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Steady-state gene expression across the cell cycle has been studied
extensively. However, transcriptional gene regulation and the dynam-
ics of histone modification at different cell-cycle stages are largely
unknown. By applying a combination of global nuclear run-on
sequencing (GRO-seq), RNA sequencing (RNA-seq), and histone-
modification Chip sequencing (ChIP-seq), we depicted a comprehen-
sive transcriptional landscape at the G0/G1, G1/S, and M phases of
breast cancer MCF-7 cells. Importantly, GRO-seq and RNA-seq analysis
identified different cell-cycle–regulated genes, suggesting a lag be-
tween transcription and steady-state expression during the cell cycle.
Interestingly, we identified genes actively transcribed at earlyM phase
that are longer in length and have low expression and are accompa-
nied by a global increase in active histone 3 lysine 4 methylation
(H3K4me2) and histone 3 lysine 27 acetylation (H3K27ac) modifica-
tions. In addition, we identified 2,440 cell-cycle–regulated enhancer
RNAs (eRNAs) that are strongly associated with differential active
transcription but not with stable expression levels across the cell cycle.
Motif analysis of dynamic eRNAs predicted Kruppel-like factor 4 (KLF4)
as a key regulator of G1/S transition, and this identification was val-
idated experimentally. Taken together, our combined analysis charac-
terized the transcriptional and histone-modification profile of the
human cell cycle and identified dynamic transcriptional signatures
across the cell cycle.
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The process of cell division is vital to the growth and develop-
ment of an organism as a single fertilized cell develops into a

mature organism and organs undergo cellular renewal or repair
(1–3). Tight control of molecular events during the cell cycle
guarantees fidelity in preserving genetic information and the pre-
vention of unwarranted cell division. The progression of the cell
cycle involves well-orchestrated transcriptional and epigenetic
controls (4–7). Dysregulation of this process can lead to various
diseases, including cancer (8–10). Because the proportion of ac-
tively dividing cells is considerably higher in cancers than in normal
tissues, targeting the cell cycle is an attractive therapeutic option
for cancer treatment (11, 12).

Many proteins that carry out important functions during the cell
cycle display a cyclic expression pattern that is often regulated on the
transcriptional level (13, 14). Because it has been shown that cell-cycle
gene expression serves as a tumor signature (15), extensive efforts have
been devoted to identify periodically expressed genes across the cell
cycle using microarray platforms (4, 16–20). In addition, identification
of the cell-cycle–regulated genes and follow-up mechanistic studies of
individual genes have greatly advanced our understanding of cell-cycle
progression and the development of diseases. For instance, the tran-
scriptional regulation of cell-cycle genes was found to be governed
by the RB-E2F, DREAM, and MMB-FOXM1 complexes (21–23).
However, analyses using microarray or RNA sequencing (RNA-seq)
can identify only the accumulated, steady-state gene-expression level;

the temporal regulation of transcriptional dynamics during the cell
cycle remains elusive.

The nuclear run-on assay has long been used to investigate RNA
polymerase activity and nascent RNA transcription for individual genes
(24). The global nuclear run-on followed by RNA sequencing (GRO-
seq) assay enables the investigation of temporal transcription at a
genome-wide scale (25–28). In addition, GRO-seq also can be used to
analyze transcription from active regulatory sequences such as en-
hancers (29). Recent studies have found that the loading of RNA
polymerase II (Pol II) at enhancer regions can lead to widespread
active transcription and production of enhancer RNAs (eRNAs) (30,
31). Since then, eRNAs have been demonstrated to play important
roles in regulating enhancer–promoter interactions and target gene
transcription, rather than merely being transcriptional noises from
enhancers (32–35). GRO-seq has been applied widely to study tran-
scriptional regulation in a variety of biological systems but has not been
explored in the context of the cell cycle (26, 29, 36).

In this study, we used a combination of GRO-seq, RNA-seq, and
histone-modification ChIP sequencing (ChIP-seq) to investigate tran-
scriptional and epigenetic dynamics across the cell cycle. The multilevel
data of nascent transcription, steady-state expression level, and chro-
matin status provide insights not only into genes periodically regulated
during the cell cycle but also into the underlying regulatory mecha-
nisms. Our data depict a comprehensive transcriptional and epigenetic
landscape of the human cell cycle and will be a valuable resource for
cell-cycle studies.

Significance

Our study provided a comprehensive view of the transcriptional
landscape across the cell cycle. We revealed lag between tran-
scription and steady-state RNA expression at the cell-cycle level and
characterized a large amount of active transcription during early
mitosis. In addition, our analysis identified thousands of enhancer
RNAs and related transcription factors that are highly correlated
with cell-cycle–regulated transcription but not with steady-state
expression, thus highlighting the importance of transcriptional
and epigenetic dynamics during cell-cycle progression.
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Results
Mapping the Transcriptional and Epigenetic Landscape Across the Cell
Cycle. To investigate dynamic transcriptional and epigenetic gene
regulation across the cell cycle, we performed GRO-seq (25), RNA-
seq, and ChIP-seq of histone 3 lysine 27 acetylation (H3K27ac) and
histone 3 lysine 4 methylation (H3K4me2), two histone modifications
that mark promoters and enhancers, in the synchronized human
breast cancer cell line MCF-7 (Fig. 1A). The cells were synchronized
to G0/G1 with hormone starvation, to G1/S with double thymidine
treatment, and to early M phase with thymidine-nocodazole treat-
ment (Materials and Methods). The degree of synchrony at each cell-
cycle stage was monitored by flow cytometry analysis of DNA content
using propidium iodide staining (SI Appendix, Fig. S1) (37). Nuclei
were isolated from two biological replicates of the synchronized cells
and were subjected to the GRO-seq procedure (Materials and
Methods) for nascent RNA analysis. Total RNA from the same batch
of synchronized cells was subjected to RNA-seq analysis to investigate
steady-state expression levels. Chromatin profiling was conducted
using replicated H3K27ac and H3K4me2 ChIP-seq at all three cell-
cycle stages.

Approximately 30–40 million reads were uniquely mapped to the
human genome for each GRO-seq sample, and the biological replicates
for each cell-cycle stage were highly correlated (SI Appendix, Table S1).
Most reads (70%) align on the coding strand within the boundaries of
annotated National Center for Biotechnology Information (NCBI)

Reference Sequence (RefSeq) genes, and the typical bidirectional
transcription at the transcriptional start site (TSS) was observed (SI
Appendix, Fig. S2 and Table S1) (37). Thirty million reads were
uniquely mapped for each RNA-seq sample, more than 50% of which
were mapped to the annotated RefSeq gene exons and UTRs (SI
Appendix, Table S2). Fifteen to twenty million reads were uniquely
mapped for each ChIP-seq sample, and the correlation between bi-
ological replicates was more than 0.96 (SI Appendix, Table S3).

GRO-Seq and RNA-Seq Identify Different Cell-Cycle–Regulated Genes.
To investigate the correlation between nascent transcription and
steady-state expression levels, we compared the GRO-seq and RNA-
seq read counts for all the RefSeq annotated genes (Materials and
Methods). Although the correlations between GRO-seq samples at
different cell-cycle stages ranged from 0.89–0.99, and those of the
RNA-seq samples ranged from 0.78–0.90, the correlations between
GRO-seq and RNA-seq data were below 0.5 (SI Appendix, Fig. S3),
indicating significant difference between newly synthesized and accu-
mulated RNA levels. As an example, we plotted the histogram of
GRO-seq and RNA-seq read counts for Centromere-associated protein
E precursor (CENPE) (Fig. 1B), a centrosome-associated mitotic
kinesin (38). Although the RNA-seq signal for CENPE is three- to
fourfold higher at M phase than at G0/G1 and G1/S, the GRO-seq
signal plateaus at G1/S (Fig. 1B), suggesting a lag of RNA-seq in
reflecting transcription at cell-cycle stages. This lagging effect was
observed for most of the mitotic genes we curated from publicly
available datasets profiling cell-cycle expression (Fig. 1C) (16–20).

To assess the dynamics of transcriptional regulation at different cell-
cycle stages, we identified genes differentially transcribed across the cell
cycle. GRO-seq read counts for RefSeq genes at different cell-cycle
stages were normalized using spiked-ins as described previously (39),
and the normalized read counts were subjected to DESeq2 analysis (SI
Appendix, Fig. S4) (40). Gene ontology (GO) analysis using the Data-
base for Annotation, Visualization and Integrated Discovery (DAVID)
(41) was conducted on genes with significant [false-discovery rate
(FDR) <0.01] differential transcription among cell-cycle stages (Fig.
1D, SI Appendix, Fig. S5, and Dataset S1). Genes with higher tran-
scription in G1/S than in G0/G1 and M phases were enriched for the
GO term “M phase,” suggesting that mitotic genes are actively tran-
scribed in G1/S and accumulated at M phase. Importantly, most of the
mitotic genes we curated (Materials and Methods) overlapped with
genes in the M phase GO term and had the highest steady-state ex-
pression at M phase (Fig. 1C). In addition, genes highly transcribed at
G0/G1 were enriched in GO terms of “ribonucleotide binding” (SI
Appendix, Fig. S5), suggesting that genes required for DNA synthesis at
S phase are, at least in part, actively transcribed at G0/G1. Finally,
genes with decreased transcription at G0/G1 compared with the G1/S
and M phases were enriched in GO terms of “cytosolic ribosomes” and
“organelles” (Fig. 1D and SI Appendix, Fig. S5), and the duplication of
organelles and cytosolic components are the major activities at the
G1 phase. Taking these results together, we observed a prevailing lag of
mRNA abundance compared with gene transcription, suggesting that
the transcriptional activation of genes precedes the accumulation of
their transcribed products at the cell-cycle level. These results demon-
strate well-orchestrated transcriptional dynamics during the cell cycle.

Active Transcription at Early Mitosis. To investigate further the dy-
namic pattern of transcription at different cell-cycle stages, we per-
formed unsupervised k-means clustering of all the differentially
transcribed genes in GRO-seq samples (Fig. 2A). Among the six dy-
namic transcription patterns, cluster 3 contains genes with highest
transcription at M phase (Fig. 2A). The transcription complexes are in
general inactivated and disassembled from chromatin during chro-
mosome condensation in the prophase, and the mitotic phase is
known for silence of transcription (42). Although a fraction of tran-
scription factors, including mixed-lineage leukemia (MLL), bromo-
domain containing 4 (BRD4), Forkhead box A1 (FOXA1), and
GATA-binding protein 1 (GATA1), are retained on mitotic chro-
mosomes, they are thought to facilitate rapid gene reactivation post
mitosis (43–46). Our thymidine-nocodazole blocking followed by a
shake-off method enriches cells at the early mitotic phase. The
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Fig. 1. GRO-seq and RNA-seq identify different cell-cycle–regulated genes.
(A) Illustration of transcriptional dynamics analysis across the cell-cycle stages
in MCF-7 cells. GRO-seq and ChIP-seq experiments were performed in two
biological replicates, and RNA-seq was performed without replicates.
(B) Transcription and expression of CENPE as measured by GRO-seq and RNA-
seq at different cell-cycle stages. Green and blue bars on the right side of the
signal tracks represent the CENPE transcription and expression levels as mea-
sured by reads per kilobase per million mapped reads (RPKM). (C) Transcription
(GRO-seq) and expression (RNA-seq) of curated mitotic genes. The genes
specifically up-regulated at G2/M were curated from published datasets (Ma-
terials and Methods). Read counts of each gene were normalized among the
three cell-cycle stages so that their mean equals 0 and the SD equals 1, with red
representing higher signal and blue representing lower signal. (D) GO analysis
of cell-cycle-stage–specific genes identified by GRO-seq analysis. Bar length
represents the −log10 FDR. Red bars indicate terms enriched for up-regulated
genes; blue bars indicate terms enriched for down-regulated genes. The top
five enriched terms are shown for each comparison.
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identification of genes with peak transcription at early M phase
using GRO-seq was intriguing. Analysis of RNA-seq data revealed
that this group of genes had the highest expression level at G0/G1
(SI Appendix, Figs. S6 and S7), consistent with a lag of RNA-seq
in reflecting the transcription observed for the mitotic genes (Fig. 1C).

Further inspection of the top differentially transcribed genes in
cluster 3, such as TNS3 and LDLRAD4, found them to be of larger size
(Fig. 2B). We thus analyzed the length distribution of the genes in the
six clusters. The one-tailed Wilcox rank sum test between each cluster
pair showed that cluster 3 is significantly enriched for longer genes (Fig.
2C and SI Appendix, Fig. S8A). We then binned all differentially
transcribed genes into 10 length intervals (with interval 1 containing the
shortest genes and interval 10 containing the longest genes) and plotted
the proportion of genes in each interval for the six clusters. More than
20% of the cluster 3 genes were in interval 10, compared with 6–11%
of the genes in the other clusters (SI Appendix, Fig. S8B). The longer
genes had relatively lower transcription levels than shorter ones
(Fig. 2D).

To compare the transcription pattern of these long genes during the
cell cycle, we plotted the GRO-seq signal along the gene body for the
cluster 3 genes in the longest gene length interval (SI Appendix, Fig.
S8C). Genes were equally divided into 50 bins from the TSS to
cleavage/polyadenylation (CPA) site, and the average GRO-seq signal
within each bin was summarized. Many of these genes had a strong
GRO-seq signal at the TSS and a weak signal in the gene body at G0/
G1, indicating paused Pol II. Interestingly, as the cell cycle progressed
the signal in the gene body became stronger, especially at M phase. To
determine whether the strong GRO-seq signal observed at M phase is
from paused or actively elongating Pol II, we reanalyzed publically
available Pol II ChIP-seq data in mitotic HeLa cells treated with or
without flavopiridol, which inhibits the transcription elongation factor
P-TEFb and the release of promoter-proximal paused Pol II (47).
Flavopiridol treatment resulted in a significantly stronger Pol II
signal at the promoter regions (SI Appendix, Fig. S9), suggesting
that these Pol II were actively released in early mitotic cells without
flavopiridol treatment. Collectively, our analysis identified genes

actively transcribed at early M phase, which tend to be longer genes
with lower expression.

H3K27ac and H3K4me2 Signals Increase Globally at Mitosis.Given the
importance of changes in chromatin structure during the cell cycle
(48–50), we performed histone-modification ChIP-seq of H3K4me2
and H3K27ac to investigate chromatin dynamics across the cell cy-
cle. When normalized to same sequencing depth, the peak numbers
at different cell-cycle stages were very similar (SI Appendix, Table S3).
In addition, the correlations of the ChIP-seq signal among different
cell-cycle stages were very high (SI Appendix, Figs. S10 and S11), in-
dicating that the local histone-modification states were remarkably
stable despite the dramatic changes in chromosome organization
across the cell cycle (5).

We then grouped genes into high, medium, and low categories
based on the expression level calculated from RNA-seq data and
plotted the normalized tag counts from the histone marks ChIP-seq
data at promoter regions (TSS ± 1 kb). Consistent with a previous
report (51), both H3K4me2 and H3K27ac were positively correlated
with gene-expression level (SI Appendix, Fig. S12 A and B). A similar
trend was observed when genes were grouped based on the tran-
scription level calculated from GRO-seq data (SI Appendix, Fig. S12 A
and B). We then sought to determine whether the differential tran-
scription across the cell cycle was correlated with changes in local
histone-modification states. Intriguingly, when normalized to the same
sequencing depth, the H3K4me2 and H3K27ac signals were much
stronger at M phase for all the differentially transcribed genes, re-
gardless of their transcription patterns across the cell-cycle stages (Fig.
3 A and B and SI Appendix, Fig. S8 C and D).

To investigate whether this correlation results from the global in-
crease of the histone modifications at M phase, we plotted the ChIP-
seq signal at the union of peaks identified from all the samples and
indeed found both the H3K4me2 and the H3K27ac signals were sig-
nificantly higher at M phase (Fig. 3C). We then performed Western
blot analysis of H3K4me2 and H3K27ac at different cell-cycle stages.
When normalized to total H3 or tubulin, the protein levels of modified
H3 were higher at M phase than at the G0/G1 and G1/S phases (Fig.
3D), as was consistent with the ChIP-seq signals.

Identification of Cell-Cycle–Regulated eRNAs. Pol II and many other
transcription factors associate with a large number of enhancers marked
by H3K4me1 and H3K27ac and produce noncoding eRNAs that have
been demonstrated to play an important role in transcriptional regu-
lation (30, 31). Therefore we sought to determine whether there were
cell-cycle–regulated eRNAs and to identify their role in cell-cycle
progression. To this end, we developed a computational pipeline to
characterize cell-cycle–regulated eRNAs (Fig. 4A). H3K27ac ChIP-
seq peaks at different cell-cycle stages were merged, and promoter
regions were filtered out, leaving ∼50,000 peaks as potential active
enhancers. Because eRNAs are often transcribed bidirectionally from
enhancer regions (31), we applied a sliding window approach to
identify enhancer regions with bidirectional transcription (Fig. 4B).
This analysis identified a total of 4,922 eRNAs, 2,440 of which were
differentially transcribed at different cell-cycle stages (Fig. 4C).

To investigate the role of eRNAs in transcriptional regulation
and cell-cycle progression, we analyzed the correlation between
differentially transcribed eRNAs and genes. Binding and Expres-
sion Target Analysis (BETA) software (52) was used to reveal a
relationship between eRNAs and genes. Accordingly, a strong
correlation was identified between eRNAs and differentially
transcribed genes as determined by GRO-seq (Fig. 4D and SI
Appendix, Fig. S13). Similar analysis performed with RNA-seq data
found much weaker correlation between the eRNAs and differ-
entially expressed genes (SI Appendix, Fig. S14), further empha-
sizing the advantage of analyzing temporal transcription regulation
from GRO-seq rather than analyzing steady-state gene expression
from RNA-seq.

Analysis of eRNAs Identifies Kruppel-Like Factor 4 KLF4 as a Key
Regulator of G1/S Transition. After confirming the correlation be-
tween cell-cycle–regulated eRNAs and genes, we sought to identify
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Fig. 2. Active transcription at early M phase. (A) Clustering of differentially
transcribed genes at different cell-cycle stages identified by GRO-seq anal-
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tering. (B) Representative long genes up-regulated at M phase. Blue and
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the transcription factors that regulate these eRNAs. Transcription
factors usually bind to open chromatin regions. To improve the
spatial resolution of the transcription factor-binding sites in eRNA
regions, we performed DNase sequencing (DNase-seq) in MCF-7
cells to identify open chromatin regions that were hypersensitive to
DNase I digestion. Subsequently, we performed motif analysis at
DNase I hypersensitivity sites (DHS) in the eRNA regions (SI Ap-
pendix, Fig. S15). This analysis identified motifs of multiple tran-
scription factors including Kruppel-like factor 4 (KLF4), which ranked
top in the eRNA regions that are highly transcribed at G0/G1 (Fig. 5A
and SI Appendix, Table S4). KLF4 is important in cell-cycle control,
cellular differentiation, and carcinogenesis (53–55). We then com-
pared published KLF4 ChIP-seq peaks (56) with eRNAs and found

that KLF4 binding was enriched in eRNA regions with peaked tran-
scription at G0/G1 (Fig. 5B and SI Appendix, Fig. S16).

In addition, GRO-seq revealed that the KLF4 transcription level was
high at G0/G1 and decreased at the G1/S and M phases (Fig. 5C). A
more dramatic decrease was observed at the protein level through
Western blotting (Fig. 5D). To evaluate the role of KLF4 in cell-cycle
progression, we silenced KLF4 by siRNAs in MCF-7 cells. FACS
analysis showed a significant increase in the proportion of cells at S
phase (Fig. 5E). Moreover, cell-proliferation analysis showed that si-
lencing KLF4 promotes MCF-7 cell growth (Fig. 5F). Together the
results indicate that KLF4 has an important role in blocking G1/S
transition. Because transcription factors function by regulating the
transcription of specific gene targets, we aimed to identify a KLF4-
dependent gene signature that modulates this G1/S transition through
the regulation of eRNAs. BETA analysis identified 10 potential
KLF4 direct target genes, six of which were significantly down-regulated
upon silencing of KLF4 (Fig. 5G). Among the six genes down-regulated
by KLF4 silencing, KRT19 has been reported to suppress cell pro-
liferation, and silencing of KRT19 leads to an increased proportion of
cells at S phase (57). On the other hand, CCND1, a gene with decreased
expression at S phase, is a well-characterized cell-cycle regulator that
promotes the G1/S transition (58), and NEAT1 and HSPB1 have been
reported to promote the proliferation of breast cancer cells (59, 60).
Thus the exact mechanism by which KLF4 controls G1/S transition is
unclear and warrants further investigation.

Discussion
In this study, we systematically investigated transcriptional and epi-
genetic dynamics during the cell cycle by analyzing GRO-seq, RNA-
seq, and histone marks ChIP-seq data at G0/G1, G1/S, and M phases
in the MCF-7 breast cancer cell line. Our study revealed (i) a lag
between transcription and steady-state RNA expression at the cell-
cycle level; (ii) a large amount of active transcription during early
mitosis; (iii) a global increase in active histone modifications at mi-
tosis; (iv) thousands of cell-cycle–regulated eRNAs; and (v) dynamic
eRNAs bound by transcription factors such as KLF4 that regulate cell-
cycle progression.

Steady-state mRNA abundance is influenced by a few factors, in-
cluding transcription, RNA processing, maturation, and degradation.
Therefore, measuring steady-state mRNA levels by microarray or
RNA-seq techniques may not accurately reflect active transcription.
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Indeed, GRO-seq and 4-thiouridine metabolic labeling followed by
sequencing (4sU-seq) analyses that measure nascent transcription have
revealed a broad inconsistency between transcription rate and mRNA
levels (25, 28, 61, 62). Specifically, there is a delay in steady-state ex-
pression reflecting the transcription and mass production of rapidly
degraded transcripts that are not detectable at the steady-state ex-
pression level. Most of the previous nascent transcription analyses were
performed with unsynchronized cells or with synchronized cells within a
short time window that was insufficient to cover multiple cell-cycle
stages (26, 28, 29, 32, 35, 36, 62). Importantly, our GRO-seq and
RNA-seq analysis at different cell-cycle stages revealed a lag between
active transcription and steady-state expression during the cell cycle.
The RNA degradation rate has been considered the most prominent
measurable factor that contributes to the lag between transcription and
accumulated RNA levels. Recent studies demonstrated that the half-
lives of mammalian genes range from less than 1 min to more than 3 h
(61, 62). In agreement with these observations, our data showed that
mitotic genes are most highly transcribed at G1/S, and the genes most
highly transcribed at M phase are more abundant at G0/G1, suggesting
that these genes have an extremely long half-life.

Mitotic chromatin is transcriptionally inactive in general, and even
ongoing transcriptions are aborted to ensure the integrity of the sepa-
rating chromosomes (63). However, exceptions have been found in
which the promoter of the cyclin B1 gene maintains an open chromatin
configuration, and the gene is actively transcribed during mitosis (64).
Recently, additional large-scale studies have revealed that part of the
mitotic chromatin remains accessible to Pol II and transcription factors
such as MLL, BRD4, GATA1, FOXA1, and AR (43–46, 65). Our
GRO-seq data showed that although CCNB1 transcription peaks at G1/S,

strong nascent transcription was observed at M phase. More in-
terestingly, we identified a group of genes with a transcription peak at M
phase. The observation that this group was enriched for unusually long
genes made us hypothesize that the GRO-seq signal was from the in-
complete transcription from previous stages (66). We therefore com-
pared the GRO-seq signal along the gene body to identify the longest
quarter of genes with the highest GRO-seq signal at M phase. If the
hypothesis is correct, we should be able to observe a GRO-seq signal
pattern shifted from the TSS toward the CPA site during the cell-cycle
progression from G0/G1 to M phase. Our analysis revealed a uniform
distribution of signal along the gene body for most genes. In addition,
reanalysis of publically available Pol II ChIP-seq data in early mitotic
cells pretreated with and without flavopiridol (47) confirmed that Pol II
is actively engaged at the TSS of these genes. Together, the results
suggested that the high GRO-seq signal of these genes arose from active
transcription at early M phase rather than from incomplete transcription
at the G0/G1 and G1/S phases. Importantly, Liang et al. (47) recently
reported mitotic transcriptional activation as a mechanism to clear
actively engaged Pol II from mitotic chromatin; this mechanism is
consistent with our observation of active transcription at early
mitotic cells.

In support of active transcription at M phase, we observed ex-
tremely stable chromatin states marked by active histone modifica-
tions H3K4me2 and H3K27ac across different cell-cycle stages. In
addition, the total H3K4me2 and H3K27ac levels increased signifi-
cantly at M phase. Previous studies have identified mitotic-specific
H4K20 methylation and the dynamics of H3K36 and H3K27 meth-
ylations across the cell cycle (67–69). The functional role of post-
transcriptional histone modifications in the cell cycle is still largely
unknown and warrants further analysis. It is worth noting that these
observations were made in cancer cells with uncontrolled cell division;
these cells may differ from normal cells with more stringent cell-cycle
regulation (70). Future studies are warranted to explore the mecha-
nisms underlying the active transcription during mitosis in normal and
cancer cells.

Taken together, our analyses identified thousands of eRNAs and
related transcription factors that are highly correlated with cell-cycle–
regulated transcription but not with steady-state expression, thus
highlighting the importance of transcriptional and epigenetic dynamics
during cell-cycle progression. Overall, our study provides a compre-
hensive view of transcriptional landscape across the cell cycle and
deepens our understanding of transcriptional dynamics during cell cycle.
Future studies combining transcription, expression, and proteomics data
at more detailed time courses are warranted to provide a more com-
prehensive view of cell-cycle regulation.

Materials and Methods
Cell Culture and Synchronization. TheMCF-7 cells were obtained fromATCC and
were cultured in DMEM medium supplemented with 10% (vol/vol) FBS,
1% penicillin-streptomycin, and 1% glutamine in a 5% (vol/vol) CO2 hu-
midified incubator. Cells were synchronized to G0/G1, G1/S, and M phase
with hormone starvation, thymidine double treatment, and thymidine-
nocodazole treatment, respectively. For detailed operations, see SI Appendix,
Supplemental Methods.

GRO-Seq Library Construction. Nuclear run-on experiments (SI Appendix, Sup-
plemental Methods) were performed as described previously (25). The resultant
RNA was purified further with the TURBO DNA-free kit (AM1907; Life Tech-
nologies) to remove residue DNA contamination. Libraries then were con-
structed with the Encore Complete RNA-Seq DR Multiplex System 1–8 (0333-32;
NuGEN Technologies, Inc.) and were sequenced to 50 bp with an Illumina
HiSeq machine.

Additional experimental procedures and methods are described in SI
Appendix, Supplemental Methods.

Availability of Data and Material. MCF-7 GRO-seq, RNA-seq, ChIP-seq, and
DNase-seq raw sequence tags and processed bed files have been submitted to
the National Center for Biotechnology Gene Expression Omnibus (GEO) da-
tabase under accession no GSE94479.
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Supplemental Figures 
 

 
Figure S1. Synchronization of MCF-7 cells at different cell cycle stages. FACS showing 
DNA content of unsynchronized (A) and synchronized MCF-7 cells at (B) G0/G1, (C) G1/S and 
(D) M phases.  
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Figure S2. GRO-seq signal at the gene promoter regions. Divergent transcription at 
transcription start sites was observed. Sense: gene sense strand GRO-seq signal; Anti Sense: 
gene antisense strand GRO-seq signal. TSS: transcriptional start site. 
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Figure S3. Correlation between GRO-seq and RNA-seq samples. GRO-seq and RNA-seq 
reads counts for all the RefSeq annotated genes were used to calculate pearson correlation 
between each sample. 
 
 

 
 
Figure S4. MAPlot of GRO-seq data. DESeq2 normalized GRO-seq signal was used to 
generated MAPlot for G1/S vs G0/G1(A), M vs G1/S (B) and G0/G1 vs M (C). Log2 
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transformed mean read counts with 1 as offset was used as ‘A’ while log2 transformed fold 
change was used as ‘M’. 

 
Figure S5. GO analysis of genes differentially transcribed between G0/G1 and M phases. 
Red color represents GO terms of genes with higher transcription level at G0/G1 and blue color 
represents GO terms of genes with lower transcription at G0/G1 compared with M phase. Top 
five enriched terms are shown for each comparison. 
 
 

  
Figure S6. MAPlot for RNA-seq data. Gfold output is used to generated MAPlot for G1/S vs 
G0/G1(A), M vs S (B) and G0/G1 vs M (C). Log2 transformed read counts with 1 as offset is 
used as ‘A’ while log2 transformed fold change for ‘M’. 
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Figure S7. Normalized GRO-seq and RNA-seq signals for cluster 3 genes. Read counts for 
genes at different cell cycle stages are normalized so that their mean equals to 0 and standard 
deviation equals to 1, with red for higher signal and blue for lower signal. 
 

 
Figure S8. Genes upregulated at M phase tend to be long genes. (A) Empirical cumulative 
distribution of length of genes in the 6 clusters. (B) Proportion of genes in the 6 clusters in 
different length bins. All differential genes in the 6 clusters are divided into 10 bins according to 
their length, with 1 represents genes of shortest length and 10 represents genes of longest length. 
(C) GRO-seq signal across the gene body of M phase long genes (cluster three in figure panel A 
falls within the 10th interval of figure panel B) at G0/G1 (left panel), G1/S (middle) and M (right 
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panel) phases. Genes are divided into fifty bins and signal within each bin is summarized. The 
top and bottom three panels represent genes in plus and minus strands, respectively. CPA: 
cleavage/polyadenylation site. 
 

 
Figure S9. Active transcription of long genes at early M phase. Pol II signal (GSE71848) 
across the bodies of cluster 3 plus strand (A) and minus strand (B) genes at early M phase. Left 
shows signal with flavopiridol treatment while right for signal with DMSO treatment. Color 
represents normalized signal intensity with red indicates higher intensity and blue indicates lower 
intensity. 
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Figure S10. Correlation between ChIP-seq samples. Signals at H3K4me2 (A) and H3K27ac 
(B) peak regions were summarized and pearson correlation between samples was calculated. 
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Figure S11. Overlap among ChIP-seq peaks from G0/G1, G1/S and M phase. Top 10000 
peaks ranked by P value were used for H3K4me2 (A) and H3K27ac (B) ChIP-seq comparison.  
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Figure S12. Correlation between RNA-seq, GRO-seq and histone modifications (H3K4me2 
and H3K27ac) ChIP-seq signals. Average H3K4me2 (A) and H3K27ac (B) signals at G0/G1 
(left panel), G1/S (middle panel) and M (right panel) phases at promoter regions. Genes are 
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divided into high, medium and low expression bins according to expression (RNA-seq; upper 
panel) and transcription (GRO-seq; bottom panel) levels. Box represents expression value of 
genes in each bin as measured by normalized GRO-seq read counts on gene body. Average (C) 
H3K4me2 and (D) H3K27ac ChIP-seq signal of genes in the 6 clusters.  
 

 
 
Figure S13. Correlation between cell cycle regulated eRNAs and differentially transcribed 
genes (calculated from GRO-seq). BETA analysis was performed for genes differentially 
transcribed between M and G1/S phases (A), G0/G1 and M phases (B). 

 
 
Figure S14. Correlation between cell cycle regulated eRNAs and differentially expressed 
genes (calculated from RNA-seq). BETA analysis was performed for genes differentially 
expressed between G1/S and G0/G1 (A), M and G1/S phases (B), G0/G1 and M phases (C).  
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Figure S15. Overlap between eRNAs and DNase I hypersensitivity sites (DHSs). Fraction of 
identified eRNAs overlap with DHSs at G0/G1(A), G1/S phase (B) and M phase(C). Cornflower 
blue represents the proportion of eRNAs overlap with DHSs while white represents the non-
overlapping proportion. Numbers indicate corresponding percentage. 
 

 
Figure S16. Correlation between eRNA and KLF4 bidning. Left panel: clusters of cell cycle 
stage specific eRNAs. Read counts for eRNAs among different stages are normalized so that 
their mean equals to 0 and standard deviation equals to 1, with red for higher signal and blue for 
lower signal. Right panel: KLF4 ChIP-seq signal at eRNA regions. Numbers on the right side of 
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KLF4 ChIP-seq signal panel represent the percentage of eRNA regions overlapping with KLF4 
ChIP-seq peaks in each cluster. 
 
Supplemental Tables 

Table S1: Summary of GRO-seq data.       

Samples Total Reads 
Mapped 
Reads 

Reads in 
Gene 

Percentage of 
Reads within 

Genes 

Correlation 
between 

Replicates 
G0/G1 
rep1 56,685,478 35,369,554 24,243,734  69 

0.99 
G0/G1 
rep2 60,368,552 36,383,854 24,950,768 69 

G1/S rep1 52,774,862 32,345,172 22,763,712 70 
0.99 G1/S rep2 59,272,432 38,132,400 27,121,920 71 

M rep1 71,371,192 44,652,594 31,706,331 71 
0.99 M rep2 77,329,328 50,918,378 36,241,287 71 

 

Table 2: Summary of RNA-seq data.     

Samples Total Reads 
Mapped 
Reads 

Reads in 
Exon 

Reads in 
UTRs (5'+3') 

Percentage of 
Reads within 

Genes 
G0/G1 42,323,301 32,883,868 8217,475 8,663,122 51 
G1/S 38,550,123 30,261,889 8,708,944 9,456,981 60 

M  30,128,558 30,128,558 6,020,357 9,670,172 52 
 

Table S3: Summary of ChIP-seq data.         

Histone 
Marks Samples 

Total 
Reads 

Mapped 
Reads  

Peak 
Number

a 

Peak 
Number 
Mergedb  

Correlati
on 

between 
Replicates 

H3K4me2 G0/G1 rep1 26,388,765 20,667,934 98,035 
105,653 0.97 H3K4me2 G0/G1 rep2 27,451,444 21,072,341 74,432 

H3K4me2 G1/S rep1 28,267,586 22,736,451 112,056 
120,513 0.96 H3K4me2 G1/S rep2 21,415,085 17,336,836 97,834 

H3K4me2 M rep1 21,415,085 17,120,386 96,147 
105,230 0.98 H3K4me2 M rep2 19,497,695 15,658,691 94,231 

H3K27ac G0/G1 rep1 23,196,413 17,356,857 40,626 
60,926 0.96 H3K27ac G0/G1 rep2 19,363,495 14,506,659 41,703 

H3K27ac G1/S rep1 13,966,918 10,941,444 54,484 
64,664 0.96 H3K27ac G1/S rep2 21,684,672 16,455,765 37,075 

H3K27ac M rep1 26,372,329 21,106,214 66,859 
76,359 0.97 H3K27ac M rep2 20,837,808 15,523,175 49,207 
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a: mappable reads down sampled to 15M for H3K4me2 and 10.9M for H3K27ac. 

b: down sampled reads in the replicates merged. 

 

Table S4: Motifs enriched in eRNA regions. 

G0/G1_diff_eRNA_down 
 

G0/G1_diff_eRNA_up 
motif id factor -10*LOG(pval) 

 
motif id factor -10*LOG(pval) 

M01588 KLF4|Klf4 690.776 
 

M00915 
AP-
2|TFAP2A 533.247 

M00931 SP1 657.94 
 

M00470 TFAP2C 463.239 
M00932 SP1 507.189 

 
M01199 TRIM28 334.371 

M00196 SP1 505.34 
 

M00189 
AP-
2|TFAP2A 275.915 

M00255 GC box 488.629 
 

M01219 SP1|SP3 215.07 
M00933 SP1 485.496 

 
M00982 Egr1 205.468 

M01273 SP4 459.837 
 

M00800 TFAP2A 199.156 

M01783 SP2|Sp2 436.219 
 

M01045 
AP-
2alphaA 184.778 

M01200 CTCF 372.797 
 

M01047 
AP-
2alphaA 181.333 

MA0079 SP1 362.492 
 

M01122 ZNF219 135.999 
M00803 E2F1|E2f1 331.231 

 
M01643 NHP10 135.196 

M01780 RAP1 272.713 
 

M01068 
UF1H3BE
TA 132.855 

M01643 NHP10 271.05 
 

M01200 CTCF 129.899 
M01057 ERF2 243.275 

 
M00245 EGR3 113.516 

M00958 ABI4 237.11 
 

M00652 NFE2L1 106.16 
M01175 ZBTB7B 234.49 

 
M00244 EGR4 98.859 

MA0139 CTCF 228.555 
 

MA0139 CTCF 98.763 

M00321 
Muscle 
initiator 206.938 

 
M00400 ABF1 97.79 

M00695 TEAD2 204.242 
 

M00698 
HEB|TCF1
2 91.205 

M00323 

Muscle 
initiator 
sequences-19 202.669 

 
M00469 AP-2alpha 86.846 

M00324 

Muscle 
initiator 
sequence-20 201.675 

 
MA0003 TFAP2A 86.846 
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M00008 SP1 179.615 
 

M00034 p53|TP53 82.658 
M01199 TRIM28 172.098 

 
MA0163 PLAG1 80.54 

M01118 WT1|Wt1 169.286 
    M00982 Egr1 169.193 
    

M01219 SP1|SP3|Sp1 161.719 
    M01622 UGA3 161.423 
    M00778 AhR|AHR 160.985 
          
    

S_diff_eRNA_down 
 

S_diff_eRNA_up 

motif id factor -10*LOG(pval) 
 

motif id factor 
-
10*LOG(pval) 

M00915 
AP-
2|TFAP2A 425.29 

 
M00697 HBP-1b 161.808 

M00189 
AP-
2|TFAP2A 257.064 

 
M00113 CREB 137.064 

M00982 Egr1 246.708 
 

M00801 CREB 133.483 
M01199 TRIM28 181.392 

 
M01227 MAFB 128.706 

M00470 TFAP2C 180.17 
 

M00694 E4F1 123.624 
M00652 NFE2L1 177.438 

 
M00936 HBP-1a 118.992 

M00034 p53|TP53 162.067 
 

M01168 SREBP 108.07 
M01122 ZNF219 158.356 

 
M00514 ATF4 107.082 

M00442 ABF 149.596 
 

M01034 Ebox 90.682 
M01196 CTF1 137.278 

 
M00916 CREB 90.132 

MA0119 TLX1|NFIC 137.278 
 

M00490 BACH2 88.707 
M00469 AP-2alpha 137.203 

 
M01580 Rtg3 86.518 

MA0003 TFAP2A 137.203 
 

M00944 CPRF-3 84.112 

M01045 AP-2alphaA 137.035 
 

M00375 TGA1b 84.004 
M00665 SP3 130.27 

 
M00976 ARNT 83.527 

M00400 ABF1 114.277 
 

M01586 TGA2 78.711 
M01643 NHP10 111.564 

 
M00237 ARNT 72.091 

M01219 SP1 108.137 
 

M00778 AhR 69.65 
M00244 EGR4 102.563 

    
M01068 

UF1H3BET
A 98.694 

    M01200 CTCF 85.807 
    MA0139 CTCF 72.845 
    M00245 EGR3 69.194 
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    M_diff_eRNA_down 
 

M_diff_eRNA_up 

motif id factor -10*LOG(pval) 
 

motif id factor 
-
10*LOG(pval) 

MA0099 JUN 690.776 
 

M00932 SP1 342.723 
M00199 AP-1 690.776 

 
M00931 SP1 335.991 

M01267 FOSL1 690.776 
 

M00196 SP1 304.745 
M00926 AP-1 690.776 

 
M00255 GC box 297.429 

M00490 BACH2 658.885 
 

M00958 ABI4 254.201 
M00517 JUND 638.734 

 
M00982 Egr1 240.785 

M01687 ARG RII 582.877 
 

M01273 SP4 237.7 
M00983 MAF 534.752 

 
M00803 E2F1 213.235 

M00495 BACH1 528.145 
 

M00189 AP-2 207.997 
M00204 GCN4 419.701 

 
M01622 UGA3 200.453 

M00174 AP-1 404.155 
 

M01199 TRIM28 200.382 
M01795 Cap1 370.82 

 
M00933 SP1 195.873 

M00188 AP-1 365.739 
 

M00807 ERG1 192.864 
M00037 NFE2 358.717 

 
M01118 WT1 188.773 

M00925 JUNB 305.676 
 

M01122 ZNF219 184.466 
M00924 AP-1 305.237 

 
M01520 RSC30 177.751 

M00821 
GABPA|Gab
pa 300.038 

 
M01175 ZBTB7B 169.432 

M01673 ARG RI 280.009 
 

M00244 EGR4 143.644 
M00038 GCN4 262.864 

 
M00243 EGR1 143.359 

M01555 GCN4 261.842 
 

M00246 EGR2 140.473 
M00172 AP-1 210.159 

 
M01588 KLF4 138.616 

M00514 ATF4 203.524 
 

MA0073 RREB1 135.543 
MA0150 NFE2L2 182.751 

 
M01518 Cha4 132.852 

      
 

M00245 EGR3 129.238 

	 	 	  
M01057 ERF2 127.829 

	 	 	  
M01792 HMO1 126.081 

	 	 	  
M01783 SP2 126.027 

	 	 	  
MA0079 SP1 124.243 

 

Dataset S1: file “Dataset S1.xls” contains complete lists of GO terms enriched in differentially 

transcribed genes at different cell cycle stages. Terms with FDR less than 0.01 are included for 

each comparison.  

 

Supplemental methods 

Cell synchronization 
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G0/G1: MCF-7 cells were cultured in white DMEM media supplemented with 10% (vol/vol) 
charcoal-stripped FBS for 72 hours. 
 
G1/S: At 25-30% confluence, MCF-7 cells were wash twice with 1xPBS and cultured in red 
DMEM media supplemented with 10% (vol/vol) FBS, 1% Pen-Strep, 1% Glutamine and 2mM 
thymidine (Sigma-Aldrich, St. Louis, MO) for 18 hours (first block). After the first thymidine 
block, MCF-7 cells were with 1xPBS to remove thymidine and then cultured in fresh red DMEM 
supplemented with 10% (vol/vol) FBS, 1% Pen-Strep and 1% Glutamine for 9hours. After 
releasing, perform second round of thymidine block for 17 hours.  
 
M phase: At 40% confluence, MCF-7 cells were cultured in red DMEM supplemented with 10% 
(vol/vol) FBS, 1% Pen-Strep, 1% Glutamine and 2mM thymidine for 24 hours (S-phase block). 
After thymidine block, wash with 1xPBS and culture in fresh red DMEM supplemented with 
10% (vol/vol) FBS, 1% Pen-Strep and 1% Glutamine for 3 hours. After releasing, add 200ng/ml 
nocodazole (Sigma Aldrich) to the media for 12 hours (mitotic block). After mitotic block, 
gently shake off and collect the non-adhesion cells.  
 
RNA-seq 
Total RNA was extracted from synchronized MCF-7 cells with TRIZOL REAGENT (Life 
Technologies, 15596026) and fragmentized with sonication. Libraries were then constructed with 
Encore Complete RNA-Seq DR Multiplex System 1-8 (Nugen Technologies lnc, 0333-32) and 
sequenced to 50bp with Illumina HiSeq machine. 
 

ChIP-seq  
Chromatin from synchronized MCF-7 cells was digested with Nuclease micrococcal from 
Staphylococcus aureus (Sigma Aldrich, N3755-50UN) and dialyzed with Slide-A-Lyzer Dialysis 
Cassettes (Thermo Fisher Scientific, PI66380). Dynabeads Protein A (Life Technologies, 
10002D) and G (Life Technologies, 10004D) were used for immunoprecipitation with antibodies 
against H3K4me2 (EMD Millipore, 07-030) and H3K27ac (Abcam, ab4729). ChIP-seq libraries 
were constructed with ThruPLEX DNA-seq kit (Rubicon) and sequenced to 50bp with Illumina 
HiSeq machine. 
 
DNase-seq 
DNase hypersensitivity mapping was performed as previously described (1). Nuclei from 
asynchronous MCF-7 cells were digested with DNase I (Roche Diagnostics, 11873580001) and 
50 to 100 bp DNA fragments were gel purified. DNase-seq libraries were constructed with 
ThruPLEX DNA-seq kit (Rubicon) and sequenced to 50bp with Illumina HiSeq machine. 
 
siRNA transfection 
siRNAs targeting KLF4 and control siRNA were purchased from GE Dharmacon. Lipofectamine 
RNAiMAX transfection reagent (ThermoFisher, 13778150) was used for siRNA transfection 
following the manufacturer’s instructions.  
 

Nuclear run-on assay 
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Nuclei from 5x106 MCF-7 cells were isolated, run-on-transcribed with Br-UTP and other NTPs 
(Thermo Fisher Scientific, FERR0481), and base-hydrolyzed to yield nascent RNAs with an 
average size around 100nt. RNA fragmentation reagent (Life Technologies, AM8740) was used 
to fragment RNA. Br-UTP-incorporated nascent transcripts were purified with BrdU antibody 
(Santa Cruz Biotechnology; sc-32323). Micro Bio-Spin 30 Columns (Bio-Rad Laboratories, 
7326250) was used for RNA clean up.  
 

GRO-seq data analysis 
GRO-seq reads were mapped to the human genome (hg19) using Bowtie (2) with default 
parameters. Replicates were highly correlated and were pooled for further analysis. 
Normalization between datasets was performed with Drosophila S2 spike-in cells as previously 
introduced (3). The hg19 RefSeq gene list was used for all transcription level analysis. Htseq 
(v0.5.4p3) was used to get gene level read counts number from Bowtie mapped bam files. The 
resultant gene read count table was subjected to DESeq2 (v1.8.2) for differential gene analysis 
and a cutoff of 0.01 for FDR was chosen to identify significant differential genes. For the 
visualization of GRO-seq data, we generated bedGraph files using genomeCoverageBed function 
in the BEDTools suite(4) with signal scaled to reads per 10 million for both plus and minus 
strands. The bedGraph files for replicates were pooled together before converting to bigwig 
format using the bedGraphToBigWig function in BLAT suite (5). 
 
ChIP-seq and DNase-seq data analysis 
ChIP-seq and DNase-seq reads were mapped to human genome (hg19) using Bowtie. MACS2 
was used for peak calling with the parameter “--SPMR” on. Resultant bedgraph files were 
converted to big wiggle files with bedGraphToBigWig function.  
 
RNA-seq data analysis 
RNA-seq reads were aligned to human genome (hg19) with tophat (v2.1.1). GFOLD (v1.1.3) (6) 
was used to generate gene level read count and carry out differential expression analysis. Genes 
with GFOLD value not equal to zero were deemed differential.  
 
Gene Ontology Analysis 
Gene ontology analyses were performed using David (http://david.abcc.ncifcrf.gov/home.jsp; 
(7)). All expressed genes were used as a background for GO analysis. Terms with FDR less than 
0.01 were considered significantly enriched. A complete list of terms enriched can be found in 
Dataset S1.  
 
BETA analysis 
Binding and Expression Target Analysis (BETA) analysis was performed between eRNAs and 
differentially transcribed or expressed genes separately. BETA analysis takes into account the 
distance between the eRNAs and genes nearby, the number of eRNAs within certain distance, 
and the differential transcription level of genes identified to calculate the correlation between 
eRNAs and nearby genes. GRO-seq data was used to identify differentially transcribed genes 
while differentially expressed genes were identified with RNA-seq data. Red lines represent 
genes that are up-regulated while purple lines represent genes that are down-regulated, 
respectively. Dashed lines represent non-differential background genes. P value indicates the 
significance of difference in each gene group compared to the background.  
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Curation of cell cycle regulated genes 
High confidence cell cycle reference gene sets were created using publicly available cell cycle 
expression profiling datasets (8-12). We identified 259 genes as cell cycle genes in at least three 
of the five datasets (13). Among them, 104 genes are with peak expression at G2/M. 
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