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Alternative RNA splicing plays an important role in cancer. To
determine which factors involved in RNA processing are essential
in prostate cancer, we performed a genome-wide CRISPR/Cas9
knockout screen to identify the genes that are required for prostate
cancer growth. Functional annotation defined a set of essential
spliceosome and RNA binding protein (RBP) genes, including most
notably heterogeneous nuclear ribonucleoprotein L (HNRNPL). We
defined the HNRNPL-bound RNA landscape by RNA immunoprecip-
itation coupled with next-generation sequencing and linked these
RBP–RNA interactions to changes in RNA processing. HNRNPL di-
rectly regulates the alternative splicing of a set of RNAs, including
those encoding the androgen receptor, the key lineage-specific
prostate cancer oncogene. HNRNPL also regulates circular RNA for-
mation via back splicing. Importantly, both HNRNPL and its RNA
targets are aberrantly expressed in human prostate tumors, sup-
porting their clinical relevance. Collectively, our data reveal
HNRNPL and its RNA clients as players in prostate cancer growth
and potential therapeutic targets.
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Prostate cancer is among the most prevalent adult malignan-
cies in developed countries. The principal treatment for

prostate cancer once it is no longer amenable to surgery or ra-
diation treatment is androgen deprivation therapy, which targets
androgen or androgen receptor (AR) signaling. However, re-
sistance to androgen deprivation therapy often develops and
leads to a state termed “castration-resistant prostate cancer,”
which still lacks an effective cure (1–3). Therefore, significant
efforts have been devoted to better understand the mechanism
of oncogenesis and to develop additional effective therapeutics
targeting pivotal oncogenes, cancer-related signal transduction
pathways, and epigenetic regulators (4, 5).
Alternative RNA splicing is a fundamental cellular process

by which a single gene can give rise to multiple different tran-
scripts and proteins. This process is tightly regulated by core
spliceosomes and other splicing factors, such as the serine/
arginine-rich family of proteins and heterogeneous nuclear
ribonucleoproteins (hnRNPs) (6, 7). Multiple studies indicate
that deregulation of alternative splicing is implicated in cancer
progression and that the splicing machinery may be targeted
therapeutically (8–10). In addition to RNA splicing, the phys-
ical interactions between RNAs and RNA binding proteins
(RBPs) underlie multiple RNA processing steps, such as cap-
ping, polyadenylation, transport, localization, modification, and
translation, thereby regulating many aspects of RNA fate (11).

Which RBPs and their related RNA processing steps are
functionally important, especially in prostate cancer, remains
elusive.
The recent implementation of the clustered regularly interspaced

short palindromic repeats (CRISPR)-associated nuclease Cas9 ge-
nome editing system has proved effective in high-throughput loss-
of-function screens (12–14). Compared with RNA interfering
(RNAi)-based gene knockdown, CRISPR/Cas9-based gene knock-
out confers a more thorough deletion of target gene expression and
has less off-target effects when the guide RNA is appropriately
designed (15, 16). The power of the pooled CRISPR screen has
been demonstrated by several studies investigating the genes
involved in drug and toxin resistance (13, 17), cancer metastasis
(18), and immune response (19).
Here, by a genome-wide CRISPR screen and in depth mech-

anistic studies, we sought to systematically identify functional
RBPs or RNA processing factors that are essential for pros-
tate cancer growth and underlie pivotal cancer-related RNA
processing steps, especially RNA splicing, thus potentially en-
abling the development of novel cancer therapeutics targeting
RBPs or RBP–RNA interactions.
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Results
Genome-Wide CRISPR/Cas9 Knockout Screen in Prostate Cancer Cells.
To systematically identify the functional RBPs or RNA pro-
cessing factors in prostate cancer, we performed a pooled
genome-wide CRISPR/Cas9 knockout screen in prostate cancer
LNCaP cells using the GeCKO v2 lentiviral single guide RNA
(sgRNA) library (20) (Fig. 1A). This library contains 123,411
unique sgRNAs targeting 19,050 genes, with 6 sgRNAs per gene.
After selection with puromycin, half of the infected cells were
harvested as a day_0 control sample and the rest of the cells were
continuously cultured for an additional two weeks as the
day_14 sample. The sgRNAs incorporated in the cells were then
amplified from genomic DNA and subjected to massively par-
allel sequencing for quantification. We defined the negatively
selected essential genes as those with significantly depleted
sgRNAs at day 14 and positively selected genes as those with
significantly enriched sgRNAs at day 14 (Dataset S1). MAGeCK
and MAGeCK-VISPR are statistical algorithms we previously
developed for CRISPR screen analyses (21, 22). Whereas
MAGeCK was developed to call genes from a single CRISPR
screen experiment, MAGeCK-VISPR was developed to compare
the gRNA abundance across many conditions. The magnitude of
negative selection for the top 1,000 essential genes in LNCaP
cells is comparable to that of known essential ribosomal protein

genes (Fig. S1A). We thus chose these top 1,000 genes as the
LNCaP essential gene set for the downstream analysis. By
comparing this list of essential genes to publically available data
for 10 other cell lines, we found that ∼one-third of the LNCaP
essential genes are broadly essential across multiple cell types (as
pan-essential genes), whereas the remaining genes were either
LNCaP-specific or essential only in a subset of cell types (Fig.
1B). The most enriched functional categories for the pan-
essential genes fall into protein biosysthesis, ribonucleoprotein,
ribosome, proteasome, and cell cycle that are all core functional
components or processes in the cell (Fig. S1B). In terms of
enriched pathways, LNCaP essential genes are enriched for AR
and PI3K pathways that are known to play pivotal signaling roles
in LNCaP cells, supporting the relevance of our screen (Fig.
S1C). In addition, many known functional genes in prostate cancer
were under significant negative selection, including STAT3, PIAS1,
PIK3C2A, AR, and MYC (Fig. 1C) (23–25). Overall, these top
1,000 essential genes established an interconnected network high-
lighting multiple key signaling molecules, complexes, or processes,
including spliceosome and ribonucleoproteins (Fig. 1D). Further-
more, we investigated the gene copy number effects on CRISPR
screen performance and confirmed that genes in genomic ampli-
fied regions tend to exhibit more negative selection as revealed by
recent studies (16, 26) (Fig. S1D and Dataset S1). These potential
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Fig. 1. Genome-wide CRISPR/Cas9 screen in prostate cancer. (A) Workflow of the CRISPR/Cas9 screen in LNCaP cells cultured in the presence of 10 nM
dihydrotestosterone (DHT) with charcoal/dextran-treated FBS-containing medium. (B) Multiple CRISPR screening datasets (12, 15, 49) reveal the functions of
LNCaP essential genes across different cell types. The β-essentiality scores of top 1,000 LNCaP essential genes, calculated by MAGeCK-VISPR, are shown.
Negative (or positive) β-score indicates the corresponding gene is undergone negative (or positive) selection. The less the β-score, the more essential the
corresponding gene. These genes consist of two categories: pan-essential genes (genes that are also essential in more than half of the other cell types) and
LNCaP-specific essential genes. (C) CRISPR screen of essential genes in LNCaP cells. Genes were rank-ordered by robust rank aggregation (RRA) scores cal-
culated by MAGeCK (21), where a smaller RRA score indicates more essentiality. HNRNPL and known LNCaP functional genes are highlighted. (D) A network
view of the top 1,000 LNCaP essential genes. Nodes represent genes, and an edge connecting two genes if both are in the same pathway. AR and some known
LNCaP oncogenes are highlighted, and some major gene clusters are also marked using different colors. The pathway information is extracted from Gen-
eMANIA database (50).
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false-positive hits from copy number-increased regions were re-
moved from the downstream functional analysis.

HNRNPL Is Required for Prostate Cancer Cell Growth. To explore
which factors might play a role in RNA processing, we examined
the RBPs and RNA splicing factors that were essential in the
screen. Interestingly, several HNRNP family members, such as
HNRNPL, HNRNPC, and FUS, are among the top essential
RBPs (Dataset S1). Notably, HNRNPL was the top HNRNP
essential gene in LNCaP cells and comparable to the known
LNCaP essential genes identified by CRISPR screen, such as AR
(Fig. 1C and Dataset S1). To cross-validate and more carefully
examine the HNRNP family genes, we additionally used a tar-
geted short interfering RNA (siRNA) approach to knock down
each HNRNP gene with two independent and effective siRNAs,
and examined the effects on cell growth after 6 d of siRNA ex-
posure. Among all of the HNRNP genes tested, HNRNPK and
HNRNPL showed the most dramatic and consistent cell growth
reduction upon knockdown, followed by HNRNPC (Fig. 2A and
Fig. S2A). HNRNPK was not identified as essential in the
CRISPR screen, which might be because of differences between
the CRISPR and RNAi technologies, such as inefficient sgRNAs
or siRNA off targets.
To further minimize the potential siRNAs off-target effects

for HNRNPK and HNRNPL, we used two additional indepen-
dent siRNAs targeting either HNRNPK or HNRNPL, and ex-

amined the cell-growth effect in several prostate cancer cell
line models. In both the androgen-dependent LNCaP cells and
the castration-resistant CWR22RV1 cells, as well as the AR-
negative prostate cancer DU145 and PC3 cell lines, knockdown
of either HNRNPL or HNRNPK could diminish cell growth
(Fig. 2B and Fig. S2 B and C). Interestingly, in a normal-like
prostate epithelial cell line, RWPE-1, HNRNPL is not required
for cell growth, whereas HNRNPK remains essential (Fig. 2B),
indicating that HNRNPL, but not HNRNPK, may have cancer-
specific functions. Moreover, recent studies suggested that
superenhancer-associated genes tend to be functionally impor-
tant in the control of cell identity and disease (27). HNRNPL
and PTBP1 were the only members of the HNRNP family cat-
egorized as superenhancer-associated genes in LNCaP cells (Fig.
S2D). Taken together, our CRISPR screen, siRNA validation,
and superenhancer analysis identified HNRNPL, among the
other RBPs, as worthy of further study.

RNA Binding Landscape of HNRNPL by RNA Immunoprecipitation Coupled
with Next-Generation Sequencing. As a classic RBP, HNRNPL
functions through protein–RNA interaction. To characterize
the genome-wide landscape of HNRNPL-associated RNAs, we
used RNA immunoprecipitation coupled with next-generation
sequencing (RIP-seq) to map the HNRNPL–RNA interactome
in LNCaP cells. Similar to ChIP for analyzing protein–DNA inter-
actions, the RIP approach uses a specific antibody against the
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Fig. 2. HNRNPL is a functional RBP in prostate cancer. (A) Validation of essentiality of HNRNPs using siRNA oligos in LNCaP cells. LNCaP cells cultured in full
medium were transfected with corresponding siRNAs and cell growth was determined by cell counting after 6 d of transfection. Each HNRNP was targeted by
two independent and effective siRNA oligos (siRNA-a and siRNA-b). Data are shown as relative cell growth by comparison with control knockdown cells,
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knockdowns. (B) Cell growth validation upon HNRNPL and HNRNPK knockdown using an additional two independent siRNA oligos (siRNA-1 and siRNA-2) in
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Cells were counted after 6 d of siRNA transfection and data are shown as mean ± SD, n = 3. Knockdown efficiency was determined by Western blot analysis.
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protein of interest to pull down formaldehyde cross-linked
RNAs. Biological replicates of HNRNPL RIP-seq identified
6,892 consensus binding sites across 1,549 genes (Fig. 3A and
Dataset S2). The reproducibility of our RIP-seq data was evi-
denced by the correlation of read count across 10-kb windows
between replicates (r = 0.98) (Fig. 3B). We further categorized
the distribution of the binding sites across different genomic
elements and found that HNRNPL-associated RNA peaks are
mostly enriched in introns and 3′UTRs (Fig. 3C and Fig. S3A).
De novo motif analysis showed that the most enriched binding
motif in LNCaP cells is a CA-repeat or CA-enriched pattern

(Fig. 3D), consistent with previous studies of HNRNPL–RNA
interactions in other cell types (28, 29).
To further validate the RIP-seq peaks, we used two indepen-

dent monoclonal HNRNPL antibodies (4D11 and D5) to per-
form RIP-qPCR analysis on several representative RIP-seq
peaks with differential binding strengths. Although HNRNPL
does not bind to the negative control RPS28 transcript, it has
significant but differential binding for CTBP1, ROR2, and STX3
transcripts (Fig. 3 E and F). In addition, we performed RNA
pulldown assays to validate these peak regions. Biotin-labeled
peak-region RNA was in vitro transcribed and incubated with
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cell lysate. Streptavidin beads then captured the RNA–protein
complex and interacting proteins were resolved by Western blot
analysis. Only the sense strand of peak RNAs, but not the an-
tisense strand, could associate with HNRNPL, further proving
the sequence specificity of HNRNPL–RNA association (Fig.
S3B). Taking these data together, using RIP-seq we identified a
specific set of HNRNPL-associated RNAs in prostate cancer
with high confidence and precision, suggesting that these may
underlie the mechanism of HNRNPL function.

HNRNPL Regulates Alternative Splicing in Prostate Cancer Cells. The
significant intron-binding pattern implied that HNRNPL is pri-
marily bound to pre-mRNA and might directly regulate alter-
native splicing, consistent with a previously reported function of
HNRNPL (29, 30). To gain a comprehensive view of HNRNPL-
dependent alternative splicing events in prostate cancer, we
transfected either control or HNRNPL-targeting siRNAs in
LNCaP cells and applied paired-end sequencing on the poly-
adenylated transcriptome on three biological replicates. Alter-
native splicing events were analyzed by the rMATS algorithm
(31). In total, 206 alternative splicing events were identified as
HNRNPL-dependent, with the majority falling in the skipped
exon category (Fig. 4A and Dataset S3). HNRNPL binding is

significantly associated with these splicing changes (Fig. 4B),
supporting a direct effect of HNRNPL–RNA interaction on
alternative splicing.
Interestingly, the AR pre-mRNA is significantly bound by

HNRNPL and an HNRNPL-dependent alternative splicing event
was identified in the AR transcript (Fig. 4C, Fig. S3C, and Dataset
S3). A cryptic exon 2b was identified as alternatively spliced
between constitutive exon 2 and exon 3 in the AR transcript
(Fig. 4D). Using primers that discriminate the two alternatively
spliced isoforms, we found that the constitutive isoform con-
necting exon 2 and 3 decreased, whereas the alternative isoform
connecting exon 2 and 2b increased upon HNRNPL knockdown
(Fig. 4D). The pre-mRNA level of AR was not affected (Fig. 4D),
confirming that HNRNPL regulates AR isoform expression
through alternative splicing but not direct transcription. Moreover,
RIP-qPCR analysis confirmed that HNRNPL binds to AR intron 3,
contiguous with exon 3 that is alternatively spliced (Fig. 4 C and E).
The regulation of the protein level of the constitutive AR isoform by
HNRNPL was further confirmed by Western blot analysis (Fig. 4F).
In addition to AR, we also validated another HNRNPL bound and
regulated alternative splicing target MYH10 (Fig. S4 A–C and
Dataset S3), where HNRNPL knockdown significantly reduced
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the exon 6-containing isoform but slightly increased the exon
6-skipping isoform.

HNRNPL Regulates Circular RNA Formation. Circular RNA (circRNA),
generated by nonsequential back splicing of pre-mRNA (Fig. 5A),
has drawn increasing attention in the RNA field (32–34). In-
creasing length and depth of high-throughput sequencing allowed
increasing number of circRNAs to be discovered and character-

ized. Rather than splicing noise, circRNA has been shown to be
tightly regulated and functional (35). Recent advances in the un-
derstanding of circRNA biogenesis suggested splicing factors as
regulators involved in circRNA formation (32, 36, 37).
To determine whether HNRNPL is involved in circRNA

regulation, we profiled the circRNA transcriptome in LNCaP
cells by RNase R enrichment and RNA-seq profiling in either
control or HNRNPL knockdown conditions, and determined
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differential expression of circRNAs (Dataset S4). Among 4,389
detected circRNAs in the LNCaP transcriptome, we identified
139 significantly up-regulated and 93 down-regulated circRNAs
upon HNRNPL knockdown, whose parental mRNA gene ex-
pression remains unchanged (Fig. 5B). HNRNPL binding signifi-
cantly associates with up-regulated circRNAs and to a lesser extent
with down-regulated circRNAs upon HNRNPL knockdown when
the binding events occur at both flanks or within the circRNAs
(Fig. 5C). Using divergent PCR primers, we validated the ex-
pression change of several HNRNPL-regulated circRNAs upon
HNRNPL knockdown, but their parental pre-mRNAs remain
unchanged (Fig. 5D). The circularity and back splicing of these
circRNAs were confirmed by RNase R treatment and Sanger
sequencing (Fig. S5 A and B). Interestingly, one parental transcript
can give rise to multiple circRNAs, as exemplified by PPFIA2 (Fig.
5 D–G). Between the two highlighted HNRNPL binding peaks in
Fig. 5E, two HNRNPL-repressed circRNAs (denoted as circ-1 and
circ-2) were present, indicating the in vivo complexity of circRNA
regulation by HNRNPL.
To further test whether HNRNPL directly regulates circRNA

formation via HNRNPL–RNA interaction, we designed a mini-
gene system in which a fragment of GAPDH pre-mRNA with
exon 5 and 6, as well as their flanking introns, was cloned into an
expression plasmid. We then created different minigene con-
structs by introducing an HNRNPL binding site (CA)20 to either
or both of the flanking introns to evaluate the effect of HNRNPL
binding on circRNA formation. These minigene constructs were
transfected into HEK293T cells and relative circRNA levels
were determined and normalized against pre-mRNA expression
(Fig. 5H). This approach has several advantages in the evalua-
tion of cis element or trans factor effects on circRNA formation,
as there is no endogenous circRNA formation in the GAPDH
locus and little endogenous pre-mRNA expression compared
with the transfected minigene. HNRNPL binding on the flanking
introns significantly enhances circRNA formation, especially
when present at both sides (Fig. 5I), and HNRNPL knockdown
significantly reduces the circRNA expression (Fig. 5J). Sanger
sequencing confirmed the back-splicing exon junction of this
GAPDH circRNA (Fig. S5C). Consistent with this, we found
that one or more HNRNPL binding sites correlates with an in-
creased likelihood to form circRNAs in our LNCaP cell profiling
data (Fig. S5D). Because this may reflect the co-occurrence of
HNRNPL with other key circRNA-promoting factors, integrat-
ing data on the other factors might be needed to better elucidate
the role of HNRNPL in enhancing or repressing circRNA ex-
pression in vivo.

HNRNPL and Its RNA Targets are Clinically Relevant in Human
Prostate Cancer. To evaluate the clinical relevance of HNRNPL
and its RNA targets, we analyzed the mRNA expression of
HNRNPL in several independent prostate cancer cohorts (38–41).
HNRNPL expression is consistently higher in prostate tumors
versus normal prostate (Fig. 6A). Moreover, we confirmed its
higher protein expression in cancer by immunohistochemi-
cal analysis of tissue microarrays with 79 pairs of matched
prostate tumor and benign samples (Fig. 6 B and C and Fig. S6
A and B).
Using Oncomine Concepts Map analysis (42), we found that

both HNRNPL-regulated alternatively spliced genes and HNRNPL-
regulated circRNA genes are significantly associated with over-
expressed gene signatures in prostate cancer versus normal
prostate in several independent cohorts (Fig. 6 D and E). Fur-
thermore, HNRNPL-regulated circRNA genes are significantly
enriched among the LNCaP essential gene set (Fig. S6C), indicating
a functional link between HNRNPL and its downstream RNA
targets. The association of both HNRNPL expression and
its target RNA expression with prostate cancer progression
suggests that HNRNPL may regulate prostate cancer growth

through these downstream RNA targets. In addition to in-
creased expression in prostate cancer, HNRNPL also exhibits
frequent genomic amplification in many other tumor types (Fig.
S6D), indicating that its importance may not be limited to
prostate cancer.
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Discussion
Posttranscriptional events, including alternative splicing and circular
RNA formation, are increasingly appreciated to play important
roles in cancer progression. Factors regulating RNA biogenesis
including RBPs have been implicated in multiple fundamental
biological processes, both physiologically and pathologically.
However, which and how RBPs are functionally important in
the context of prostate cancer still remains largely unknown. To
this end, we systematically identified the genes that are essential
for prostate cancer growth by a genome-wide CRISPR screen
and found HNRNPL to be a top essential RBP.
To determine the landscape of HNRNPL-associated RNAs,

we performed HNRNPL RIP-seq and found that HNRNPL
binds preferentially to CA-repeats or CA-enriched RNA motifs
in introns and 3′UTR regions. Although these observations
agree with two recent studies of HNRNPL–RNA interactions by
cross-linking immunoprecipitation (CLIP)-seq in T cells and
iCLIP-seq in HeLa cells, respectively (43, 44), we identified
different RNA targets. This result may be because of context-
specific HNRNPL–RNA interactions, as our RIP-seq data are
aimed to understand HNRNPL function in prostate cancer.
Several hnRNP family proteins are known to function in al-

ternative splicing (45). HNRNPL has been shown previously to
enhance and repress alternative splicing of different targets (30,
46). Here we systematically profiled HNRNPL-dependent al-
ternative splicing events in prostate cancer cells and integrated
this with RIP-seq data to obtain a comprehensive view of direct
HNRNPL-regulated alternative splicing. The identification of
AR as an HNRNPL-regulated splicing target is interesting, in
light of the central role of AR in prostate cancer growth. How-
ever, it is unlikely that HNRNPL loss-of-function decreases cell
growth uniquely through the regulation of AR, for the following
reasons. First, overexpression of the full-length AR only partially
rescues the cell-growth phenotype caused by HNRNPL knock-
down (Fig. S3D). Second, the magnitude of full-length AR re-
duction is not sufficient to significantly affect androgen/AR-
regulated target gene expression, nor does androgen affect
genome-wide HNRNPL–RNA interactions (Fig. S4 D–F). Third,
despite lower expression of the full-length AR upon HNRNPL
knockdown, the increase of the short AR isoform, corresponding
to a constitutively active variant that could bind to DNA and
execute transcription without androgen stimulation, would be
expected to compensate for the reduction of full-length AR
in regulating gene expression and cell growth (47). Fourth,
HNRNPL is required in AR-null prostate cancer cell lines (Fig.
S2C), indicating that AR is not the only key target of HNRNPL.
Consistently, the HNRNPL-regulated splicing targets are col-
lectively associated with the overexpressed gene signatures in
prostate cancer, implying that these targets may together con-
tribute to mediate HNRNPL function (Fig. 6 D and E).
A very limited number of factors have been shown to regulate

circRNA formation (32, 36, 37). Our study added HNRNPL to
this list and suggested that a broader range of RBPs, especially
splicing factors, might be involved in circRNA regulation. Min-
igene assays of HNRNPL confirmed the previous model that
trans factor binding or direct complementary sequence pairing at
two flanking introns could promote circRNA formation by
bringing back spliced exon ends into close proximity (32, 36, 37).
However, the pattern of circRNA regulation in vivo may prove to
be more complicated because HNRNPL could either positively
or negatively interfere with the splicing machinery that is re-
sponsible for circRNA generation. The diverse association pat-
tern of HNRNPL binding and circRNA regulation also implies
that trans factors do not have to bind only at the flanking introns
to affect circRNA expression, broadening the way that circRNAs
are regulated. It is worth noting that the HNRNPL-regulated
circRNA genes are relevant to prostate cancer progression,

implying the potential function of the circRNAs generated
from these genes.
Considering the many other proposed functions of HNRNPL,

such as affecting RNA half-life or translation efficiency through
3′UTR binding (28, 48), our investigation here may not be ex-
haustive. We found that HNRNPL regulates its RNA targets
through either linearly alternative splicing or back-spliced circRNA
formation, which may collectively contribute to its essentiality in
prostate cancer. Our study not only identified a cohort of prostate
cancer dependency genes, but also revealed how HNRNPL or-
chestrates RNA biology, suggesting that targeting RBPs or RBP–
RNA interactions may be a novel therapeutic approach in
prostate cancer.

Materials and Methods
Cell Culture. LNCaP, CWR22Rv1, DU145, and PC3 cells were cultured in RPMI
medium 1640 supplemented with 10% FBS. RWPE-1 cells were cultured
in Keratinocyte Serum Free Medium (K-SFM; Kit Cat. no. 17005-042) with
kit-supplied bovine pituitary extract and human recombinant epidermal
growth factor. The use of human prostate samples for tissue microarray
analysis has been approved by The Gelb Center Committee at Dana-Farber
Cancer Institute.

CRISPR Screen. For the pooled genome-wide CRISPR screen, 1 × 108 LNCaP
cells were infected with the pooled lentiviral GeCKO v2 library at a multi-
plicity of infection of 0.5. After 3 d of puromycin selection, half of the sur-
viving cells were stored as 0-d control samples, and the rest of cells were
cultured for an additional 2 wk. PCR was performed on genomic DNA to
construct the sequencing library. Each library was sequenced at 30∼40 mil-
lion reads to achieve ∼300× average coverage over the CRISPR library and
data were analyzed by MAGeCK and MAGeCK-VISPR (21, 22).

siRNA Knockdown. LNCaP cells were seeded in 24-well plates and transfected
with 20 nM siRNA oligos using RNAiMax reagent (Life Technology). Knock-
down efficiency was determined after 72 h of transfection. Cell counting was
performed after 6 d of transfection. Detailed siRNA target sequences can be
found in SI Materials and Methods.

RNA Isolation and qRT-PCR. RNA was isolated using the RNeasy Mini Kit
(Qiagen). Reverse-transcriptase (Invitrogen) was used for random-primed
first-strand cDNA synthesis. Real-time PCR was carried out on ABI Prism
7300 detection system using SYBR Green PCR master mix. The ΔΔCt method
was used to comparatively quantify the amount of mRNA level. RPS28 gene
expression served as the internal control. Primer sequences can be found in
SI Materials and Methods.

RIP. Cells were cross-linked with 0.3% formaldehyde for 10 min at room
temperature and lysed with RIPA lysis buffer for 10 min on ice before son-
ication. The supernatant was collected and incubated with RIP antibodies for
4–6 h. After washing with RIPA buffer, RNA was eluted from the beads with
100 μL NaHCO3 and 1% SDS in the presence of proteinase K and RNase in-
hibitor at room temperature for 10 min with occasional vortex. The eluted
material was decross-linked at 65 °C for 45–60 min before purification of
RNA using TRIzol LS reagent (Life Technology). DNase I treatment was per-
formed to remove any residual DNA. RIP RNA was used for either library
preparation or direct qPCR assay.

Next-Generation Sequencing.All RIP-seq and RNA-seq librarieswere constructed
with TruSeq Stranded mRNA Library Prep Kit from Illumina according to the
manufacturer’s manual. RIP-seq libraries were sequenced as single end reads in
duplicates, whereas RNA-seq libraries were sequenced as paired end reads in
triplicates (splicing analysis) or duplicates (circRNA analysis) at ∼50 million reads
per library using either HiSEq. 2000 or NextSEq. 500 sequencing platforms.

Bioinformatics Analysis and Statistics. De novo motif analysis was performed
using MDscan and SeqPos that were implemented in the Cistrome package.
The RIP-seq and RNA-seq reads were aligned against the hg19 human ref-
erence genome with the University of California, Santa Cruz (UCSC) known
gene transcript annotation using TopHat v2.0.9. Because the RIP-seq and
RNA-seq data are strand-specific, the RIP-seq peaks were identified for “+”
and “–” strands separately using macs2 v2.0.10, with a scanning window size
of 100 bps but without shifting the reads [peak length ≥ 150, false-discovery
rate (FDR) ≤ 0.01, fold-change ≥ 4, and RIP read count ≥ 50]. The differential
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alternative splicing analysis was performed using rMATS, a computational
tool that allows for the analysis of replicate RNA-seq data. The circular RNA
was identified using the CIRCexplorer method (see details in SI Materials and
Methods). The differential expression analysis of circRNAs was performed
using LIMMA (FDR ≤ 0.35, fold-change ≥ 2), and the total normalized count
no less than 15. Moreover, only those circRNAs, whose parental genes
showed little expression change (fold-change ≤ 1.2), were considered dif-
ferentially expressed. Notably, increasing sequencing depth would further
enhance the power and robustness to identify or calculate the differential

expression of circRNAs. Statistical analysis of tissue microarray data were
performed using SPSS software, v22.0 (SPSS).
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