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Abstract

We developed Lisa (http://lisa.cistrome.org/) to predict the transcriptional regulators (TRs) of differentially expressed
or co-expressed gene sets. Based on the input gene sets, Lisa first uses histone mark ChIP-seq and chromatin
accessibility profiles to construct a chromatin model related to the regulation of these genes. Using TR ChIP-seq
peaks or imputed TR binding sites, Lisa probes the chromatin models using in silico deletion to find the most
relevant TRs. Applied to gene sets derived from targeted TF perturbation experiments, Lisa boosted the
performance of imputed TR cistromes and outperformed alternative methods in identifying the perturbed TRs.
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Introduction
Transcriptional regulators (TRs), which include tran-
scription factors (TFs) and chromatin regulators (CRs),
play essential roles in controlling normal biological pro-
cesses and are frequently implicated in disease [1–4].
The genomic landscape of TF binding sites and histone
modifications collectively shape the transcriptional regu-
latory environments of genes [5–8]. ChIP-seq has been
widely used to map the genome-wide set of cis-elements
bound by trans-acting factors such as TFs and CRs,
which we henceforth refer to as “cistromes” [9]. There
are approximately 1500 transcription factors in humans
and mice [10, 11], regulating a wide variety of biological
processes in constitutive or cell-type-specific manners,
and tens of thousands of ChIP-seq and DNase-seq
experiments have been performed in humans and mice.
We previously developed the Cistrome Data Browser

(DB) [12], a collection of uniformly processed TF ChIP-
seq (~ 11,000) and chromatin profiles (~ 12,000 histone
mark ChIP-seq and DNase-seq) in humans and mice.
The question we address in this paper is how to effect-

ively use these data to infer the TRs that regulate a
query gene set derived from differential or correlated
gene expression analyses in humans or mice. TR ChIP-
seq data, when available, is the most accurate available
data type representing TR binding. ChIP-seq data avail-
ability, in terms of covered TRs and cell types, even with
large contributions from projects such as ENCODE [13],
is still sparse due to the limited availability of specific
antibodies. Although advances have been made in TR
cistrome mapping with the introduction of technologies
such as CETCh-seq [14] and CUT & RUN [15], the diffi-
culties in acquiring TR ChIP-seq data for new factors
limit the TR by cell type coverage of high-quality TR
ChIP-seq data. Chromatin accessibility data, including
DNase-seq [16, 17] and ATAC-seq [18], is available for
hundreds of cell types and provides maps of the regions
in which TRs are likely to be bound in the represented
cell types. The H3K27ac histone modification, associated
with active enhancers and promoters of actively tran-
scribed genes, has been widely profiled using ChIP-seq
in many cell types [5, 19]. When TF ChIP-seq data is
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not available, TF binding motifs, used in combination
with chromatin accessibility data or H3K27ac ChIP-seq
data might be used to infer TF binding sites [7, 20, 21].
Machine learning approaches that transfer models
learned from TF ChIP-seq peaks, motifs, and DNase-seq
data between cell types are promising ways of imputing
TF cistromes, although imputation of TF binding sites
on a large scale remains to be implemented [22–27].
Computationally imputed TF binding data is expected to
represent TF binding sites less accurately than TF ChIP-
seq experimental data, so we sought to develop a TR
prediction method that could use imputed TF cistromes
effectively, along with ChIP-seq-derived ones.
We previously developed MARGE to characterize the

regulatory association between H3K27ac ChIP-seq and
differential gene expression in terms of a regulatory po-
tential (RP) model [28]. The RP model provides a sum-
mary statistic of the cis-regulatory influence of the many
cis-regulatory elements that might influence a gene’s
transcription rate. MARGE builds a classifier based on
H3K27ac ChIP-seq RPs from the Cistrome DB to dis-
criminate the genes in a query differentially expressed
gene set from a set of background genes. One of the
functions of MARGE is to predict the cis-regulatory
elements (i.e., genomic intervals) that regulate a gene
set. BART [29] extends MARGE, to predict the TRs that
regulate the query gene set through an analysis of the
predicted cis-regulatory elements. Here, we describe Lisa
(epigenetic Landscape In Silico deletion Analysis and the
second descendent of MARGE), a more accurate method
of integrating H3K27ac ChIP-seq and DNase-seq with
TR ChIP-seq or imputed TR binding sites to predict the
TRs that regulate a query gene set. Unlike BART, Lisa
does not carry out an enrichment analysis of the cis-
regulatory elements predicted by MARGE. Instead, Lisa
analyses the relationship between TR binding and the
gene set using RP models and RP model perturbations.
We assessed the performance of Lisa and other TR iden-
tification methods, BART [29], i-cisTarget [30], and
Enrichr [31], using differentially expressed gene sets de-
rived from experiments in which the activities of specific
TFs were perturbed by knockdown, knockout, over-
expression, stimulation, or inhibition.

Results and discussion
Regulatory TR prediction based on Cistrome DB ChIP-seq
peaks
High-quality TR ChIP-seq data, when available, accur-
ately characterizes genome-wide TR binding sites, which
can be used to infer the regulated genes in particular cell
types. Estimating the effect of TR binding on gene ex-
pression is not trivial because: (1) there is no accurate
map linking enhancers to the genes they regulate [32];
(2) multiple enhancers can regulate the same gene [33],

and a single enhancer can regulate multiple genes [34];
and (3) not all TR binding sites are functional enhancers
[19]. A model is therefore needed to quantify the likeli-
hood of a gene being regulated by a TR cistrome. The
“peak-RP” model [35, 36] is based on TR ChIP-seq
peaks, serving as a proxy for TR binding sites, without
the use of DNase-seq or H3K27ac ChIP-seq data. In the
peak-RP model (Fig. 1a), the effect a TR binding site has
on the expression of a gene is assumed to decay expo-
nentially with the genomic distance between the TR
binding site and the transcription start site (TSS), and
the contribution of multiple binding sites is assumed to
be additive [36]. Accounting for the number of TR bind-
ing sites and for the distances of these sites from the
TSS has been shown to be more accurate than alterna-
tive TR target assignment methods [37]. While it is
possible that enhancers could modulate each other in
non-additive ways [32], data on these types of behavior
are too scarce to incorporate in a TR prediction model.
We use the peak-RP model to identify TFs that are

likely regulators of a target gene set by searching for Cis-
trome DB [12] cistromes that produce higher peak-RPs
for the query gene set than for a set of background genes
(Additional file 1: Figure S1, Additional file 2: Table S1).
Statistical significance is calculated using the one-sided
Wilcoxon rank-sum test statistic comparing the peak-
RPs for the query gene set with the background. The
TRs with the most significant p values are considered to
be the candidate regulators. Lisa uses TR ChIP-seq
within the peak-RP model, along with the chromatin
landscape models described below to infer the TRs of a
gene set.

Regulatory TR prediction using a chromatin landscape
model
While TR ChIP-seq data provides accurate information
about TR cistromes in specific cell types, the Cistrome
DB TR by cell type coverage is skewed towards a few
TRs, such as CTCF, which are represented in many cell
types, and towards cell types such as K562 (Additional
file 1: Figure S1b-c), in which many TRs have been char-
acterized (Additional file 1: Figure S1d). H3K27ac ChIP-
seq [19] and DNase-seq [16], available in a large number
and variety of cell types, can be used to infer cell-type-
specific regulatory regions. These types of data could
enhance the use of TR ChIP-seq data as well as imputed
TF binding data, which may not accurately represent TF
binding sites in different cell contexts.
To boost the performance of TF ChIP-seq or imputed

TF binding data in the identification of regulatory TRs,
we developed Lisa chromatin landscape models, which
use H3K27ac ChIP-seq and DNase-seq chromatin
profiles (Fig. 1b, Additional file 3: Table S2; see the
“Methods” section) to model the regulatory importance
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Fig. 1 Illustration of the Lisa framework. a The peak-RP score models the effect of TR binding sites on the regulation of a gene. TR binding sites
are binary values, and peaks nearer to the gene’s TSS have a greater influence than ones further away. b The chrom-RP score summarizes the
effect of the DNase-seq or H3K27ac chromatin environment on a gene. The chrom-RP score is based on a continuous rather than a binary signal
quantification. c Overview of the Lisa framework. (1) H3K27ac ChIP-seq or DNase-seq data from the Cistrome DB is summarized using the chrom-
RP score for each gene. (2) H3K27ac ChIP-seq or DNase-seq samples that can discriminate between the query gene set and the background gene
set are selected, and the regression parameters define a chrom-RP model. (3) Each TR cistrome from the Cistrome DB is evaluated as a putative
regulator of the query gene set through in silico deletion, which involves the elimination of H3K27ac ChIP-seq or DNase-seq signal at the binding
sites of the putative regulator. (4) The chrom-RP model, based on in silico deletion signal, is compared to the model without deletion for each
gene in the query and background gene sets. A p value is calculated using the Wilcoxon rank test comparison of the query and background
ΔRPs. (5) The peak-RP based on TR ChIP-seq peaks is calculated for the putative regulatory cistrome, and the statistical significance of peak-RP
distributions from the query and background gene sets is calculated. (6) p values from the H3K27ac ChIP-seq, DNase-seq, and peak-RP analysis
are combined using the Cauchy combination test. TR cistromes are ranked based on the combined p value
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of different genomic loci. As differential gene expression
experiments are not always carried out in parallel with
chromatin profiling experiments, Lisa does not require
the corresponding user-generated chromatin profiles but
instead uses the DNase-seq and H3K27ac ChIP-seq data
that is available in the Cistrome DB to help identify cis-
regulatory elements controlling a differential expression
gene set. To this end, Lisa models chromatin landscapes
through chromatin RPs (chrom-RPs, Fig. 1b), which are
defined in a similar way to the peak-RP with one small
difference: genome-wide read signals instead of peak
calls are used in the calculation of the chrom-RP [28].
Changes in H3K27ac ChIP-seq and DNase-seq associ-
ated with cell state perturbations are often a matter of
degree rather than switch-like; therefore, we base the
chrom-RP on reads rather than peaks. The chrom-RP is
pre-calculated for each gene (Fig. 1c (1)) and for each
H3K27ac ChIP-seq/DNase-seq profile in the Cistrome
DB (Additional file 1: Figure S1a, Additional file 3: Table
S2). These chrom-RPs quantify the cis-regulatory activ-
ities that influence each gene under cell-type-specific
conditions.
Given the query gene set, Lisa identifies a small num-

ber of Cistrome DB DNase-seq and H3K27ac ChIP-seq
samples that are informative about the regulation of
these genes. Lisa does this by using the pre-calculated
H3K27ac/DNase-seq chrom-RPs to discriminate be-
tween the query gene set and a background gene set.
Using L1-regularized logistic regression, Lisa assigns a
weight to each selected sample so that the weighted sum
of the chrom-RPs on the genes best separates the query
and the background gene sets (Fig. 1c (2)). This step is
carried out separately for H3K27ac ChIP-seq and
DNase-seq, yielding a chrom-RP model based on
H3K27ac ChIP-seq and another model based on
DNase-seq.
Next, by a process of in silico deletion (ISD), Lisa eval-

uates the effect deleting each TR cistrome has on the
chromatin landscape model (Fig. 1c (3)). ISD of a TR
cistrome involves setting DNase-seq or H3K27ac ChIP-
seq chromatin signal to 0 in the 1-kb intervals contain-
ing the peaks in that cistrome and evaluating the effect
on the predictions made by the chromatin landscape
models. The difference of the model scores before ISD
and after ISD quantifies the impact that the deleted TR
cistrome is predicted to have on the query and back-
ground gene sets. Lisa does not make a prediction of cis-
regulatory elements, the approach taken by MARGE and
BART. Instead, Lisa probes the effects of deleting puta-
tive regulatory TR cistromes on the chrom-RP model.
Whereas the chrom-RP integrates data over 200-kb in-
tervals, the scale of individual cis-regulatory elements is
of the order of 1 kb. The ISD approach mitigates the dif-
ficulties in transferring information contained in the

chrom-RP model from the chrom-RP (200 kb) scale to
the cis-regulatory element (1 kb) scale.
Finally, to prioritize the candidate TRs, Lisa compares

the predicted effects on the query and background gene
sets using the one-sided Wilcoxon rank-sum test (Fig. 1c
(4)). A one-sided test is used because Lisa assumes that
the in silico deletion of a true regulatory factor will de-
crease, not increase, the model’s ability to discriminate
between query and background gene sets. To utilize the
power of predictions based on H3K27ac-ChIP-seq and
DNase-seq ISD models, and TF ChIP-seq peak-only
models (Fig. 1c (5)), the results are combined using the
Cauchy combination test [38] (Fig. 1c (6)). Whereas
MARGE [28] predicts cis-regulatory elements (but does
not analyze TRs), and BART [29] carries out an enrich-
ment analysis of predicted cis-elements to discover TRs,
Lisa uses the chromatin landscape model in a different
way. In combination with ChIP-seq-derived or computa-
tionally imputed TR binding, Lisa probes the effects of
TRs on the chromatin RP models of query and back-
ground gene sets.

Demonstration of chromatin landscape models in a
GATA6 knockdown study
We demonstrate Lisa chromatin landscapes and in silico
deletion using a query gene set defined as the downregu-
lated genes in a GATA6 knockdown experiment in the
KATO-III stomach cancer cell line [39] (Fig. 2). Lisa
identifies DNase-seq and H3K27ac ChIP-seq chromatin
landscape models (Fig. 2a, Fig. 1c (2)), which include
several gastro-intestinal samples (Additional file 1: Fig-
ure S2b,d) whose chrom-RPs can discriminate between
the query and background gene sets (Additional file 1:
Figure S2a, DNase-seq ROC AUC = 0.816, Additional
file 1: Figure S2c, H3K27ac ROC AUC = 0.821). In silico
deletion (Fig. 1c (3)) of GATA6 binding sites produces
larger DNase-seq and H3K27ac ΔRPs (DNase ΔRP, 1.05;
H3K27ac ΔRPs, 0.25) for an example downregulated
gene, LINC01133 [40], than for a background gene,
ZC3H12A (DNase ΔRP, 0.06; H3K27ac ΔRP, 0.01) (Fig.
2b). In silico deletion of CTCF binding sites, in contrast,
has a smaller effect on the chromatin landscapes sur-
rounding LINC01133 (DNase ΔRP, 0.02; H3K27ac ΔRP,
0.01), resulting in ΔRPs that are more similar to the
ΔRPs for ZC3H12A (Fig. 2b) (DNase ΔRP, 0.004;
H3K27ac ΔRP, 0.001). Statistical analysis is carried out
comparing all the query gene ΔRPs with all the back-
ground gene ΔRPs (Fig. 1c (4)), producing significant p
values for GATA4 (DNase p < 10−10, H3K27ac p < 10−5)
and GATA6 (DNase p < 10−13, H3K27ac p < 10−7). After
this analysis is conducted for all TR ChIP-seq samples in
the Cistrome DB and the results are combined and com-
pared, GATA6 and GATA4 ChIP-seq from intestinal
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and gastric tissues have the most significant p values
(Fig. 2c, d).

Lisa identification of regulatory TF ChIP-seq sample
clusters
To investigate whether a TF ChIP-seq cistrome derived
from one cell type can be informative about other cell
types, we first clustered all the human TR cistromes in
the Cistrome DB based on the pairwise Pearson correl-
ation of peak-RP scores as a heatmap (Fig. 3). We then
applied Lisa to differentially expressed gene sets defined
by perturbations of individual TFs and examined the TR

cistromes predicted to be the key regulators of these
gene sets. In the analysis of upregulated genes on andro-
gen receptor (AR) activation in the LNCaP prostate can-
cer cell line, Lisa identified a tight cluster of significant
cistromes for AR and its known collaborator FOXA1
(Fig. 3 (a)). All samples in this cluster were derived from
prostate cancer cell lines. In the analysis of the GATA6
knockdown in the gastric cancer cell line (KATO-III),
Lisa found the GATA6 and FOXA2 cistromes in the
stomach and colon samples to be the most significant.
FOXA2 is an important pioneer TF which has been re-
ported to collaborate with GATA6 in gut development

Fig. 2 A downregulated gene set from a GATA6 knockdown experiment in gastric cancer KATO-III cells is used as a case study to demonstrate
the Lisa framework. a Heatmap of regulatory potentials used to discriminate downregulated genes from non-regulated background genes. b In
silico deletion analysis using GATA6 and CTCF cistromes to probe chromatin landscape models near an illustrative downregulated gene,
LINC01133, and a background gene, ZC3H12A. Only the H3K27ac ChIP-seq and DNase-seq chromatin profiles with the largest positive coefficients
are shown, although other samples contribute to the respective H3K27ac ChIP-seq and DNase-seq chromatin models. c Comparison of ΔRPs
indicates GATA6 and GATA4 cistromes have a large impact on the chromatin landscapes near downregulated genes and are therefore likely to
be regulators of the query gene set. CTCF does not influence the chromatin landscape of the downregulated genes and is not likely to regulate
the query gene set. d The rank statistics for the Lisa analysis of the downregulated gene set in the GATA6 knockdown experiment were
combined to get overall TR ranks. The top eight and the bottom eight TRs for all TR ChIP-seq samples are shown
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to regulate Wnt6 [41] and Wnt7b [42] (Fig. 3 (b)). The
identification of GATA6 cistromes in colon cancer cell
lines, in addition to gastric cancer cell lines, shows that
cistromes derived from cell types that are of related line-
ages can be used to inform the identification of the rele-
vant regulators, even if the cell types are not the same.
In the third example involving glucocorticoid receptor
(GR) activation in the lung cancer cell line A549, Lisa
correctly identified GR in A549 as a likely regulator and
also identified GR in a different cell type HeLa (Fig. 3
(c)). AR, a member of the same nuclear receptor family
as GR, is also implicated by Lisa even though the AR cis-
trome samples do not cluster with GR cistrome samples
and have less statistical significance.
We carried out an analysis of the effects of removing

ChIP-seq and DNase-seq data on Lisa’s accuracy. In par-
ticular, we tested Lisa’s performance on three upregu-
lated gene sets: (1) GR-activated genes in breast cancer
(MCF7), (2) GR-activated genes in lung cancer (A549),
and (3) estrogen receptor (ER)-activated genes in MCF7
(Additional file 4: Table S3). In these analyses, we
assessed the effect of removing all relevant cell-line-spe-
cific (MCF7 or A549), H3K27ac ChIP-seq and DNase-
seq data, or cell-line-specific TR ChIP-seq data (ER or
GR). We also removed cell-line-specific TR ChIP-seq
data together with H3K27ac ChIP-seq and DNase-seq
data. We repeated the same analysis removing similar

data, on the basis of tissue (breast and lung) instead of
on the basis of cell line (MCF7 and A549). When MCF7
ER ChIP-seq are excluded, an ER sample from another
breast cancer cell line (H3396) predicts the importance
of ER (rank 6) as a regulator of the estrogen-activated
gene set. When all ER breast ChIP-seq samples are ex-
cluded, Lisa can still identify ER (rank 18) from ER
ChIP-seq in the VCaP prostate cancer cell line. For the
GR-activated gene set in MCF7, when GR ChIP-seq data
is unavailable in MCF7, Lisa can identify GR as a key
regulator (rank 2) using GR ChIP-seq from the lung
(A549). For the GR-activated gene set in the lung, Lisa
identified GR as the key regulator (rank 1) using GR
ChIP-seq data from the breast (MDA-MB-231). To-
gether, these observations indicate that although TRs
often bind in cell-type-specific ways, ChIP-seq-derived
TR cistromes can be informative about the gene sets
that TRs regulate in some other cell types.

Lisa identification of TF-associated cofactors in addition
to TFs
To illustrate Lisa’s capacity to find cofactors that
interact with the regulatory TFs, we examined the
Lisa analyses of four differentially expressed gene sets
derived from experiments involving the activation of
GR [43] and the knockdown/out of BCL6 [44], MYC
[45], and SOX2 [46]. Lisa analysis of GR activation in

Fig. 3 Lisa predicts key transcriptional regulators and assigns significance to each Cistrome DB cistrome. The large heatmap shows the
hierarchical clustering of 8471 human Cistrome DB ChIP-seq cistromes based on peak-RP, with color representing Pearson correlation coefficients
between peak-RPs. The three bars to the left of the heatmap display Lisa significance scores for differentially expressed genes sets derived from
GR activation in the A549 cell line (upregulated), GATA6 knockdown in gastric cancer (downregulated), and AR activation in the LNCaP cell line
(upregulated). Small heatmaps show details of the global heatmap relevant to (a) AR activation, (b) GATA6 knockdown, and (c) GR activation
gene sets. In each case, the most significant cistromes are derived from the same cell type or lineage
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lung cancer ranked GR itself as the most significant
TR for the upregulated gene sets (Fig. 4a) and highly
ranked pioneer TFs FOSL2 and CEBPB, which were
downregulated after GR activation (Fig. 3c). BCL6, a
predominantly repressive TF, is a driver of diffuse
large B cell lymphoma (DLBCL) [47]. Lisa analysis of
the upregulated genes in a BCL6 knockdown experi-
ment in a DLBCL cell line ranked BCL6 as the most
significant TR for this gene set (Fig. 4b). Lisa also
identified NCOR1 and NCOR2, which are transcrip-
tional BCL6 corepressors involved in the regulation of
the germinal center [48–50]. SPI1, which recruits
BCL6 [51], and BCOR, another BCL6 corepressor
[52], were ranked among the top TRs for the upregu-
lated gene set. In a MYC knockdown experiment in
medulloblastoma, MYC and its dimerization partner,
MAX [53], were among the top predicted regulators
of the downregulated genes (Fig. 4c). The histone
methyltransferase, KDM2B, known to physically inter-
act with MYC and to augment MYC-regulated tran-
scription [54] was also detected among the top
regulators. In the SOX2 knockout experiment [2],
NANOG, SOX2, and POU5F1, the key regulators of

pluripotency, were the top predicted regulators of the
downregulated genes (Fig. 4d). Lisa also discovered a
similar set of TRs for the gene set derived from a
POU5F1 knockdown experiment in embryonic stem
cells (Additional file 1: Figure S3,4a). In addition, β-
catenin (CTNNB1), which interacts with SOX2 and is
oncogenic in SOX2+ cells [55], also ranked high for
the downregulated genes. The predicted regulators of
the upregulated genes in this experiment include
FOXA1 and EOMES. FOXA1 is involved in early em-
bryonic development [56] and has been observed to
repress NANOG directly [57]. FOXA1 has been
shown through co-immunoprecipitation to physically
interact with SOX2 [58]. SOX2, known to bind to an
enhancer regulating EOMES in human ESCs, when
knocked down triggers EOMES expression and in-
duces endoderm and trophectoderm differentiation
[59]. Thus, in many cases, the known interactors are
highly ranked along with the target activator or re-
pressor. This suggests that even though the available
TF ChIP-seq data in different cell types are sparse
(Additional file 1: Figure S1d), Lisa can provide in-
sights on possible regulatory TFs since transcriptional

Fig. 4 Lisa can accurately identify key transcriptional regulators and co-regulators using Cistrome DB cistromes. Lisa analyses of up- and
downregulated gene sets from a GR overexpression, b BCL6 knockdown, c MYC knockdown, and d SOX2 knockout experiments. The scatter plots
show negative log10 Lisa p values of 1316 unique transcriptional regulators for up- and downregulated gene sets. Colors indicate log2 fold
changes of the TF gene expression between treatment and control conditions in the gene expression experiments. Dots outlined with a circle
denote transcriptional regulators that physically interact with the TF perturbed in the experiment, which is marked with a cross
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machinery tends to be organized in modules of inter-
acting factors [60] (Additional file 1: Figure S4d).

Systematic evaluation of regulator prediction
To systematically evaluate Lisa, we compiled a bench-
mark panel of 122 differentially expressed gene sets from
61 studies involving the knockdown, knockout, activa-
tion, or overexpression of 27 unique human target TFs.
In addition, we compiled 112 differentially expressed
gene sets derived from 56 studies with 25 unique TF
perturbations in mice (Additional file 5: Table S4, see
“galleries” at http://lisa.cistrome.org). The full Lisa
model was separately applied to the upregulated and
downregulated gene sets in each experiment. We also
carried out analyses of these gene sets using subcompo-
nents of Lisa: the peak-RP method, as well as H3K27ac
ChIP-seq- and DNase-seq-assisted ISD analyses. The pu-
tative regulatory cistromes were defined using either

ChIP-seq peaks or from TF motif occurrence in the in-
ferred chromatin models. The results allowed us to com-
pare the effectiveness of DNase-seq and H3K27ac ChIP-
seq in scenarios where the TF cistromes are well esti-
mated (by ChIP-seq) or less well estimated (by motif).
We measured the performance based on their ranking of
the perturbed target TF (Fig. 5, Additional file 1: Figure
S5).
We compared the performance of methods that use

TF ChIP-seq data and TF motifs, on up- and downregu-
lated gene sets, and on overexpression/activation and
knockdown/knockout samples (Fig. 5a). In overexpres-
sion studies, the prediction performance of all methods
tended to be better for the upregulated gene sets than
for the downregulated ones. The reverse is evident in
the knockout and knockdown studies for which the pre-
diction performances are better for the downregulated
gene sets (Fig. 5b, c). This suggests that most of the TFs

Fig. 5 Systematic evaluation of regulator prediction performance for humans using Cistrome DB ChIP-seq and DNA motif-derived cistromes. a
Heatmap showing Lisa’s performance in the analysis of human TF perturbation experiments. Each column represents a TF activation/
overexpression or knockdown/out experiment with similar experiment types grouped together. Rows represent the methods based on cistromes
from TR ChIP-seq data or imputed from motifs. The upper left red triangles represent the rank of the target TFs based on the analysis of the
upregulated gene sets; the lower right blue triangles represent the analysis of downregulated gene sets. The heatmap includes non-redundant
human experiments for the same TF. See Additional file 1: Figure S5 for the complete list of human and mouse experiments. b Boxplot showing
the target TF rankings comparing Lisa ChIP-seq-based methods and the baseline model based on TF peak counts in gene promoter regions to
analyze up- and downregulated gene sets in overexpression/activation (OE) and knockdown/out experiments (KD/KO). c Boxplot showing target
TF rankings using Lisa motif-based methods and the baseline model based on motif hits in promoter regions
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included in the study have a predominant activating role
in the regulation of their target genes, under the condi-
tions of the gene expression experiments, allowing these
TFs to be more readily identified with the corresponding
direction of primary gene expression response. Similar
performance patterns were observed in the mouse
benchmark datasets (Additional file 1: Figure S5). The
performances of Lisa using ISD of TR ChIP-seq peak
from chromatin landscapes were similar to the TR
ChIP-seq peak-RP method, but outperformed motif-
based methods by large margins.
To determine whether differences between the up-

and downregulated gene sets could be explained by dir-
ect or indirect modes of TR recruitment, we studied two
experiments involving ER and GR activation in greater
detail. We defined “direct” ER and GR binding sites as
ER/GR ChIP-seq peaks on genomic intervals containing
the cognate DNA sequence elements and “indirect” ER
and GR binding sites as ER/GR ChIP-seq peaks without
the sequence elements. Comparing direct and indirect
binding sites in the respective ER and GR activation ex-
periments (Additional file 1: Figure S6), we found that
the upregulated gene sets were more significantly associ-
ated with the direct binding sites (ER p value 1.5 ×
10−15, GR p value 1.5 × 10−18) than with the indirect
ones (ER p value 3.8 × 10−4, GR p value 1.4 × 10−12).
The downregulated gene sets were more significantly as-
sociated with the indirect binding sites (ER p value 1.5 ×
10−15, GR p value 1.5 × 10−11) than with the direct ones
(ER p value 4.6 × 10−2, GR p value 3.0 × 10−3).
In some cases, the perturbation of a TR may trigger

stress, immune, or cell cycle checkpoint responses that
are not directly related to the initial perturbation. In the
Lisa analysis of upregulated genes after 24 h of estradiol
stimulation (GSE26834), for example, E2F4 is the top-

ranked TR, followed by ER. Estrogen is known to stimu-
late the proliferation of breast cancer cells via a pathway
involving E2F4, a key regulator of the G1/S cell cycle
checkpoint [61]. In this case, Lisa might be correctly de-
tecting a secondary response to the primary TR
perturbation.

Comparison of Lisa with published methods
We next compared Lisa with other approaches, includ-
ing BART [29], i-cisTarget [30], and Enrichr [31], which
can use either TR ChIP-seq data or motifs. We also in-
cluded a baseline method that ranks TRs by comparing
query and background gene sets based on the TR bind-
ing site number within 5 kb centered on the TSS. Lisa
outperformed BART, i-cisTarget, and Enrichr in terms
of the percentage of the target TR identified within the
top ten across all the experiments, either using TF bind-
ing sites from ChIP-seq data or motif hits (Fig. 6a, b).
Lisa uses a model based on chromatin data to give more
weight to the loci that are more likely to influence the
expression of the query gene set. In this way, Lisa im-
proves the performance of TR inference with noisy
cistrome profiles such as those imputed from DNA se-
quence motifs. In addition to being more accurate than
other methods in terms of TR prediction, the Lisa web
server (lisa.cistrome.org) has several unique features that
allow investigators to explore relevant ChIP-seq data in
ways that are not available in other applications.

Lisa web site and gallery of Lisa’s benchmark data
The Lisa web site (lisa.cistrome.org) displays two tables
of results for each query gene set. The first summarizes
the Lisa analysis based on TR ChIP-seq data, and the
second displays the Lisa analysis of TF binding sites im-
puted from DNA binding motifs. The ChIP-seq data

Fig. 6 Lisa’s performance surpasses published models. Lisa’s performance is compared with alternative published methods for a upregulated
genes in overexpression/activation experiments and b downregulated genes in knockdown/out experiments
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table displays up to five ChIP-seq samples for each TR.
Users can sort results by p value and inspect metadata
and quality control statistics for each of the ChIP-seq
samples to understand whether the predictive samples
may be derived from particular cell types or experimen-
tal conditions. Lisa provides quality control metrics,
metadata, publication, and read data repository links for
the ChIP-seq data of putative regulatory TRs. Through
Lisa, the ChIP-seq signal tracks can be viewed on the
WashU Epigenome Browser [62]. Although the motif
imputation-based analysis tends to be less accurate than
the ChIP-seq based analysis, motifs can indicate roles for
regulatory TRs for which ChIP-seq data is not widely
available. Lisa’s analysis of all the benchmark gene sets is
also viewable on the Lisa web site. Users can explore
these analyses to understand the “typical” results of the
analysis. Robust methods combined with visualization
and data exploration features make Lisa a valuable tool
for analyzing gene regulation in humans and mice.

Conclusion
In this study, we describe an approach for using publicly
available ChIP-seq and DNase-seq data to identify the
regulators of differentially expressed gene sets in humans
and mice. On the basis of a series of benchmarks, we
demonstrate the effectiveness of our method and report
recurrent patterns in the TRs predicted by these
methods. We find the regulators of the upregulated
genes and the downregulated ones are often different
from each other; therefore, in any analysis of differential
gene expression, up- and downregulated gene sets ought
to be distinguished. Our results show that many TFs
have a preferred directionality of effect, indicative of a
predominant repressive or activating function. It is well
known that many TFs can recruit both activating and re-
pressive complexes [63], so the observed direction may
be related to the stoichiometry and affinity of the acti-
vating or repressive cofactors. We also observe differ-
ences between ChIP-seq-based analysis and motif-based
ones, suggesting differences in the TF activity depending
on whether a TF interacts directly with DNA or whether
it is recruited via another TF [64]. When a TF is re-
cruited by another TF, it is likely that the enhancer has
been already established by other TFs and protein com-
plexes. Thus, the co-binding enhancer information of
multiple TFs allows Lisa to identify both the DNA-
bound TFs and their partners which might not directly
bind DNA.
Lisa’s accuracy in predicting the regulatory TRs of a

gene set depends on the perturbation used in the pro-
duction of the differential gene expression data; the
quality of the gene expression data; the availability and
quality of the DNase-seq, H3K27ac, and TR ChIP-seq
data sets; the degree to which binding is dependent on a

DNA sequence motif; and the validity of the model as-
sumptions. Although we evaluate Lisa using differential
gene expression data associated with a TR perturbation,
the perturbed TR might not be the main regulator of the
gene set. For example, perturbation of a TR may trigger
a stress response [65] or secondary transcriptional effects
that are not directly related to the primary TR [66].
The modeling approach used in Lisa facilitates the pre-

diction of regulatory TRs using available ChIP-seq and
DNase-seq data. DNase-seq and H3K27ac ChIP-seq are
available in a broad variety of cell types, and these data
are informative about cis-regulatory events mediated by
many TRs. Although H3K27ac is considered to be a his-
tone modification associated with gene activation, Lisa
can still identify TRs, such as BCL6 and EZH2, with pre-
dominantly repressive functions. Although Lisa uses the
correlation between H3K27ac or chromatin accessibility
and gene expression to predict regulatory TRs, we do
not assume that H3K27ac or chromatin accessibility
causes the transcriptional changes. Other genomics data
types that are predictive of general cis-regulatory activity,
when available in quantity, variety, and quality, might
improve Lisa’s performance. More importantly, high-
quality TR-specific binding data, generated by ChIP-seq
or alternative technologies, like CETCh-seq [14] or CUT
& RUN [15], will be needed to improve Lisa’s accuracy
in predicting TRs that are not yet well represented in
Cistrome DB. TR imputation methods might fill in some
gaps in TR binding data; however, families of TRs such
as homeobox and forkhead factors, which have similar
DNA-binding motifs, can be hard to discriminate based
on DNA sequence analysis.
Although Lisa aims to identify the regulators of any

differentially expressed gene set in humans or mice, no
matter the contrast, in practice, the query gene sets
should be derived from biologically meaningful differen-
tial expression or co-regulation analyses. In this study,
we based the method evaluation on data from available
TR perturbation experiments, which are biased towards
well-studied systems. For this reason, the reliability of
methods based on TR ChIP-seq data may be overesti-
mated relative to imputation-based methods because the
available TR ChIP-seq data tends to be derived from
similar cell types and for the same factors used in the
gene perturbation experiments. When the relevant cell-
type-specific TR ChIP-seq data is available, the perform-
ance of the peak-RP method and ISD methods are simi-
lar, but when TR ChIP-seq data is not available,
methods based on imputed TR cistromes are obligatory.
The value of imputed cistromes relative to ChIP-seq de-
rived ones will depend on the quantity, variety, and qual-
ity of available ChIP-seq data; the accuracy of the
imputed cistromes; the degree of commonality of the
genes that are regulated by the same TR in different cell
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types; and the number of TRs recognizing similar DNA
sequence elements. Lisa provides invaluable information
about the regulation of gene sets derived from both bulk
and single-cell expression profiles [67] and will become
more accurate over time with greater coverage of TF
ChIP-seq augmented by computationally imputed TF
cistromes.

Methods
Preprocessing of chromatin profiles
Using the BigWig format signal tracks of human and
mouse H3K27ac ChIP-seq and DNase-seq from Cis-
trome DB, we precomputed the chromatin profile regu-
latory potential (chrom-RP) of each RefSeq gene and
also summarized the signal in 1-kb windows genome-
wide. The chrom-RP for gene k in sample j is defined as
Rjk ¼

P
i∈½tk−L;tkþL�wisji (as defined in the MARGE

algorithm [28]). L is set to 100 kb, and wi is a weight
representing the regulatory influence of a locus at pos-
ition i on the TSS of gene k at genomic position tk, wi =
2e−μd/1 + e−μd, where d = |i − tk|/L, and i stands for ith
nucleotide position within the [−L, L] genomic inter-
val centered on the TSS at tk. sji is the signal of chro-
matin profile j at position i. μ is the parameter to
determine the decay rate of the weight, which is

defined as μ ¼ − lnL
.

3Δ
. For DNase-seq and H3K27ac

ChIP-seq, the decay distance Δ is set to 10 kb. The
genome-wide read counts on 1-kb windows were
calculated using the UCSC utility bigWigAverageOverBed
[68]. The chrom-RP matrix for chromatin profiles was
normalized across RefSeq genes within one chromatin

profile by R
0
jk ¼ logðRjk þ 1Þ− 1

k

Pk
1ð logðRjk þ 1ÞÞ.

Preprocessing of cistromes
We converted TR ChIP-seq peaks from the Cis-

trome Data Browser (v.1) BED files into binary
values to represent binding within 100bp resolution
genomic intervals. DNA sequence scores were calcu-
lated from Cistrome DB position weight matrices, a
redundant collection of 1,061 PWMs from TRANS-
FAC [69], JASPAR [70] and Cistrome DB ChIP-seq,
representing 675 unique TFs in human and
mouse. The peak-based regulatory potential (peak-
RP) of a TR cistrome is defined in the same way as
the chrom-RP except si represents the presence (sji =
1) or absence (sji = 0) of a peak summit within the
upstream and downstream 100 kb centered on TSS.
The genome-wide motif scores were scanned at a
100-bp window size with the library (https://github.
com/qinqian/seqpos2) [71], and the motif hits are
defined by thresholding at the 99th percentiles then
mapped to the 1-kb windows. The genome-wide 1-kb

windows in which the TR peak summits are located were
determined using Bedtools [72]. All of the peak-RPs, TR
binding, and motif hit data were deposited into hdf5
format files.

Lisa framework
Chromatin landscape model
Lisa selects 3000 background genes by proportionally
sampling from non-query genes with a range of
different TAD and promoter activities based on com-
pendia of Cistrome DB H3K4me3 and H3K27ac
ChIP-seq signals. There is no gene ontology enrich-
ment in the background gene set. Lisa then uses L1-
regularized logistic regression to select an optimum
sample set for H3K27ac ChIP-seq or DNase-seq
samples based on R

0
jk . The L1 penalty parameter is

determined by binary search to constrain the number
of selected chromatin profiles to be small but suffi-
cient to capture the information (different sample
sizes were explored, and 10 was used in all the
benchmark cases [28]). Lisa trains a final logistic
regression model to predict the target gene set and
obtains a weight αj for each candidate chromatin
profile j, from which the weighted sum of chrom-RP
is the model regulatory potential (model-RP).

In silico deletion method
The rationale for the ISD method is that the peaks of the
true regulatory TFs should align with the high chromatin
accessibility signals from the corresponding tissue or cell
type. Therefore, the computational deletion of the chro-
matin signals on the peaks of regulatory cistromes would
result in a more substantial effect on the model-RP for
query genes than for background genes. The regulatory
potentials are recalculated after erasing the signal in
all 1-kb windows containing at least one peak from a puta-
tive regulatory cistrome i, ~Rijk ¼ Rjk−

P
m∈Mik

l wmsjm
(where Mik is the set of 1-kb windows containing at least
one peak in cistrome i for gene k; l is the window size,
which is set to 1 kb for this study; wm is the exponential
decay weight with the distance between the mth window
center and TSS, the weight function is the same as
chrom-RP; and sjm is the jth average chromatin profile sig-
nal on the mth window). These RPs are then normalized
using the same normalization factors from the original

RPs ~R
0

ijk ¼ logð~Rijk þ 1Þ− 1
K

PK
1 ð logðRjk þ 1ÞÞ:

After deletion, the model RPs are recalculated using
the weights from the logistic regression model from
chromatin profile feature selection without refitting and
subtracted from the non-deletion model-RP, producing
a ΔRP value for each gene, defined as the linear
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combination of differences in regulatory potentials: ΔR
0
ik

¼ P
jα jðR0

jk−~R
0

ijk ).

Combined statistics method for TR ranking
The peak-RPs or ΔRPs of the query gene set are com-
pared with that of the background gene set through the
one-sided Wilcoxon rank-sum test. For ChIP-seq-based
methods, peak-RP, DNase-seq, and H3K27ac chom-RP
are combined to get a robust prediction of the TRs. For
motif-based methods, DNase-seq and H3K27ac ΔRPs
are combined to get the final inference of TRs. Both
combinations of statistics follow the Cauchy combin-
ation test [38], in which the combined statistics for each

TR is t j ¼
Pd

i¼1
wi tanfð0:5−piÞπg, where j represents one

TR, i represents the ith method within ChIP-seq-based
or motif-based methods, pi is the corresponding p value,
and wi is set to 1/d where d is 3 for ChIP-seq-based
method or 2 for the motif-based method. The combined
p value for a TR j is computed as pj = 1/2 − (arctan(tj))/π.

Baseline method
The baseline method, which is the “peaks in promoter”
for ChIP-seq-based method or “hits in promoter” for the
motif-based method, is implemented by counting the
number of TF ChIP-seq binding summits or motif hits
within the genomic interval from 5 kb upstream to 5 kb
downstream of the TSS. The peaks or motif counts in
the promoter of the target gene set are compared with
that of the background gene set using the one-sided
Wilcoxon rank-sum test.

Comparison of “direct” and “indirect” binding sites
For up- and downregulated gene sets from the same ex-
periment, the peaks of the target TR ChIP-seq samples
with the most significant p values are defined as “dir-
ect” or “indirect” binding sites based on the target TR
motif scores. Peak-RPs of “direct” or “indirect” binding
sites are calculated and normalized to percentiles. Stat-
istical significance between query and background gene
sets was calculated by the one-sided Wilcoxon rank-
sum test.

Comparison of Lisa with published methods
All up- and downregulated gene sets in Lisa’s bench-
mark dataset were also used to test other published
methods. BART and i-cisTarget were manually run
through online websites with the default settings.
Enrichr was run using the API. When comparing the
motif-based methods, PWMs from species other than
humans or mice were removed since they are not in-
cluded in the Lisa framework: BART (http://bartweb.

org/), i-cisTarget (https://gbiomed.kuleuven.be/apps/lcb/
i-cisTarget/?ref=labworm), and Enrichr (http://amp.
pharm.mssm.edu/Enrichr/).

Lisa pipeline
The Lisa pipeline is implemented with Snakemake [73].
Lisa contains an interface to process FASTQ format files
to BigWig format files and to generate hdf5 files con-
taining the chrom-RP matrices and 1-kb resolution data
required by the Lisa model module.

Lisa online application
We have implemented the online version of Lisa (http://
lisa.cistrome.org) using the Flask Python web develop-
ment framework, along with process control software
Celery to queue numerous queries. The analysis result of
the target gene set is closely linked to the Cistrome DB.
The scatterplot comparing TR ranking results from a
pair of query gene sets such as up- and downregulated
gene sets are implemented in Plot.ly.
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