, were sensitive to both inhibi-
tors (Fig. 1C). Concentrations as low as 500 nM of EZH2i greatly
retarded the growth of castration-resistant abl cells (Fig. 1D), and
relatively higher doses of EZH2i were required to suppress the
androgen-dependent LNCaP cells (Fig. 1E). The inhibitory effect
of EZH2i was minimal in AR-null DU145 (SI Appendix, Fig.
S1C). Cell-cycle analysis showed that EZH2i induced G0–G1
arrest in responsive CRPC cell lines within 3 d of the drug treat-
ment (SI Appendix, Fig. S1D), but not in the unresponsive
DU145 cells (SI Appendix, Fig. S1E). To further evaluate EZH2i’s
effect on CRPC cell growth in vivo, we treated subcutaneous xen-
ografts of the hormone-refractory CWR22Rv1 cells in castrated
mice with either GSK126 (Fig. 1F) or EPZ-6438 (Fig. 1G). Both
compounds significantly retarded tumor growth following three
weeks of treatment. Taken together, we demonstrated that EZH2
is a promising therapeutic target for prostate cancer and that
EZH2 inhibitors may benefit patients with AR-positive, meta-
static, hormone-refractory tumors.

EZH2 Inhibition Induces a Specific Gene Signature in Sensitive CRPC
Cells. To investigate the mechanisms underlying the action of
EZH2i in sensitive prostate cancer cells, we profiled the gene
expression pattern in abl cells upon the treatment with GSK126
or EPZ-6438 (SI Appendix, Fig. S2A). Interestingly, in addition
to transcriptional derepression, we found a large number of
genes significantly down-regulated upon EZH2i treatment.
Genes that were commonly down-regulated by both EZH2i in
abl cells were significantly enriched in various DNA repair
pathways (Fig. 2A). In contrast, there were no significant func-
tional annotations for the up-regulated genes in abl. To rule out
the possible off-target effect of EZH2i on gene regulation, we
carried out two analyses. First, we compared the transcriptional
profiles in abl treated with EZH2i or transfected with EZH2-
targeting RNA interference (15) and observed highly similar
gene expression patterns (Fig. 2B). Second, we carried out gene
expression profiling in EZH2i-insensitive DU145 cells after
genetic and pharmacological inhibition of EZH2 (SI Appendix,
Fig. S2B). Again, genes that were differentially expressed after
EZH2i treatment were also changed by EZH2 knockdown in
the same direction, especially those that are up-regulated upon
EZH2 inhibition. However, the commonly down-regulated
genes in DU145 were not enriched in any functional annota-
tions that were seen for those down-regulated by EZH2 inhibi-
tion in abl (SI Appendix, Fig. S2C). We validated several
EZH2i-down-regulated genes in abl cells and showed that
EZH2i suppressed their expression in a dose- (SI Appendix,
Fig. S2D) and time-dependent manner (SI Appendix, Fig. S2E).
We further examined the expression of these genes in three
other EZH2i-sensitive CRPC cell lines (Fig. 2C). Not only did
GSK126 and EPZ-6438 up-regulate EZH2-repressed genes,
they also down-regulated the expression of EZH2-activated
genes in these cells. We further validated these findings in
CWR22Rv1 xenografts, demonstrating consistent decrease in
messenger RNA (mRNA) (Fig. 2D) and protein (Fig. 2E) lev-
els of EZH2-activated genes by either compound. Taken
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together, we identified a group of DDR genes that are down-
regulated upon inhibition of EZH2.

EZH2i-Resistance Mutations Rescue the Effects of EZH2 Inhibitors on
Gene Expression and Cell Growth in Prostate Cancer Cells. Second-
ary mutations in EZH2, like Y111D and Y661D, were identified
in DLBCL clones that became refractory to EZH2i (16, 17).
These resistance mutants offer a genetic means to evaluate the
targeted action of EZH2i. Thus, we replaced the endogenous
EZH2 in CRPC abl cells with these mutants and then evaluated
the effects of EZH2i on H3K27me3 levels. When either Y111D
or Y661D was expressed, EZH2i-induced reduction of
H3K27me3 level was dramatically alleviated (Fig. 3A). In cell
growth assays, both GSK126 (SI Appendix, Fig. S3A) and EPZ-
6438 (SI Appendix, Fig. S3B) failed to suppress the growth of abl
cells expressing Y111D or Y661D, displaying a much higher IC50

(concentration that exhibits 50% of the maximal inhibitory effect)
value than in the control cells or cells expressing wild-type EZH2
(Fig. 3B). There was no inhibitory effect even after incubation
with the drugs for up to 15 d (Fig. 3C). These results demon-
strated that EZH2 mutations that render EZH2i resistance in
DLBCL also confer similar refractory phenotype in prostate can-
cer cells. Intriguingly, EZH2i-induced derepression of EZH2-
repressed genes was diminished only in the presence of Y111D
but not Y661D (SI Appendix, Fig. S3C). In contrast, the effect of
EZH2i on EZH2-activated DDR genes was remarkably mitigated
by both mutants, which is more consistent with the observation
that both Y111D and Y661D rendered ineffectiveness of EZH2i
in abl cells (Fig. 3D). These findings further support the inhibi-
tory effect of EZH2i on cell growth through specific blockade of
EZH2 functions, particularly its gene activation activity,
in CRPC.
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Fig. 1. EZH2 inhibitors showed potent inhibitory effects in prostate cancer cells, especially the castration-resistant ones. (A) Workflow of CRISPR knockout
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EZH2 Inhibitors Decrease Global H3K27me3 Signals on Chromatin
Regardless of Cellular Response to the Compounds. In view of the
canonical function of EZH2 in catalyzing H3K27me3, we set
out to investigate how the repressive histone mark contributes
to the gene-regulatory effects of EZH2i. Despite differential
sensitivity to EZH2i, all of the tested prostate cell lines demon-
strated reduced total H3K27 di- and trimethylation levels upon
EZH2i treatment in a dose-dependent manner (Fig. 4A). To
accurately evaluate the locus-specific changes of H3K27me3 on
chromatin, we adopted the ChIP-Rx method, which uses a
“SPIKE-IN” strategy to quantify genome-wide histone modifi-
cation relative to a reference epigenome with defined quantities
(18). In short, we added equal amounts of Drosophila chroma-
tin into different groups of chromatin immunoprecipitation
(ChIP) samples and then constructed H3K27m3 ChIP-
sequencing (ChIP-seq) libraries using the mixture of chromatin.
Canonical normalization methods such as using the total
sequencing reads showed moderate H3K27me3 changes after
cells were treated with EZH2i (SI Appendix, Fig. S4 A and B),
while normalization to the SPIKE-IN epigenome by correcting
the sequencing reads from human samples based on the ratios
of read counts from Drosophila chromatin in treatment group
to those in control group showed remarkable H3K27me3
reductions (Fig. 4B). In EZH2i-insensitive DU145 cells, we

noticed a similar decrease of global H3K27me3 signals on chro-
matin induced by EZH2i as in the EZH2i-sensitive abl cells
(Fig. 4C). Actually, the H3K27me3 signals at gene-specific
chromatin loci were more sensitive to EZH2i treatment in
DU145 than in abl, as H3K27me3 levels at promoters of
selected genes were decreased after 5 d of EZH2i treatment in
abl (Fig. 4D) but as early as 2 d in DU145 (SI Appendix, Fig.
S4C). All these results imply that H3K27me3 reduction alone
does not confer cellular sensitivity to EZH2i.

To find any functional significance of EZH2i-triggered
H3K27me3 alterations in abl cells, we associated changes of the
repressive histone mark with differential gene expression upon
compound treatment (Fig. 4E). Although the basal level of
H3K27me3 was noticeably higher at the promoter regions of
EZH2i-up-regulated genes, there were no differences regarding
the extent of H3K27me3 decrease among EZH2-repressed,
-activated, or -unregulated genes. This result suggests that
while steady H3K27me3 level is associated with transcription
silencing, signal changes of this histone mark do not always
associate with immediate transcriptional changes of nearby
genes. Taken together, our results suggest that H3K27 methyla-
tion, a readout of the polycomb repressive function of EZH2,
may not be the determining factor of transcriptional changes or
cellular responses to EZH2i.
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Methylation of FOXA1 and EZH2 TAD-P300 Interaction Both Contrib-
ute to EZH2-Mediated Direct Transactivation of the DDR Genes. To
investigate how EZH2 transcriptionally activates DDR genes in
CRPC cells regardless of the H3K27me3 status at their pro-
moters, we first knocked down SUZ12 and EED and found
that some of the tested DDR genes were down-regulated in abl
cells (SI Appendix, Fig. S5A) but none of them were changed in
DU145 (SI Appendix, Fig. S5B), even though EZH2-repressed
genes were all up-regulated in the knockdown cells. These
results indicate that EZH2-mediated transactivation of the
DDR genes needs optimal methyltransferase activity of EZH2.
Recently, FOXA1 was reported to be methylated by EZH2 at
K295, which stabilizes the pioneer factor and activates cell-
cycle genes (19). Therefore, we replaced the endogenous
FOXA1 in abl cells with the wild-type protein or the K295R
mutant that can no longer be methylated by EZH2 (Fig. 5A).
Only overexpression of the intact FOXA1, but not the mutant

one, restored FOXA1 knockdown-induced down-regulation of
the selected DDR genes. Transcription of these genes was all
silenced upon GSK126 treatment, regardless of FOXA1 muta-
tion status (Fig. 5B). This indicates that EZH2-catalyzed meth-
ylation of the nonhistone substrate FOXA1 is involved in
down-regulation of the DDR genes by EZH2i.

We previously reported that phosphorylation of EZH2 at
S21 serves as a functional switch of EZH2 from a polycomb
repressor to a transcriptional coactivator for AR in CRPC cells
(15). In an independent study (20), a transactivation domain
(TAD) was identified on EZH2 protein, which helps release
EZH2 from the PRC2 complex and interact with P300. There-
fore, we first silenced EP300 in abl cells and found that expres-
sion of the DDR genes was dramatically decreased to the levels
seen in the EZH2i-treated cells (SI Appendix, Fig. S5C). Sec-
ond, we substituted the endogenous EZH2 in abl cells with the
intact protein or a TAD-defective mutant that loses the ability
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to recruit P300 (Fig. 5C). The levels of AR protein were
reduced upon EZH2 knockdown, which is consistent with pre-
vious findings that EZH2 induces AR transcription (21). We
found, however, that this does not require the previously
reported TAD of EZH2, as the TAD mutant EZH2 is also able
to rescue the effect of EZH2 knockdown on AR expression to
levels equivalent to wild-type EZH2. This further confirms the
positive regulation of AR activity by EZH2 in CRPC cells.
Wild-type EZH2, but not the mutant form, rescued the inhibi-
tory effect of EZH2 knockdown on DDR gene expression,
which was all diminished upon EZH2i treatment (Fig. 5D).

Based on these data, we speculated that EZH2-catalyzed
methylation of the pioneer factor FOXA1 enables the chroma-
tin environment to facilitate gene activation and the EZH2
TAD–P300 interaction, which occurs upon EZH2 phosphoryla-
tion at S21 in CRPC cells, turns on the transactivation activity
of EZH2 and works together with AR to activate the DDR
genes. Indeed, EZH2i-induced down-regulation of DDR genes
was the most prominent in abl, much milder in LNCaP, and not
observed in DU145 (SI Appendix, Fig. S5D), since both FOXA1
methylation and EZH2 phosphorylation happen only in abl,
but not in LNCaP where EZH2 is not phosphorylated or in
DU145, a FOXA1- and AR-negative prostate cancer cell line
(22). Furthermore, substitution of the phosphorylation dead
mutant S21A or the methyltransferase inactive mutant (15) for
the endogenous EZH2 in abl cells failed to reverse the inhibi-
tory effect of EZH2 knockdown on DDR gene expression (SI
Appendix, Fig. S5E). These results further support that the
enzymatic activity of EZH2, which is responsible for methylat-
ing FOXA1, and EZH2 phosphorylation at S21, which dictates

the functional switch, contribute to the activation of the DDR
genes.

We further showed that EZH2 peaks with low H3K27me3
signals were significantly enriched, whereas those colocalized
with H3K27me3 mark were almost devoid, around these DDR
genes (Fig. 5E). This is in agreement with a previous report
that the EZH2 TAD–P300 interaction liberates the methyl-
transferase from the PRC2 complex and attenuates its activity
toward H3K27 (20). In addition, based on the publicly available
ChIP-seq data (23), we found that AR peak intensities at the
enhancers of these DDR genes were higher in CRPC cell lines
than in the androgen-dependent cell line LNCaP (SI Appendix,
Fig. S6 A and B). Signals of AR peaks were positively corre-
lated with EZH2 and H3K27ac peaks but not with H3K27me3
peaks (Fig. 5F). They showed a linear correlation with
chromatin-binding intensities of EZH2 around DDR genes,
and H3K27ac signals tended to increase at stronger EZH2-AR
colocalization sites (Fig. 5G). Such correlations were modest in
LNCaP cells (SI Appendix, Fig. S6 C and D). Finally, we
detected similar levels of total EZH2 and FOXA1 in LNCaP
and abl cells at enhancers of selected DDR genes, but notice-
ably more phosphorylated EZH2 and P300 in abl (Fig. 5H).
Consistently, H3K27ac, which is catalyzed by P300 (24), was
enriched at these enhancer regions in abl cells. More impor-
tantly, treatment with EZH2i dramatically impaired the chro-
matin association of all these factors. Taking all these data
together, we concluded that activation of the DDR genes we
identified are directly elicited through chromatin association of
an EZH2-centered transcriptional network, including FOXA1,
P300 and AR, in CRPC cells.
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A Core Gene Signature in Regulation of DNA Repair Is Essential for
the Growth-Inhibitory Effects of EZH2 Inhibitors in Prostate Cancer.
To identify the determinants underlying the inhibitory effects of
EZH2i, we conducted CRISPR-Cas9 knockout screens in abl
and LNCaP cells with or without GSK126 treatment (Fig. 6A).
Again, MAGeCK assigned similar beta scores on most genes
between treatment and control conditions in these two cell lines
(SI Appendix, Fig. S7A). We postulated that knockout of genes
crucial for the growth-inhibitory effect of EZH2i would render
clones resistant to the compounds, so we defined a delta beta
score (Δβ) as the difference in β scores between treatment
(GSK126) and control (dimethyl sulfoxide, DMSO) groups.
Genes with positive Δβ are required for EZH2i activity. This
analysis identified a specific group of genes with positive Δβ
score in abl cells, predominantly functioning in base excision
repair (Fig. 6B). Similar analyses also identified some genes
with positive Δβ values in LNCaP (SI Appendix, Fig. S7B).
However, they were enriched in totally different functional
annotations (SI Appendix, Fig. S7C). Indeed, there were com-
parable numbers of base excision repair (BER) genes with posi-
tive and negative Δβ scores in LNCaP, but obviously more with
positive Δβ values in abl (Fig. 6C). Thus, CRISPR screens sug-
gest that genes involved in BER pathway, which are also
directly targeted by EZH2i, are indispensable for the biological
effects of EZH2i in CRPC cells.

To further validate the clinical significance, we examined the
expression of these DDR genes in two independent prostate
cancer cohorts (25, 26) and found them to be significantly ele-
vated in metastatic CRPC compared to primary prostate

tumors (Fig. 6D and SI Appendix, Fig. S7D) and positively cor-
related with the expression of EZH2 (Fig. 6E and SI Appendix,
Fig. S7E). We also associated expression of EP300, FOXA1,
and AR with EZH2 dependency or sensitivity to EZH2 inhibi-
tor in all types of cancer cells expressing wild-type EZH2, using
the genome-wide CRISPR-Cas9 knockout screen data (27) and
the Cancer Therapeutics Response Portal (CTRP) compound
screening data (28), respectively (Fig. 6F). Strikingly, as a gen-
eral transcriptional coactivator, EP300 was highly associated
with EZH2 essentiality and cellular responses to EZH2i in can-
cer cells, even stronger than EZH2 and SUZ12. Taken together,
our findings revealed a close connection between the tumor-
suppressive activity of EZH2i and DNA repair machinery,
which suggests an indication for these compounds as anticancer
drugs.

EZH2 Inhibitors Induce the Formation and Accumulation of
Persistent and Unrepaired DNA Damage. As the genes involved in
the BER pathway were most significantly repressed by EZH2
inhibitors, we determined the levels of apurinic/apyrimidinic
(AP) sites in abl cells upon the treatment with GSK126 (Fig.
7A). AP sites leading to the formation of DNA single-strand
breaks (SSBs) (29) are generated spontaneously or during the
early stage of BER (30). If left unrepaired, these SSBs lead to
increased levels of double-strand breaks (DSBs) and genotoxic
stress (31, 32). Consistently, we detected an over threefold
increase in the number of AP sites per 105 nucleotides in abl
cells following 1 or 3 d of GSK126 treatment, which returned to
baseline by day 6 of treatment. Phosphorylation of γH2AX,
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which plays a key role in the assembly of DDR proteins at the
sites of DSBs (33), increased with prolonged EZH2i treatment
concurrent with a decrease in H3K27me3 levels (Fig. 7B). Con-
sistent with this observation, immunofluorescence staining of
phosphorylated γH2AX revealed the formation of discrete
γH2AX foci, an indicator of sites of DSBs (34), inside the nuclei
of abl cells 3 d after GSK126 treatment (Fig. 7C). The staining
increased with prolonged EZH2i treatment and finally mani-
fested in a uniform, widespread pattern over the entire nucleus.
Homogeneous, pan-nuclear staining pattern of γH2AX suggests
the presence of widespread DSBs and the onset of a preapop-
totic signaling (35). Quantification of the numbers of γH2AX
foci per cell continuously increased in the presence of GSK126
(SI Appendix, Fig. S8A), and the pan-nuclear γH2AX staining
was more prevalent following 9 to 12 d of incubation with the
inhibitor (Fig. 7D). Interestingly, the emergence of pan-nuclear
γH2AX staining coincided with the disappearance of the accu-
mulated AP sites (Fig. 7E), implying a conversion from the
spontaneous SSBs to DSBs. Taken together, our results suggest
that treatment with EZH2 inhibitors in CRPC cells induces a
persistent accumulation of DNA damage, by first leading to
increased AP sites and SSBs followed by their conversion to
DSBs and genotoxic cell death.

EZH2 Inhibitors Enhance Responses of Prostate Cancer Cells to
DNA-Damaging Agents. Our data above provide a rationale for
applying EZH2i to sensitize CRPC cells to DNA damage. To
validate this, we exposed abl, LNCaP, and DU145 cells to
increasing doses of ionizing radiation (IR). While abl cells
became much more sensitive to IR after GSK126 treatment
(Fig. 8A), this difference was very minor in LNCaP (Fig. 8B)
and did not exist in DU145 (Fig. 8C). In addition, we observed
drastically delayed DNA repair in abl pretreated with GSK126

(SI Appendix, Fig. S8B), but not in LNCaP (SI Appendix, Fig.
S8C) or DU145 (SI Appendix, Fig. S8D). It is worth noting that
without EZH2i pretreatment, IR-induced DNA damage was
fixed in a much faster rate in abl than in LNCaP and DU145, as
unrepaired DNA breaks were significantly less in abl after cell
recovery from the treatment with 5 Gy of IR (SI Appendix, Fig.
S8E). This suggests that abl may represent a radioresistant sce-
nario and EZH2i may overcome radiotherapy resistance in
advanced prostate cancer.

PARP-1 is an ADP ribosylating enzyme that helps recruit a
variety of DNA repair proteins at the sites of DNA damage
(36). It has been reported that deficiencies of any components
in BER pathway resulted in hypersensitivity of cancer cells to
PARP inhibitors (37). We therefore assessed the biological
effect of combining EZH2i with the PARP-1 inhibitor olaparib
on the proliferation of LNCaP or abl cells. Combined treatment
of EZH2i and olaparib greatly suppressed abl cell growth com-
pared to each drug alone (Fig. 8D) and showed strong synergis-
tic effect (Fig. 8E, Right). However, this synergy of EZH2i and
olaparib was much milder in LNCaP (Fig. 8E, Left). Taken
together, our work has uncovered a therapeutic strategy for
hormone-independent prostate cancer which exploits the sup-
pressive effects of EZH2i on DDR genes to sensitize cancer
cells to DNA damaging agents.

Expression of DDR Genes Predicts Sensitivity of Cancer Cells
Expressing Wild-Type EZH2 to EZH2 Inhibitors. We next sought to
examine whether what we observed in prostate cancer cells can
be generalized to other solid tumor cancer types with high level
of wild-type EZH2 expression. We excluded DLBCL cells,
acute myeloid leukemia cells, and multiple myeloma cells, as
these types of hematopoietic cell lines often contain gain- or
loss-of-function mutations of EZH2 (5, 38–40). Mutant EZH2
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in these scenarios has been reported to exert its oncogenic
function in a classical H3K27me3-dependent mechanism (5,
41). In addition, mutations in subunits of the SWI/SNF chro-
matin remodeling complex have been reported to delineate the
efficacy of EZH2 inhibitors in certain cancer cells (42–44).
Even though prostate cancer cells with mutant SWI/SNF
seemed to be more responsive to EZH2 inhibitor, they were
equally as dependent on EZH2 for proliferation as those with
the wild-type complex (SI Appendix, Fig. S9A). In all solid
tumors expressing wild-type EZH2 (SI Appendix, Fig. S9B),
there were no differences between cancer cells with and with-
out SWI/SNF mutations regarding EZH2 essentiality or sensi-
tivity to EZH2i. Taken together, we excluded solid tumor cell
lines with genetic alterations on EZH2 only.

We examined solid tumor cell lines in the Cancer Cell Line
Encyclopedia (CCLE) dataset (45) (Fig. 9A) and clinical
tumors from The Cancer Genome Atlas (TCGA) dataset (46)
(Fig. 9 B and C) and observed a strong expression correlation
between wild-type EZH2 and the DDR genes. These results
suggest that EZH2-mediated control of DNA repair machinery
may represent a common mechanism of EZH2 oncogenic func-
tion in solid tumors without EZH2 mutations. To examine
whether expression of these DDR genes can dictate EZH2i
sensitivities, we analyzed the sensitivities to EZH2i in 531 wild-
type EZH2-expressing cancer cells lines in the CTRP com-
pound screening data (28). Across different cancer types, we
found that cellular sensitivity to EZH2 inhibitor was signifi-
cantly and positively correlated with expression of DDR genes
(Fig. 9C). In comparison with the bottom one-third of cell lines
with the lowest levels of DDR genes, the top one-third that
express the highest levels of these genes were much more sensi-
tive to EZH2i treatment (SI Appendix, Fig. S9D). Furthermore,
we confirmed that expression of DDR genes dictated EZH2
dependency across 489 cell lines with wild-type EZH2 in the
CRISPR-Cas9 knockout screen data (27) (Fig. 9D). In contrast,
for genes that were repressed by EZH2, although having nega-
tive expression correlation with EZH2 (SI Appendix, Fig. S9E)
their levels were not associated with sensitivity to EZH2i (SI
Appendix, Fig. S9F), even across different types of cancer cells
(SI Appendix, Fig. S9G). Taken together, our analyses suggest
that the mechanism of inhibitory action of EZH2 inhibitors
may be different in solid tumors expressing the wild-type EZH2
from that in hematopoietic malignancies with EZH2 somatic
mutations. The group of DDR genes that are directly activated
by EZH2 can reliably predict efficacy of EZH2 inhibitors in
wild-type EZH2-expressing solid tumors.

Discussion
The methyltransferase EZH2 has been a focus of cancer drug
development for several years. Inhibitors of EZH2 have been
tested in patients with NHL harboring the gain-of-function
mutations of EZH2 (47). However, whether EZH2 inhibitors
will have activity in solid tumors expressing high levels of wild-
type EZH2 remains an open question. Our study in prostate
cancer cells revealed that genetic and pharmacological inhibi-
tion of EZH2 directly down-regulates a set of DDR genes. A
gene signature based on these EZH2-activated genes underlies
the growth-suppressive effects of EZH2 inhibitors in CRPC
cells and predicts responses to EZH2 inhibitors across other
cancer types with wild-type EZH2. Our findings highlight the
important role that the gene activation activity of EZH2 plays
in mediating its oncogenic function. More importantly, this
unclassical activity of EZH2 defines a potential mechanism of
action of EZH2 inhibitors (EZH2i) and lays the mechanistic
foundation for the potential clinical applications of EZH2i to
sensitize cancer cells to DNA damaging agents.

In this study, we posited a working model of EZH2-
mediated gene activation. Our data demonstrated that EZH2-
catalyzed methylation of FOXA1 helps facilitate downstream
transcriptional activation events. In CRPC cells, exposure of
the TAD on EZH2 protein upon its phosphorylation at S21
releases EZH2 from the PRC2 complex and recruits the tran-
scriptional coactivator P300 to the cis-regulatory elements of
target DDR genes. Thus, the active histone mark H3K27ac is
enriched, whereas the repressive histone mark H3K27me3 is
depleted, at these chromatin regions. With the assistance of
this FOXA1-EZH2-P300 axis, AR is able to drive the transcrip-
tion of the DDR genes. EZH2 inhibitor treatment dramatically
hinders chromatin association of all these factors. This model
implies a direction in developing a new class of EZH2
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Fig. 7. EZH2 inhibitor induced unrepaired single-strand DNA damage
that ultimately triggered DSBs. (A) Change of the abasic (AP) sites (relative
to day 0) in abl cells treated with 5 μM GSK126. (B) Western blot in the
nuclear extracts from abl cells treated with 5 μM GSK126. (C and D) Repre-
sentative images (C) and quantification (D) of γH2AX foci in abl cells
treated with 5 μM GSK126. Immunofluorescence staining was performed
using anti-γH2AX antibody (red) and DNA was stained with DAPI (blue). In
C, the yellow arrowhead points to a cell with pan-nuclear γH2AX staining.
In D, data are presented as the average percentages of cells with a solid
γH2AX nuclei staining in at least 150 random microscopic views. (Scale bar
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inhibitors that directly target its gene activation activity, which
may be more potent in cancer like CRPC.

CRISPR-based knockout screens revealed that DDR genes,
particularly those in the BER, are required for the optimal
growth-inhibitory effects of EZH2i in CRPC cells. The expres-
sion of these genes was acutely and robustly down-regulated
upon EZH2i treatment, and their levels are highly correlated
with cellular sensitivities to EZH2i. These findings suggest a dif-
ferent mechanism of action of EZH2 inhibitors in solid tumors
with wild-type EZH2 from their action in NHL with gain-of-
function mutations of EZH2. In lymphomas, such as DLBCL
and FL, tumors with activating somatic mutations of EZH2 are
generally more susceptible to EZH2i, which induces a robust
transcriptional derepression (48), and presence of these genetic
alterations is predictive of EZH2i efficacy. Therefore, we sug-
gest that the EZH2-activated gene signature defined in our
study may be useful as a predictive biomarker for response to
EZH2i in solid tumors lacking gain-of-function mutations.

Another important implication of our findings is the poten-
tial of a combination therapy strategy leveraging the interaction
between EZH2 and the DNA repair machinery. Spontaneous
DNA SSBs at AP sites rapidly increased following EZH2 inhib-
itor treatment of CRPC cells. As BER pathway genes, responsi-
ble for repairing AP sites (49), were down-regulated by EZH2
inhibitors, the accumulated SSBs can no longer be removed
and are converted to the DSBs. Consequently, treatment with
EZH2 inhibitors significantly boost the growth-inhibitory
effects of DNA-damaging agents such as IR and PARP inhibi-
tors such as olaparib. These suggest combination of EZH2i
with genotoxic agents may be a tenable approach in anticancer
therapy. Interestingly, the LNCaP-abl CRPC cell line in which

we demonstrated the synergistic effects of EZH2 inhibitors and
DNA-damaging agents carries a heterozygous deletion of
BRCA2 exon 12 (50) and is intrinsically refractory to genotoxic
insults. Our data in CRPC cell models and our analysis across
hundreds of cancer cell lines suggest that EZH2i may overcome
resistance to DNA-damaging agents in advanced cancer and
improve the efficacy of olaparib in BRCA-deficient and -profi-
cient tumors. Overall, these findings support the development
of combination therapies that include DNA damaging agents
and EZH2 inhibitors across a range of cancer types.

In summary, our study elucidated a mechanism of EZH2
inhibitor action in cancer. We identified a core gene signature
involving DNA repair as a pharmacological readout of EZH2
inhibitor function. These DDR genes are directly targeted by
EZH2i and underlie the antitumor effects of these compounds.
Finally, our data suggest that EZH2 inhibition might be an
attractive approach to sensitize cancers that overexpress EZH2-
activated DDR genes to genotoxic agents.

Materials and Methods
Cell proliferation in the presence of EZH2 inhibitors was measured either
using ATPlite Luminescence Assay (PerkinElmer) or by direct counting. RNA-
seq libraries were constructed as described previously (15) and ChIP-Rx was
performed according to a published protocol (18). CRISPR-Cas9 knockout
screens were designed based on the reported literature (51–55) and analyzed
following MAGeCK protocol (12). All the animal experiments were approved
by the Beth Israel Deaconess Institutional Animal Care and Use Committee.
Mice were treated with EZH2 inhibitors for 3 wk. All the genome-wide data-
sets generated in this study were deposited at the Gene Expression Omnibus
database (https://www.ncbi.nlm.nih.gov/geo/) with accession number
GSE80240. A detailed description of the materials and methods can be found
in SI Appendix.
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Data Availability. Next-generation sequencing data have been deposited in
the Gene Expression Omnibus database (accession no. GSE80240).
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Fig. 9. Levels of DDR genes predict cellular responses to EZH2 inhibitors in multiple types of solid tumors that contain no mutations of EZH2. (A and B)
Correlation between EZH2 expression and the mean expression of DDR genes in cancer cells from CCLE data (45) (A) or in patient samples from TCGA (46)
(B). Each dot represents one cell line (A) or one cancer type (B). (C and D) Association between the mean expression of DDR genes and sensitivity to EZH2
inhibitor (C) or EZH2 dependency (D) in the indicated types of solid tumor cells expressing wild-type EZH2. Sensitivity to EZH2 inhibitor (BRD) and EZH2
dependency were derived from CTRP compound screen data (28) and DepMap CRISPR-Cas9 knockout screening data (27), respectively.
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