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Transcriptome profiling studies suggest that a large fraction of the
genome is transcribed and many transcripts function independent
of their protein coding potential. The relevance of noncoding RNAs
(ncRNAs) in normal physiological processes and in tumorigenesis is
increasingly recognized. Here, we describe consistent and signifi-
cant differences in the distribution of sense and antisense tran-
scripts between normal and neoplastic breast tissues. Many of the
differentially expressed antisense transcripts likely represent long
ncRNAs. A subset of genes that mainly generate antisense tran-
scripts in normal but not cancer cells is involved in essential
metabolic processes. These findings suggest fundamental differ-
ences in global RNA regulation between normal and cancer cells
that might play a role in tumorigenesis.

Genome-wide unbiased assessment of RNA levels has been
a useful tool to delineate physiological and pathological

processes (1). Based on recent studies, a large fraction of the
genome is transcribed, generating a vast array of RNA species of
different lengths, protein coding potential, and regulatory func-
tion (2). Our understanding of the physiological function of
noncoding RNAs (ncRNAs) is just beginning to emerge. Among
all ncRNAs, micro-RNAs have been analyzed most extensively
and their importance in tumorigenesis is well documented (3).
Other classes of ncRNAs, including cis-natural antisense tran-
scripts (cis-NATs), are poorly characterized. Initially, many of
these ncRNAs were thought to be transcriptional noise, but the
regulation of their expression in a cell type- and developmental
stage-specific manner and their evolutionary conservation sug-
gest physiological functions (4, 5). Indeed, several recent studies
described a large set of ncRNAs associated with chromatin-
modifying complexes, which modulate gene expression by regu-
lating the localization of these complexes (6–8).
The role of ncRNAs in tumorigenesis has not been inves-

tigated comprehensively. Large-scale transcriptome analysis in
head and neck cancer identified over 2,000 ncRNAs (9) that
were down-regulated in clear-cell carcinoma (10). In prostate
cancer, a subset of ncRNAs correlates with the degree of cellular
differentiation (9). A recent report described altered expression
of ncRNAs transcribed from ultraconserved genomic regions
in multiple human cancer types (11). A family of mitochondrial
ncRNAs is also differentially expressed between normal and
cancer cells, but their biological function is unknown (12). The
expression ofHOTAIR, a large intervening ncRNA regulating the
expression of the HOXD locus, is increased in primary breast
tumors and correlates with the risk for distant metastasis (8).
Here, we describe significant and consistent differences in the

distribution of sense and antisense transcripts between normal
and neoplastic breast epithelial cells based on serial analysis of
gene expression combined with high-throughput sequencing
(SAGE-Seq) and identify cell type- and tissue-specific antisense
transcripts. We also demonstrate by RT-PCR that several of these
correspond to long ncRNAs (lncRNAs). Our results suggest that

abnormalities in the regulation of antisense transcripts may play
a role in breast tumorigenesis.

Results and Discussion
Analysis of SAGE-Seq Data. We analyzed the transcriptomes of
mammary epithelial cells purified from normal and neoplastic
breast tissues (13, 14) using SAGE-Seq (15, 16). During the
course of this analysis, we noticed substantial numbers of anti-
sense tags that we investigated in further detail. We used cells
purified utilizing different cell surface markers (e.g., CD24,
CD44) (13, 14) (Table S1); however, because all normal cells and
all cancer cells displayed the same phenotype with respect to
antisense expression, the actual identify of the cells is irrelevant
to the observations made in this study.
SAGE-Seq libraries were generated from 21 samples, and

a total of 90,803,826 tags were sequenced. Tag counts were nor-
malized to 5 million per sample sequencing depth based on
maximum likelihood estimation of tag frequency. Tags were first
mapped to sense strands, followed by mapping the no matches to
antisense strands of exonic and intronic regions of Reference
Sequence (RefSeq) genes (Dataset S1). Very low abundance
genes with <5 tags in all samples combined were excluded to
minimize potential noise. For global analysis, all unique sense and
antisense tags were summed for each gene (Fig. S1A). The total
filtered sense and antisense tag counts were not significantly dif-
ferent among samples (Fig. S1B and Dataset S1). The overall
percentage of antisense tags was 14.3%, which is in good agree-
ment with asymmetrical strand-specific analysis of gene expres-
sion (ASSAGE) data (17).

Differences in Antisense and Sense Transcriptomes Between Normal
and Cancer Samples. To assess the potential cell or tissue type
specificity of strand-specific transcript distribution, we calculated
the percentage of antisense tags for each gene. Many genes
showed a high percentage of antisense tags (e.g., 1,931 genes
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showed >50% antisense tags in normal samples), indicating sub-
stantial antisense transcription in RefSeq genes (Fig. 1A). In-
terestingly, the number of genes showing a high percentage of
antisense tags was much lower in tumors than in normal samples;
this difference was consistently observed in each sample in both
groups (Fig. 1B), and the percentage of antisense tags per gene
showed a much broader distribution in the normal group than in
the cancer group. The mean of the normal group was significantly
larger than that of the cancer group (P = 6.804e-06, Wilcoxon
rank-sum test). The distribution of the total number of sense tags
per gene was significantly broader and larger in cancer (P =
6.804e-06, Wilcoxon rank-sum test), whereas the distribution of
the number of antisense tags per gene was not different among
samples (log mean value P = 0.4221, Wilcoxon rank-sum test)
(Fig. S1C). Therefore, the overall difference in percentage of
antisense tags might be attributable, in part, to increased sense
transcript levels in tumors, because the sense-to-antisense tran-
script ratios were much higher in tumors compared with normal
samples (Fig. 1C). A subset of genes clearly showed a high pro-
portion of antisense transcripts only in normal samples, however,
implicating potential functional relevance; thus, we analyzed
these genes in further detail.
We categorized genes based on the percentage of antisense

and sense transcripts derived from them into three groups: an-
tisense (AS) genes (percentage of antisense >80%), sense (S)
genes (percentage of antisense <20%), and sense-antisense

(SAS) genes (between S and AS genes). Using this classification,
the numbers of AS and SAS genes were significantly lower (P =
6.804e-06 and P = 0.00066, respectively, Wilcoxon rank-sum
test) in cancer and the opposite was true for S genes (P= 6.804e-
06, Wilcoxon rank-sum test) (Fig. 1D, Fig. S1D, and Dataset S1).
The significant and consistent differences in the number of AS
genes between normal and cancer samples and the presumed
regulatory function of AS transcripts prompted us to analyze
these AS genes in further detail.
AS genes demonstrated significant overlap among the same

cell type both in normal and cancer samples (Fig. 1E). Inter-
estingly, most of the 252 AS genes commonly detected in normal
CD24.P samples (Dataset S2) were consistently converted to S
genes in tumors (Fig. 1 F and G and Fig. S1 E and F), which is
likely to reflect decreased antisense transcription in cancer be-
cause it cannot be explained simply by increased sense tran-
scription. Similar observations were made for the 323 AS genes
commonly detected in CD44.P samples (Fig. S2 A–D and Dataset
S2) and for the 1,975 normal-specific AS genes (Fig. S2 E and F).
These data suggested that AS genes observed here were not
random and were unlikely to reflect transcriptional noise because
their expression is regulated in a cell and tissue type-specific
manner likely reflecting biological function. Correlating with this,
normal-specific CD24.P and CD44.P common AS genes showed
significant enrichment for genes involved in basic metabolic pro-
cesses, such as nucleotide, RNA, and protein synthesis and pro-

Fig. 1. Comparison of antisense transcriptomes of normal and neoplastic breast epithelial cells. (A) Percentage of antisense tags relative to all tags in each
gene is plotted using average tag counts in all normal (blue) and cancer (red) samples. Orange lines mark 80% and 20% values, which were used as criteria for
gene classification into AS, S, and SAS groups. (B) Box plot depicting the percentage of antisense/gene ratio in each normal (blue) and cancer (red) sample. The
box indicates the 25th and 75th percentiles; the white bar indicates the median; the whiskers extend to the most extreme data point, which is no more than
1.5 times the interquartile range from the box; and outliers are plotted as small dots. IDC, invasive ductal carcinoma. CD24, CD44, EPCR, and SSEA4 indicate
the cell surface markers used for the isolation of epithelial cells (Table S1). (C) Ratio of sense to antisense tag counts in each gene is plotted using average tag
counts in all normal (x-axis) and cancer (y-axis) samples. Orange lines mark 4.0 and 0.25 values corresponding to 20% and 80% values of percentage of
antisense per gene, respectively. (D) Numbers of AS genes in each sample are shown. Breast cancer cells express a significantly (P = 6.804e-06; Wilcoxon rank-
sum test) lower number of AS genes compared with normal samples. (E) Venn diagrams depicting the number of AS genes common among CD24+ samples.
Significant overlap is observed among samples derived from the same tissue and cell type. Ratios of observed/expected overlaps are 139 and 321 for the CD24.
P and CD24.IDC groups, respectively. (F) Scatterplot depicting percentage of antisense tags per gene relative to total tag counts in 252 AS genes common in
CD24P cells in normal (blue) and cancer (red) samples. (G) Hierarchical clustering analysis of all samples is based on 252 AS genes common among CD24.P cells.
The color scale indicates the percentage of antisense tag counts in each gene.

Maruyama et al. PNAS | February 21, 2012 | vol. 109 | no. 8 | 2821

M
ED

IC
A
L
SC

IE
N
CE

S
SP

EC
IA
L
FE
A
TU

RE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/pnas.201010559SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/pnas.201010559SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/sd01.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/sd02.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/pnas.201010559SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/pnas.201010559SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/sd02.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/sd02.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/pnas.201010559SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/pnas.201010559SI.pdf?targetid=nameddest=ST1


cessing using gene ontology (GO) term enrichment analysis
(Figs. S1F and S2G and Dataset S3).

Potential Mechanisms Underlying Altered Antisense-to-Sense Levels
in Tumors. To investigate the relationship between sense and an-
tisense transcript abundance within individual genes, we plotted
antisense vs. sense tag counts for each gene. Based on this anal-
ysis, sense and antisense tag counts correlated very well in cancer
samples; however, this correlation was less pronounced in normal
cells (Fig. 2 A–C and Fig. S2H). One possible explanation for this
observation is that higher numbers of antisense (AS) genes are
detected in normal samples and many of these are converted to
sense (S) genes in tumors.
To analyze associations between antisense and sense transcript

levels in genes differentially expressed between normal and
cancer samples, we identified 7,308 genes that showed significant
differences in sense transcripts between normal and cancer
groups at a 1% false discovery rate (FDR) (Fig. 2D, Table S2,
and Dataset S4). Overall, the direction of difference in sense and
antisense transcript levels correlated well. There was a differ-
ence in the number of genes showing discordant antisense-sense
changes between genes that showed increased or decreased sense
transcript levels in tumors, however (Fig. 2D). The enrichment of
concordant (high sense and antisense) and discordant (high sense
and low antisense) genes in different GO terms suggests that they
have distinct physiological functions (Fig. 2E). Furthermore, the
altered antisense-to-sense transcript levels in these genes is un-
likely to be a simple consequence of increased sense transcription
of metabolic genes attributable to increased metabolism in cancer
but might reflect fundamental differences in the regulation of
ncRNAs between normal and cancer cells.
At this time, we can only speculate on why the levels of anti-

sense transcripts may be decreased in cancer. One hypothesis
is that they may be decreased because of the deregulation of

nonsense-mediated decay (NMD) in tumors, because NMD ac-
tivity correlates with ncRNA levels inArabidopsis (18) and theXist
ncRNA in mouse embryonic stem cells is controlled by the NMD
pathway (19). We attempted to investigate the role of NMD in
antisense transcription in breast cancer cell lines using PTC-124,
an inhibitor of NMD (20), and siRNAs targeting key NMD
pathway components (i.e., UPF1, SMG1) but have not been able
to obtain conclusive results, potentially because of technical lim-
itations. Alternatively, aberrant epigenetic and transcriptional
control mechanisms could also be involved. The transcription of
sense and antisense transcripts might be regulated by the same
factors, resulting in their coordinated expression, or there could
be strand-specific transcriptional regulators. The former model is
supported by the observation that the same transcription factors
(e.g., c-myc, p53) have been detected at the transcriptional start
sites of both sense and antisense transcripts (21).

Validation of Antisense Transcripts. To validate the strand speci-
ficity of the transcripts we identified based on SAGE-Seq using
independent platforms, we performed ASSAGE and custom
oligonucleotide array experiments. In ASSAGE, the RNA is
bisulfite-treated prior to reverse transcription, which converts all
cytidine to uridine, allowing unique mapping only to one of the
two possible DNA strands (17). Similarly, custom oligonucleo-
tide arrays hybridized with direct-labeled RNA maintain strand
specificity. Using both of these platforms, we confirmed the ex-
pression of antisense transcripts predicted based on SAGE-Seq
(Fig. S3 A and B). For example, 5,442 predicted antisense tran-
scripts (96.6% of those tested) showed significant expression on
arrays in at least one tumor sample, whereas 74.0% was detected
in all four tumors. We also observed that some genes showed
consistent differences between normal and cancer samples both
in sense and antisense transcript levels. The correlation between
the three different platforms was rather small (Tables S3 and S4),

Fig. 2. Identity and functions of S and AS genes. Scatterplots depicting the correlation between average antisense and sense tag counts for each gene in
normal (A) and cancer (B) samples. (C) Overlap of the two plots shows an overall shift toward increased sense-to-antisense tag ratios in cancer. (D) Pie charts
depicting changes in antisense and sense transcript levels in genes differentially expressed between normal and cancer samples. (E) Functional annotation of
concordant (green) and discordant (orange) genes from the left pie chart of D based on GO terms.
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however, likely reflecting platform-specific differences in quan-
titating transcript abundance.
The limitation of these three global platforms is that they

cannot determine the length of individual transcripts with high
accuracy, and the possibility of multiple overlapping transcripts
of different lengths (which can complicate quantitation using
short sequence tags) cannot be excluded. Thus, we also validated
a few selected genes by strand-specific RT-PCR (17). We iden-
tified RICTOR as one of the genes displaying high antisense in
normal and high sense transcript levels in cancer cells (Fig. S3C).
First, we confirmed the presence of both sense and antisense
RICTOR transcripts (Fig. 3 A and B) and verified that the an-
tisense transcript is a long ncRNA because it was polyadenylated
and >1.2 kb (∼11 kb based on Northern blot analysis; Fig. 3C).
Moreover, it significantly overlapped with the sense RICTOR
transcript; thus, it is likely to be a cis-NAT. Next, we analyzed the
levels of sense and antisense transcripts in multiple normal and
neoplastic breast epithelial cells. Because of the lack of appro-
priate controls for strand-specific RT-PCR and the semiquan-
titative nature of this procedure, the exact transcript ratios could
not be calculated. Nevertheless, the results of these RT-PCR
analyses showed good overall correlation with SAGE-Seq data,
although some variability was observed (Fig. 3D).
We also analyzed NLRC3, which showed similar antisense-to-

sense transcript ratios between normal and cancer cells as con-
trol (Fig. S3D). We detected both sense and antisense poly-
adenylated transcripts transcribed from the NLRC3 locus, and
this antisense transcript, again, was cis-NAT lncRNA because of
its length (>200 bp) and overlap with the sense mRNA (Fig. 3E).
In contrast to RICTOR, NLRC3 sense and antisense transcript
levels did not differ between normal and neoplastic mammary
epithelial cells (Fig. 3F).
To begin dissecting the function of the lncRNAs that we

identified, we expressed siRNAs specifically targeting the RIC-
TOR antisense transcript and evaluated Rictor and phospho-Akt
protein levels in human mammary epithelial cells grown under

different conditions but did not observe a consistent increase in
Rictor protein levels (Fig. S3E). This could be attributable to
technical difficulties (e.g., inefficient or not strand-specific
siRNA targeting, change of cells attributable to culture con-
ditions), however. Thus, further studies are required to un-
derstand the role these lncRNAs may play in the regulation of
the Akt pathway and cellular metabolism.
In summary, we found altered ratios of antisense to sense

transcripts between normal and neoplastic breast epithelial cells
that may contribute to metabolic alterations associated with
cellular transformation. The molecular mechanisms regulating
the expression of these antisense transcripts and the role of these
in tumorigenesis require further investigation.

Materials and Methods
Tissue Samples and Primary Culture. Fresh normal and tumor specimens were
collected at Harvard University-affiliated hospitals (Boston, MA) and the
Johns Hopkins University (Baltimore, MD). All human tissue was collected
using protocols approved by institutional review boards. Fresh tissue samples
were immediately processed for immunomagnetic purification, followed by
mRNA selection as previously described (13, 14).

SAGE-Seq Sample Preparation and Data Analysis. SAGE-Seq libraries were
generated essentially as previously described (13, 14), except that we used
Illumina linkers for ligation and PCR amplification. SAGE-Seq libraries were
sequenced using Illumina Genome Analyzer, and 17-bp tags were extracted
from raw reads. We merged all libraries into one file and removed tags with
only one tag count in any library, followed by normalization to 5 million
total tag counts per sample. Tags were mapped to sense strand sequences of
RefSeq genes at first. Tags that were not matched to any sense strand
of RefSeq genes were then mapped to antisense strand sequences within
RefSeq genes (examples of sense and antisense tag distribution within in-
dividual genes are depicted in Fig. S3 C and D). To calculate the ratio of sense
and antisense tags for each gene, we summed all tags corresponding to each
gene and calculated the percentage of antisense relative to total tag counts
in each gene. Genes with very low (sum of all sense and antisense tag counts
<5) expression levels in all samples combined were excluded from the
analysis to minimize noise. GO term enrichment analyses were performed

Fig. 3. Validation of SAGE-Seq results. Schematic map of the 3′-ends of RICTOR (A) and NLRC3 (E) genes. The 3′-end of mRNA is marked with 0. Green and red
arrows denote positions of sense and antisense SAGE-Seq tags, respectively. Green and red lines indicate sense and antisense PCR amplicons, respectively. (B)
Mapping of sense and antisense RICTOR transcripts using strand-specific PCR. Bisulfite-treated genomic DNA (as control) ormRNAof normal andneoplastic CD24+

cells was used as a template. (C) Northern blot analysis of sense and antisense RICTOR transcripts. RNA prepared from normal breast organoids (N) and human
mammary epithelial cells (HMEC) was hybridized with P32-labeled sense and antisense strand-specific probes. Numbers indicate the size of RNA markers (kilo-
base). (D) Relative expression levels of RICTOR 5′-end sense and 3′-end antisense transcripts in normal (N1) and neoplastic CD24+ cells based on semiquantitative
PCR. S5 and AS2 indicate primer pairs for sense and antisense amplicons, respectively. Black triangles indicate increasing number of PCR cycles. (F) Validation of
sense andantisensemRNAs for RICTORandNLRC3 genes in normal and tumor cells by strand-specific PCR. Black triangles indicate increasing number of PCR cycles.
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using DAVID bioinformatics resources (22); we used all RefSeq genes that we
utilized for mapping as background for calculating enrichment. Differen-
tially expressed sense and antisense transcripts were identified based on
applying the significance analysis of microarray algorithm to the log2 ratio
of normalized gene tag counts and using a 1% FDR as the cutoff for sig-
nificance. Because antisense count gives another dimension to categorize
the difference between normal and cancer, four kinds of differential gene
expression patterns are identified as listed in Table S2 and Dataset S4.

ASSAGE Sample Preparation and Data Analysis. ASSAGE libraries were gen-
erated essentially as described (17), except that we used polyA RNA. We
generated a bisulfite-converted genome for both plus and minus strands
(6.2 Gb) as a reference for ASSAGE reads. Using SeqMap (23), 16,762,174
reads were uniquely aligned to the bisulfite-converted genome and default
conditions, allowing up to two mismatches in 32-bp reads. We used reads
that uniquely mapped to either plus or minus strand-derived sequences.
Samples were normalized to 5 million total tags. The number of reads
aligned to specific regions (e.g., exons, introns, ±5 kb from 5′-end, ±5 kb
from 3′-end) of each RefSeq gene was counted. To calculate the percentage
of antisense counts per gene, we used total tag counts in all exonic and
intronic regions of each gene.

Microarray Experiment and Data Analysis. We used an Agilent Technologies
Custom microarray (SurePrint G3 Custom CGH, 8 × 60 K), wherein each slide
had eight arrays with ∼60,000 probes on each, in a two-color experimental
design. We selected a total of 5,630 antisense tags, in which 5,030 showed
a significant difference between normal and cancer, whereas 600 showed no
difference but were abundant in both normal and cancer samples based on
SAGE-Seq data. Using eArray software (Agilent Technologies), we designed
57,963 unique 60-mer oligonucleotide probes for sense and antisense tran-
scripts. For each predicted antisense transcript, 5 probes were picked from
the genomic region, ±1 kb from the antisense tag position. Similarly, five 60-
mer probes (validated by Agilent Technologies) were selected for each
corresponding sense transcript. For hybridization experiments, we used
mRNA from four (N1 to N4) normal organoid and four breast tumor samples
processed and purified as described previously (14). Two hundred nano-
grams of mRNA was directly labeled with Cy3 using a ULS micro-RNA la-

beling kit (Kreatech) and fragmented with an RNA fragmentation kit
(Ambion). For the reference sample, equal amounts of mRNA from the four
normal samples were mixed together, labeled with Cy5, and processed as
above. For each individual array, 200 ng of Cy3-labeled normal or tumor
sample was mixed with 200 ng of Cy5-labeled reference sample and two-
color hybridization was performed according to the manufacturer’s protocol
(Agilent Technologies). Array processing and data extraction were per-
formed by the Arthur and Rochelle Belfer Center for Cancer Genomics at the
Dana–Farber Cancer Institute. Image analysis was conducted using Agilent
Feature extraction software (version 10.5.1.1; Agilent Technologies), and
processed signals were used for further analysis. To confirm the presence of
antisense transcripts, a rigorous threshold was applied using the flag
“IsWellAboveBG,” which first determines if the feature is significant (IsPo-
sAndSignif fiag; determined by a two-sided t test) and then determines if
the background-subtracted signal is >2.6-fold over the background SD for
that feature. Significant expression was detected for 20,126 of 28,974 anti-
sense probes [corresponding to 5,442 (96.6%) antisense transcripts of 5,603
tested] in at least one cancer sample, and 9,029 of these [corresponding to
4,165 (74.0%) antisense transcripts of 5,603 tested] were significantly
expressed in all samples analyzed, whereas 18,900 of 28,989 sense probes
[corresponding to 4,996 (88.7%) sense transcripts of 5,603 tested) had sig-
nificant signal in all samples.

RT-PCR Analyses. Bisulfite conversion of mRNA and cDNA synthesis and RT-
PCR analyses using mRNA or bisulfite-treated mRNA were performed es-
sentially as described (17).

ACKNOWLEDGMENTS. We thank members of our laboratories for their
critical reading of this manuscript and useful discussions. We greatly
appreciate the help of Dr. Andrea Richardson (Brigham and Women’s Hos-
pital) in the acquisition of tissue samples and the Arthur and Rochelle Belfer
Center for Cancer Genomics for array hybridization. This study was sup-
ported by the National Cancer Institute Specialized Program in Research
Excellence in Breast Cancer at the Dana–Farber/Harvard University Cancer
Center (Grant CA89393), the Department of Defense (Grant W81XWH-07-1-
0294), and the Avon Foundation as well as by Breast Cancer Research Foun-
dation grants (to K.P.), Susan G. Komen Foundation fellowships (to M.S. and
R.M.), and a Terri Brodeur Breast Cancer Foundation Fellowship (to S.C.).

1. Saha S, et al. (2002) Using the transcriptome to annotate the genome. Nat Biotechnol

20:508–512.
2. Carninci P, et al.; FANTOM Consortium RIKEN Genome Exploration Research Group

and Genome Science Group (Genome Network Project Core Group) (2005) The

transcriptional landscape of the mammalian genome. Science 309:1559–1563.
3. Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:

656–668.
4. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: Insights into

functions. Nat Rev Genet 10:155–159.
5. Guttman M, et al. (2009) Chromatin signature reveals over a thousand highly

conserved large non-coding RNAs in mammals. Nature 458:223–227.
6. Huarte M, et al. (2010) A large intergenic noncoding RNA induced by p53 mediates

global gene repression in the p53 response. Cell 142:409–419.
7. Khalil AM, et al. (2009) Many human large intergenic noncoding RNAs associate with

chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA

106:11667–11672.
8. Gupta RA, et al. (2010) Long non-coding RNA HOTAIR reprograms chromatin state to

promote cancer metastasis. Nature 464:1071–1076.
9. Reis EM, Louro R, Nakaya HI, Verjovski-Almeida S (2005) As antisense RNA gets

intronic. OMICS 9:2–12.
10. Brito GC, et al. (2008) Identification of protein-coding and intronic noncoding RNAs

down-regulated in clear cell renal carcinoma. Mol Carcinog 47:757–767.
11. Calin GA, et al. (2007) Ultraconserved regions encoding ncRNAs are altered in human

leukemias and carcinomas. Cancer Cell 12:215–229.

12. Burzio VA, et al. (2009) Expression of a family of noncoding mitochondrial RNAs
distinguishes normal from cancer cells. Proc Natl Acad Sci USA 106:9430–9434.

13. Bloushtain-Qimron N, et al. (2008) Cell type-specific DNA methylation patterns in the
human breast. Proc Natl Acad Sci USA 105:14076–14081.

14. Shipitsin M, et al. (2007) Molecular definition of breast tumor heterogeneity. Cancer
Cell 11:259–273.

15. Wood LD, et al. (2007) The genomic landscapes of human breast and colorectal
cancers. Science 318:1108–1113.

16. JZ Wu, et al.; Gene expression profiling of human breast tissue samples using SAGE-
Seq. Genome Res, 10.1101/gr.108217.110.

17. He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW (2008) The antisense
transcriptomes of human cells. Science 322:1855–1857.

18. Kurihara Y, et al. (2009) Genome-wide suppression of aberrant mRNA-like noncoding
RNAs by NMD in Arabidopsis. Proc Natl Acad Sci USA 106:2453–2458.

19. Ciaudo C, et al. (2006) Nuclear mRNA degradation pathway(s) are implicated in Xist
regulation and X chromosome inactivation. PLoS Genet 2:e94.

20. Linde L, Kerem B (2008) Introducing sense into nonsense in treatments of human
genetic diseases. Trends Genet 24:552–563.

21. Cawley S, et al. (2004) Unbiased mapping of transcription factor binding sites along
human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs.
Cell 116:499–509.

22. Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57.

23. Jiang H, Wong WH (2008) SeqMap: Mapping massive amount of oligonucleotides to
the genome. Bioinformatics 24:2395–2396.

2824 | www.pnas.org/cgi/doi/10.1073/pnas.1010559107 Maruyama et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/pnas.201010559SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010559107/-/DCSupplemental/sd04.xls
www.pnas.org/cgi/doi/10.1073/pnas.1010559107

