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Most clear cell renal carcinomas (ccRCCs) are initiated by somatic
inactivation of the VHL tumor suppressor gene. The VHL gene prod-
uct, pVHL, is the substrate recognition unit of an ubiquitin ligase
that targets the HIF transcription factor for proteasomal degrada-
tion; inappropriate expression of HIF target genes drives renal car-
cinogenesis. Loss of pVHL is not sufficient, however, to cause ccRCC.
Additional cooperating genetic events, including intragenic muta-
tions and copy number alterations, are required. Common examples
of the former are loss-of-functionmutations of the PBRM1 and BAP1
tumor suppressor genes, which occur in a mutually exclusive man-
ner in ccRCC and define biologically distinct subsets of ccRCC. PBRM1
encodes the Polybromo- and BRG1-associated factors-containing
complex (PBAF) chromatin remodeling complex component BRG1-
associated factor 180 (BAF180). Here we identified ccRCC lines
whose ability to proliferate in vitro and in vivo is sensitive to
wild-type BAF180, but not a tumor-associated BAF180 mutant. Bio-
chemical and functional studies linked growth suppression by
BAF180 to its ability to form a canonical PBAF complex containing
BRG1 that dampens the HIF transcriptional signature.
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Biallelic inactivation of the VHL tumor suppressor gene is the
usual initiating or truncal event in clear cell renal cell carci-

noma (ccRCC), which is the most common form of kidney cancer
(1–6). VHL loss, however, is not sufficient to cause ccRCC (4,
7–9). Other cooperating genetic events in ccRCC include copy
number gain of chromosome 5q, copy number loss of chromosome
14q, and intragenic mutations affecting chromatin regulatory genes
such as PBRM1, BAP1, ARID1A, SETD2, KDM5C, and KDM6A;
PI3K pathway genes such as PTEN, PIK3CA, TSC1, and TORC1;
and redox stress genes such as KEAP1 and NFE2L2 (1, 10–14).
PBRM1 is the gene that, after VHL, is most frequently mu-

tated in ccRCC. Interestingly, PBRM1 and VHL reside at chro-
mosomes 3p21 and 3p25, respectively. Accordingly, three genetic
hits (intragenic cis mutations affecting PBRM1 and VHL, fol-
lowed by loss of chromosome 3p) can cause biallelic loss of both
PBRM1 and VHL. A similar situation exists for BAP1 and
SETD2, which are also located on chromosome 3p21. PBRM1
and BAP1mutations are largely mutually exclusive in ccRCC and
define biologically distinct ccRCC subtypes (12).
The PBRM1 gene product, BRG1-associated factor 180 (BAF180),

is part of the multisubunit Polybromo- and BRG1-associated factors-
containing complex (PBAF) switch/sucrose nonfermentable (SWI/
SNF) chromatin remodeling complex (15–18). Mutations affecting
SWI/SNF components have been linked to multiple forms of cancers
(15–18). For reasons that are not clear, however, there is a strong bias
to mutate specific SWI/SNF components in specific types of cancer.
In this regard, inactivating PBRM1 mutations are most common in
ccRCC, followed by cholangiocarcinoma (19, 20), but are otherwise
relatively uncommon in cancer.
siRNA-mediated knockdown of wild-type PBRM1 was repor-

ted to increase the proliferation of multiple ccRCC cell lines in

monolayer culture and in soft agar (10). These effects were not,
however, proven to be on-target, and were not interrogated in
vivo. As a step toward understanding the role of BAF180 in
ccRCC, we asked whether BAF180 participates in the canonical
PBAF complex in ccRCC cell lines and whether loss of BAF180
measurably alters ccRCC behavior in cell culture and in mice.

Results and Discussion
We examined the protein levels of BAF180, BAP1, SETD2, and
various SWI/SNF components in 16 ccRCC cell lines, together with
HK-2 immortalized renal epithelial cells, using immunoblot assays.
All the 16 ccRCCs are pVHL-defective except for SLR20 and SLR21
(21). NPM was used as a loading control. BAF180 was undetectable
in five cell lines (A704, RCC4, SKRC20, SLR24, and SLR25) and
barely detectable in another (Caki-2; Fig. 1A and SI Appendix, Fig.
S1). We also sequenced the PBRM1 cDNAs from these 16 ccRCC
lines and identified frame-shift, presumably loss-of-function, muta-
tions in the six cell lines with low or undetectable BAF180 (Fig. 1 B
and C). In addition, we identified a small, in-frame, deletion in the
PBRM1 cDNA in SLR26 cells (Fig. 1 B andC). The A704 and Caki-2
PBRM1 mutations have been reported previously (10, 22).
Four lines had diminished or undetectable levels of the ccRCC

suppressor protein BAP1 (SLR23, SLR26, UMRC2, and UMRC6),
three had diminished or undetectable levels of the ccRCC
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suppressor BAF250a (SKRC20, SLR24, and SLR25), and eight
had diminished or absent levels of the ccRCC suppressor
SETD2 (A704, SKRC20, 769-P, A498, SLR20, SLR21, SLR23,
and SRL26). In keeping with previous observations, loss of
BAF180 and BAP1 appeared to be largely mutually exclusive
(12). As noted earlier, however, the BAF180 present in SLR26
cells is possibly defective. In contrast, apparent loss of SETD2
was found both among cell lines lacking BAF180 and among
cell lines lacking BAP1, consistent with genetic studies that
have identified ccRCCs with coexisting SETD2 and PBRM1
mutations and ccRCCs with coexisting SETD2 and BAP1 mu-
tations (2, 3, 6, 13, 20, 23).
To begin to study the function of BAF180 in ccRCC, we first

asked whether BAF180 forms PBAF complexes in this context
and whether this biochemical property is disrupted by tumor-
associated mutations. Toward this end, we used CRISPR-based
gene editing to introduce a tandem FLAG-hemagglutinin (HA)
epitope tag at the N terminus of the endogenous BAF180 ORF
into 786-O cells (Fig. 2A). We confirmed that FLAG-HA-BAF180

could be immunoprecipitated with either an anti-FLAG antibody
or an anti-HA antibody from these cells (786-O-BKI), but not
from parental 786-O cells, although recovery of the tagged
BAF180 was reproducibly higher with the anti-FLAG antibody
than with the anti-HA antibody (Fig. 2B). In parallel, we infected
A704 cells, which lack detectable endogenous BAF180 (Fig. 1A),
with a lentivirus encoding FLAG-HA-tagged wild-type BAF180, a
tumor-associated BAF180 mutant with a frame-shift mutation
(Q1298*) (10), or the empty vector (EV) (Fig. 2C).
We next performed preparative anti-FLAG immunoprecipi-

tations with these cell lines under stringent wash conditions.
The bound proteins were then eluted with a FLAG-peptide,
immunoprecipitated with an anti-HA antibody, eluted with an
HA peptide, and either resolved by SDS/PAGE and detected
by silver staining (Fig. 2D) or identified by mass spectrometry
(Fig. 2F and SI Appendix, Table S1). As expected, we observed
silver-stained protein bands with predicted molecular weights
consistent with epitope-tagged BAF180 in immunoprecipitates
prepared from the 786-O-BKI and A704-BAF180 cells and a
slightly faster migrating band in the immunoprecipitates from
A704-BAF180 (Q1298*) cells (Fig. 2D). No such bands were
observed with the control samples prepared from parental 786-O
cells and A704-EV cells.
Mass spectrometry analysis confirmed the recovery of BAF180

itself, as well as other members of the canonical PBAF complex,
including BAF170, BAF155, BAF200, BAF57, BAF60a, BAF45a,
BAF60b, BAF53a, and BAF47 and the SWI/SNF-associated
proteins BCL7A and BCL7C. Surprisingly, we also recovered
multiple peptides that are unique to the BRM DNA-dependent
ATPase or unique to the BRG1 DNA-dependent ATPase, even
though only BRG1 is believed to participate in PBAF com-
plexes (15–18).
We next confirmed that exogenous wild-type BAF180, but not

mutant (Q1298*) BAF180, coimmunoprecipitated with PBAF
components in A704 cells (Fig. 2E). Consistent with this finding,
the exogenous wild-type BAF180 in A704 cells, similar to the
endogenous wild-type BAF180 in 786-O cells and UMRC2 cells,
was detected in a high-molecular-weight complex containing
other PBAF components after glycerol gradient centrifugation.
In contrast, BAF180 (Q1298*) was not detected in this higher-
order complex (Fig. 2 G–J).
Structure function studies linking specific biochemical prop-

erties of BAF180 with ccRCC suppression will require cellular
assays of BAF180-dependent phenotypes that are likely to translate
into tumor suppression in humans. Toward this end, we infected
A704 cells with lentiviral vectors expressing HA-tagged ver-
sions of wild-type BAF180, BAF180 (Q1298*), or BAF180
variants lacking two or six of its bromodomains (Δ2BD and
Δ6BD, respectively) under control of a doxycycline (DOX)-
inducible promoter (Figs. 1C and 3A). Treating these cells with
DOX led to exogenous BAF180 protein levels that approxi-
mated the endogenous BAF180 levels in 786-O cells (Fig. 3A).
Induction of wild-type BAF180, but not BAF180 (Q1298*),
reproducibly inhibited A704 cell proliferation, but not the
proliferation of BAF180-defective SKRC20, SLR24, or RCC4
cells (Fig. 3B and SI Appendix, Fig. S2). Our SLR25 cells were
not tested because they were contaminated with mycoplasma.
The differential sensitivity of A704 cells and SLR24 cells to
reintroduction of wild-type BAF180 was also observed with an
alternative DOX-inducible expression system (SI Appendix, Fig.
S3A) that produced even higher levels of exogenous BAF180
(SI Appendix, Fig. S3 B–D).
The Δ2BD BAF180 variant, but not the Δ6BD variant, also

suppressed A704 cell proliferation, suggesting either that
BAF180 requires the presence of one or more of its C-terminal
bromodomains to inhibit proliferation or that BAF180 must have
four or more intact bromodomains to suppress proliferation (Fig.
3C). Why BAF180 has multiple bromodomains is currently not
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understood, and analyses of their histone binding preferences by
others have produced conflicting results (24, 25).
Consistent with a recent report, inducible expression of wild-

type BAF180 suppressed the proliferation of Caki-2 cells (SI
Appendix, Fig. S3 E and F) (22). However, this effect was not
specific to wild-type BAF180 because it was also observed with
BAF180 (Q1298*; SI Appendix, Fig. S3F). We therefore focused
on A704 cells in the experiments described here. It is possible
that BAF180 would suppress the proliferation or fitness of the
insensitive cell lines under conditions that more closely approx-
imate in vivo conditions. Unfortunately, however, we were un-
able to grow the BAF180-defective cell lines in soft agar or in
immunocompromised mice. It is also possible that these other
cell lines sustained additional mutations in vivo or ex vivo that
inured them to the antiproliferative effects of BAF180. In this
regard, VHL−/− ccRCC lines also display variable sensitivity to
restoration of pVHL function (26). Alternatively, BAF180 might
serve primarily as a caretaker instead of a gatekeeper in these
cell lines, with its loss promoting cancer by increasing DNA
mutations and aneuploidy.
We next asked whether suppression of A704 cell proliferation

by BAF180 was linked to restoration of PBAF function. To begin
to address this, we used CRISPR to eliminate BRG1 or,
according to our biochemical findings, BRM (Fig. 3 D and E).
Eliminating the canonical PBAF ATPase BRG1, but not BRM,

with two different guide RNAs (sgRNAs) rendered A704 cells
insensitive to BAF180 (Fig. 3G). This effect was on-target
because it was reversed by lentiviral expression of an sgRNA-
resistant BRG1 mRNA, and specific because it required the
ATPase function of BRG1 (Fig. 3 F and H).
The effects (or lack thereof) of inactivating a tumor suppres-

sor gene in a cell line that is wild-type for that tumor suppressor
gene can be difficult to interpret. For example, such cell lines
could have evolved from a cell type in which loss of the tumor
suppressor gene in question cannot promote transformation.
Alternatively, such cell lines might have sustained extragenic
mutations that are epistatic to the tumor suppressor gene in
question, or otherwise render that tumor suppressor gene irrel-
evant. Nonetheless, we also asked whether eliminating BAF180
in BAF180-proficient cells would enhance their proliferation or
fitness, motivated in part by Varela et al., who reported that
decreasing BAF180 in PBRM1+/+ ccRCC lines such as 786-O,
ACHN, TK10, and SN12C cells with siRNA technology in-
creased cellular proliferation, migration, and soft agar growth
(10). We designed 10 shRNAs against PBRM1, including three
corresponding to the PBRM1 siRNAs used by Varela et al. (10),
and identified five, including two of the three used by Varela
et al., that reproducibly down-regulated BAF180 protein levels
(SI Appendix, Fig. S4). None of these effective shRNAs, how-
ever, consistently enhanced the proliferation of 786-O compared
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with controls (SI Appendix, Fig. S4). The three PBRM1 shRNAs
used by Varela et al. also did not enhance the proliferation of
SN12C and UMRC2 cells in our hands (SI Appendix, Figs. S5 and
S6). Similar findings have been observed by others (22). We do not
fully understand the discrepancy between our findings and those
reported by Varela et al.. We note that Varela et al. used acute
transfection of an siRNA pool containing three independent
PBRM1 siRNAs compared with acute transfection with a single,
commercially obtainable control siRNA (10). We suspect their
results might have been confounded by off-target effects and be-
cause each PBRM1 siRNA they used was present at one-third the
concentration of the control siRNA.
Nonetheless, we proceeded to ask whether eliminating BAF180

would enhance the growth of PBRM1+/+ ccRCC cells in vivo. In
one set of experiments, we created 1:1 mixtures of UMRC2 cells
expressing a DOX-inducible PBRM1 shRNA and UMRC2 cells
expressing a DOX-inducible control shRNA (Fig. 4A), implanted
them orthotopically in the kidneys of nonobese diabetic-SCID
mice, and monitored the relative abundance of the two pop-
ulations by PCR. In mice fed DOX-containing chow, the PBRM1
shRNA cells were enriched relative to control shRNA cells, in-
dicating these cells had a fitness advantage in vivo (Fig. 4 B and
C), despite the fact that these PBRM1 shRNAs caused a pro-
liferative disadvantage ex vivo (SI Appendix, Fig. S6).
In a complimentary set of experiments, we eliminated BAF180

in 786-O cells, using CRISPR-based gene editing with two dif-
ferent sgRNAs (Fig. 4D). Consistent with our shRNA-based
results in ccRCC lines, presented earlier, eliminating BAF180 in
786-O did not affect their proliferation under standard cell cul-
ture conditions (SI Appendix, Fig. S7), but did enhance their
ability to form s.c. tumors in immunocompromised mice (Fig. 4 E
and F). This effect was specific because it was reversed by an

sgRNA-resistant PBRM1 cDNA (Fig. 4 G and H). Similarly,
CRISPR-based elimination of BRG1, but not BRM, enhanced
s.c. tumor formation by 786-O cells (Fig. 4 I and J). Collectively,
these results suggest that the canonical PBAF complex sup-
presses ccRCC in a BAF180- and BRG1-dependent manner.
Interestingly, four of five ccRCC lines in which we could detect
BAF180 had low or undetectable BRG1 levels, suggesting that in
such cells, BRG1 loss provided an alternative mechanism for
compromising BAF180 tumor suppressor function.
BAF180 regulates p53 and its downstream target p21 in some

systems (27). We did not, however, detect consistent effects of
BAF180 on p21 in A704 or 786-O cells (SI Appendix, Fig. S8).
We therefore proceeded to examine the effects of BAF180 on
transcription in the context of ccRCC cells.
The PBAF complex plays roles in nucleosome remodeling.

Micrococcal nuclease sequencing (MNase-Seq) did not, how-
ever, detect gross changes in nucleosome positioning in isogenic
A704 and UMRC2 cells that did or did not produce BAF180 (SI
Appendix, Fig. S9). Similar results have been obtained after re-
storing the function of other SWI/SNF components in cancer
cells (28).
Next we performed anti-HA ChIP-Seq on A704 cells induced

to express HA-BAF180 with DOX compared with DOX-treated
A704 EV cells. In parallel, we measured changes in gene ex-
pression by RNA-Seq after DOX-induction of BAF180 in A704
cells in which either BRG1 or BRMwas eliminated using CRISPR/
Cas9. Specific BAF180-binding sites were detected throughout the
genome, associated with more than 10,000 promoters (binding sites
detected ≤5 kB 5′ putative transcription start sites; Fig. 5A). More
than 80% of the top 25% highest-expressed genes were associated
with BAF180-binding sites (Fig. 5A). Similarly, almost 80% of
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Fig. 3. BAF180 suppresses A704 cell proliferation in a bromodomain- and BRG1-dependentmanner. (A) Rabbit polyclonal anti-BAF180 immunoblot analysis of A704 cells
infected to produce the indicated BAF180 variants (Fig. 1C) in a DOX-inducible manner compared with 786-O cells. (B and C). Proliferation of A704 derivatives, as in A,
grown in the presence or absence of DOX. For each line, values were normalized to the corresponding untreated (no DOX) sample at each point for that line. (D and E)
Immunoblot analysis of A704 cells infected to produce wild-type BAF180 in a DOX-inducible manner and then superinfected to produce Cas9 and the indicated sgRNAs
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BAF180-responsive genes (false discovery rate < 0.01) had asso-
ciated BAF180-binding sites (Fig. 5A).
Consistent with our biochemical results, we identified BAF180-

responsive mRNAs that were BRG1-dependent, BRM-dependent,
or both (Fig. 5B and SI Appendix, Fig. S10). For these and sub-
sequent analyses, we included BAF180-responsive mRNAs, irre-
spective of whether they were transcribed from genes with
BAF180-binding sites. As the antiproliferative effects of BAF180 in
A704 cells required BRG1, but not BRM, we focused on BAF180-

responsive mRNAs that were BRG1-dependent, but not BRM-
dependent. These included 136 mRNAs that were induced by
BAF180 and 214 mRNAs that were repressed by BAF180 (Fig. 5B
and SI Appendix, Table S2).
Gene ontology analysis and gene set enrichment analysis

(GSEA) revealed that BAF180-responsive, BRG1-dependent
mRNAs were statistically significantly enriched for mRNAs
linked to hypoxia, SATB1 target genes, and signal trans-
duction (Fig. 5 C and D). Most notably, GSEA indicated that
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BAF180 suppresses HIF-inducible/hypoxia-inducible mRNAs
in A704 cells (Fig. 5D and SI Appendix, Fig. S11). This was not
peculiar to A704 cells because GSEA revealed that hypoxia-
inducible mRNAs were also induced in 786-O cells after
CRISPR-mediated elimination of BAF180 (SI Appendix, Fig.
S11). In short, loss of BAF180 amplifies the HIF signature
observed on VHL inactivation. Although SWI/SNF complexes
regulate HIF1α expression in some models (29), the effects of
BAF180 on the hypoxic response in A704 and 786-O cells
were not linked to changes in HIF1α or HIF2α protein levels
(SI Appendix, Fig. S11).
Interrogation of the ccRCC TCGA database revealed that the

BAF180-responsive mRNAs we identified using the A704 cell
system are similarly regulated by BAF180 in ccRCC tumors, with
mRNAs that were up-regulated by BAF180 in vitro being higher
in BAF180-proficient tumors, and BAF180-repressed mRNAs
trending lower in the BAF180-proficent tumors. In particular,
mRNAs induced by hypoxia or HIF are higher in ccRCC in
which both VHL and PBRM1 are mutated compared with ccRCC
in which VHL is mutated and PRBM1 is not (Fig. 5 E–H and SI
Appendix, Fig. S12).
Most ccRCC cell lines do not require HIF under standard culture

conditions, which could begin to explain why manipulating BAF180
function does not, with the exception of A704 cells, affect renal
proliferation ex vivo, but does alter their growth in vivo (26). In this
regard, we found that A704 cell proliferation was, in contrast to the
other BAF180-defective ccRCC lines tested, inhibited by a phar-
macological HIF2 antagonist (26) under standard monolayer
conditions (SI Appendix, Fig. S13). Moreover, enhancement of
HIF-dependent transcription could explain why both VHL
and PBRM1 mutations are most commonly observed in ccRCC,

which has been linked to deregulated hypoxic signaling. This
model does not exclude other roles for BAF180 in renal carci-
nogenesis, including roles related to DNA damage repair and
maintenance of mitotic fidelity.
A recent study suggested that BAF180 augments the hypoxic

response, in contrast to our findings (22). Although we do not
understand this discrepancy, the authors of that study used Caki-2
cells engineered to produce wild-type BAF180. We did not rely on
this system because we found that both wild-type BAF180 and
BAF180 Q1298* suppressed the proliferation of these cells.
A number of questions remain, including why BAF180 is the

dominant PBAF complex member linked to clear cell carcinogen-
esis. Perhaps, for example, loss of the other PBAF components is
antithetical to renal transformation because of functions they do not
share with BAF180. It is also possible that these other components
do not deregulate HIF to the same extent as BAF180 loss. Alter-
natively, the selection pressure to inactivate BAF180 in renal car-
cinogenesis might reflect inactivation of the PBAF complex and an
as-yet-unappreciated noncanonical function of BAF180. Finally,
given its role in the regulation of the HIF response, it will be in-
teresting to see whether BAF180 status can serve as a predictive
biomarker for therapeutics directed against HIF or its downstream
targets. In this regard, one small study identified PBRM1 mutations
in seven of 13 of patients who had partial or complete responses to
VEGF inhibition lasting 3 or more years, and in only one 14 pa-
tients who progressed within 3 mo of therapy (30).
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