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Adaptation to hypoxia is mediated through a coordinated transcrip-
tional response driven largely by hypoxia-inducible factor 1 (HIF-1).
We used ChIP-chip and gene expression profiling to identify direct
targets of HIF-1 transactivation on a genome-wide scale. Several
hundred direct HIF-1 targets were identified and, as expected, were
highly enriched for proteins that facilitate metabolic adaptation to
hypoxia. Surprisingly, there was also striking enrichment for the
family of 2-oxoglutarate dioxygenases, including the jumonji-domain
histone demethylases. We demonstrate that these histone demethy-
lases are direct HIF targets, and their up-regulation helps maintain
epigenetic homeostasis under hypoxic conditions. These results sug-
gest that the coordinated increase in expression of several oxygen-
dependent enzymes by HIF may help compensate for decreased levels
of oxygen under conditions of cellular hypoxia.

ChIP-chip � hypoxia � jumonji protein � dioxygenase � epigenetics

Adequate oxygenation is essential for normal physiology and
functioning of all cells. In response to decreased oxygen

tension, a coordinated transcriptional response is activated to
maintain cellular homeostasis. This transcriptional program is
mediated, at least in part, by activation of the heterodimeric
transcription factors hypoxia-inducible factor 1 and 2 (HIF-1 and
HIF-2). The HIFs are essential for several physiological processes,
including normal development, erythropoietin (EPO) production,
and wound healing. Unfortunately, HIF signaling also contributes
to the pathophysiology of tumors by facilitating metabolic adapta-
tion and by promoting angiogenesis, invasion, and metastasis (1).

The activity of HIF-1 and HIF-2 are controlled at multiple levels.
The primary point of regulation is at the level of abundance of the
�-subunits. Under normal oxygen (normoxic) conditions, HIF-1�
and HIF-2� are hydroxylated by the HIF prolyl hydroxylases
EGLN1–3, which target the proteins for binding to the von Hippel–
Lindau (vHL) ubiquitin E3 ligase complex and rapid proteosomal
degradation (2–6). As oxygen levels drop, prolyl-hydroxylation
decreases, resulting in accumulation of HIF �-subunits and het-
erodimerization with ARNT (HIF-1�). As a consequence, HIF
heterodimer levels are nominal under physiologic oxygen levels and
increase exponentially with decreasing oxygen tension (7). HIF
heterodimers then recruit transcriptional coactivator complexes (8,
9), and transactivate target genes containing the cognate hypoxia-
response element (HRE) (1).

The direct transcriptional targets of HIF-1 play important roles in
facilitating both short-term and long-term adaptation to hypoxia (1).
Metabolic homeostasis is achieved by shifting from oxidative phos-
phorylation to anaerobic glycolysis through increased expression of the
glycolytic enzymes and glucose transporters, inhibition of the TCA
cycle, and induction of pH-regulating systems. A second HIF-1-
mediatedprogramincreasesoxygendeliveryby inducingvasodilatation,
increased vascular permeability, enhanced erythropoiesis and angio-
genesis. Specific sites of HIF-1 binding have been validated within the

promoter or enhancers of �50 genes (10, 11). Alignment of the
sequences encompassing these well-characterized functional HREs
(transcriptionally activated by hypoxia) has revealed a consensus HIF-
1-binding motif (the core HRE) of 5�-RCGTG-3� (R � A or G).

Because the core HRE is too promiscuous to accurately predict
binding a priori, we used ChIP-chip to define HIF-1 chromatin
binding on a genome-wide level. We integrated these results with
gene expression profiling to interrogate mechanisms regulating
hypoxia-induced gene expression and to more comprehensively
identify direct targets of HIF-1 transactivation. We found that the
family of 2-oxoglutarate-dependent dioxygenases are coordinately
targeted by HIF, and up-regulated expression helps maintain global
levels of histone methylation under hypoxic conditions.

Results
Identification of HIF-1-Binding Sites by ChIP-chip. To identify HIF-1-
binding sites across the genome, HepG2 cells were grown under
both normoxic (ambient) and hypoxic (0.5% O2) conditions, and
ChIP was performed by using a HIF-1� polyclonal antibody without
appreciable cross-reactivity to HIF-2� (Fig. S1A). ChIP and input
DNA were hybridized to Affymetrix GeneChip Human Tiling 2.0R
Array Sets, consisting of probes covering the entire nonrepetitive
human genome at 35-bp resolution. The model-based analysis for
tiling arrays (MAT) algorithm (12) was used to identify probe signal
peaks comparing triplicate biological replicates of HIF-1 ChIP
DNA to their matched inputs by using an initial P value cutoff of
1E�5. Consistent with the fact that HIF-1� protein levels increase
dramatically in hypoxic compared with normoxic samples (Fig.
S1B), 91% of the putative HIF-1-binding sites were characterized
by a positive peak call only under hypoxic conditions (e.g., ENO1
and INSIG2; Fig. 1A). However, because HIF-1� is not entirely
absent in normoxia, peaks in which probe intensities were signifi-
cantly increased under hypoxic conditions by comparison with
normoxia were also retained (e.g., JMJD1A and ZNF292; Fig. 1A).
A minority of peaks (7%) had peak intensities that did not increase
in hypoxic compared with normoxic samples (e.g., ADI1 and
PHF12; Fig. 1A), and these were suspected to be nonspecific.
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To validate the ChIP-chip analysis pipeline, we used quantitative
PCR (qPCR) to quantify HIF-1 binding to chromatin. Loci with a
positive call on ChIP-chip analysis also had enrichment by ChIP-
qPCR, with most loci having at least 8-fold enrichment of ChIP
DNA compared with input (Fig. 1B, bar graph). To establish the
specificity of the ChIP for HIF-1, we compared ChIP-qPCR results
in hypoxic and normoxic samples and also compared control
hypoxic samples to hypoxic samples in which HIF-1� had been
specifically depleted by shRNA knockdown (sh-HIF1�) (Fig. S1B).
These studies confirmed that at loci in which ChIP-chip identified
hypoxia-unique or hypoxia-enriched peaks (Fig. 1A), there was
specific enrichment of HIF-1 binding by ChIP-qPCR analysis based
on increased enrichment under hypoxic conditions and decreased
binding when HIF-1� was specifically depleted (Fig. 1B, heat map).
Loci in which there was no increase in peak intensity in hypoxia by
ChIP-chip (Fig. 1A) likewise showed no enrichment under hypoxic
conditions by ChIP-qPCR (Fig. 1B). Importantly, specific knock-
down of HIF-1� did not alter binding at these loci (Fig. 1B),
verifying that these peaks were nonspecific and likely due to
antibody cross-reactivity. This minority (7%) of nonspecific ChIP
fragments were therefore excluded from the analysis pipeline.

We used ChIP-qPCR to evaluate a total of 130 loci consisting of
HIF-1-binding regions identified by ChIP-chip, negative regions as
well as some previously reported HIF-1 targets (Table S1). Using
the ChIP-qPCR results as the benchmark, we used receiver oper-
ating characteristic (ROC) curve analysis (Fig. S1C) to establish
optimized thresholds for the ChIP-chip analysis (MAT score �5.77

and P value � 2.5 � 10�7) that together resulted in high specificity
(95.5%) and sensitivity (82.5%) (Fig. S1D). Within a subset of 40
well-validated HIF-1 targets evaluated by ChIP-qPCR (Table S2),
these thresholds produced an empiric sensitivity of 75% and
specificity of 100%. With these optimized thresholds, a total of 377
HIF-1-binding sites were identified across the genome.

The canonical motif that is bound by HIF-1, the core HRE, is
well established (5�-RCGTG-3�). Despite there being �2.5 million
occurrences of this promiscuous motif in the human genome, we
observed only a very small minority bound by HIF-1. To determine
whether this heightened specificity was due to a previously unrec-
ognized extended binding preference, we used several de novo
motif search tools, including Weeder (13) and MEME (14, 15), to
search for overrepresented motifs within our list of HIF-1-bound
fragments. De novo motif search of our expanded list of putative
HIF-1 bound sites revealed overrepresentation of motifs that were
highly similar to a position-weighted matrix (PWM) generated
based on the alignment of 68 well-characterized HIF-1-binding sites
previously reported in the literature (10) (Fig. S2 A–C). Although
we did note a stronger bias for an adenine in the 5� position
(5�-ACGTG-3�, Fig. S2B), we did not identify extended sequence
preferences beyond the core HRE that would explain the lower-
than-predicted number of observed HIF-1-bound sites.

We used the Match algorithm (16) to identify core HREs in the
377 HIF-1 ChIP-chip fragments. A total of 283 (75%) contained at
least 1 core HRE (HRE� hits). When mapped to the human
genome, HRE� hits were found to be tightly centered around the
transcription start sites (TSS) of genes (Fig. 2A), with a majority of
binding sites located either within promoters (50%) or intragenic
regions (22%) (Fig. 2B) and only 15% located in long-range (�50
kb) relationship to genes (Fig. 2B).

HIF-1 Binding Is Correlated with Up-Regulated Expression. To investi-
gate the relation of HIF-1 binding to hypoxia-induced gene expres-
sion, we performed mRNA profiling of cells under normoxic and
hypoxic conditions. Gene set enrichment analysis (GSEA) (17) was
used to determine whether HIF-1 binding was functionally associ-
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Fig. 1. HIF-1 ChIP-chip analysis and validation. (A) Representative integrated
genome browser (IGB; Affymetrix) tracks showing peaks of probe intensities
(vertical bars) arrayed by chromosomal position. For each locus, tracks are scaled
identically. ChIP peaks were identified by using the MAT algorithm and were
classified as hypoxia-unique, hypoxia-enriched, or nonspecific. (B) ChIP-chip re-
sults were validated by ChIP-qPCR using primer pairs surrounding the putative
binding sites in the indicated loci. For each locus, the fold enrichment comparing
HIF-1 ChIP DNA to input is represented in the bar graph (mean 	 SD). To
determine specificity for HIF-1, the bottom heat map depicts the fold enrichment
comparing hypoxic to normoxic cells and control hypoxic cells to cells in which
HIF-1� was specifically depleted with a lentiviral shRNA (sh-HIF1�). Primer pairs
locate 5 and 10 kb upstream of the VEGF gene were used as controls.
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Fig. 2. Distribution of HIF-1-bound sites and association with transactivation.
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structure of associated genes. (C) GSEA analysis of mRNA expression profiles for
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signal-to-noise (S2N) ratios of triplicate hypoxic samples vs. triplicate normoxic
samples. Genes associated with HRE� HIF-1-binding sites were strongly corre-
lated with the hypoxic phenotype. In contrast, no such enrichment was evident
for the ChIP-chip fragments without identifiable core HREs (HRE�). The color bar
indicates up-regulated (red, positive S2N) and down-regulated (blue, negative
S2N) genes.
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ated with hypoxia-induced changes in mRNA expression. Genes
within 50 kb of a HIF-1-binding site were significantly enriched for
up-regulated mRNA expression under hypoxic conditions (Fig. 2C,
HRE�). The association between HIF-1 binding and increased
gene expression was most apparent for binding sites located within
the promoter of genes but was also highly significant when binding
was within intragenic or enhancer regions (Fig. S2D). By compar-
ison, the set of ChIP fragments without identifiable core HREs had
no demonstrable enrichment in gene expression under hypoxic
conditions (Fig. 2C, HRE�). Likewise, fragments excluded above
as ‘‘nonspecific’’ (e.g., Fig. 1) did not have enriched expression
under hypoxia (FDR q value 0.23). The average MAT score (ChIP
enrichment) of HRE� hits was also significantly lower than HRE�
hits (Fig. S2E), and de novo motif search did not identify any
overrepresented motifs that might suggest an alternative HIF-1
binding motif . Together, these results suggested that HIF-1 ChIP
fragments without identifiable core HREs were not direct HIF-1-
binding sites and may represent indirect binding, such as through
bridging interactions with coactivator complexes such as p300/CBP
(8, 9). Furthermore, none of the core HRE-negative hits have been
previously reported as hypoxia-responsive genes. Therefore, to
focus our analysis on direct HIF-1-binding sites and transactivation
targets, all subsequent analysis focused on the 283 high-confidence
core HRE-containing HIF-1-binding sites (Table S3).

Dioxygenases Are HIF-1 Targets. Only a minority of the genes (�1/6)
associated with HIF-1 ChIP hits have been previously described as
hypoxia-responsive genes (Table S3). To determine whether this
larger set of HIF-1 target genes could provide insight into func-
tional groups that are coordinately regulated by HIF-1, we per-
formed functional annotation clustering using the DAVID Bioin-
formatics Resource (http://david.abcc.ncifcrf.gov/). As expected,
DAVID identified the glycolytic pathway enzymes (e.g., ENO1,
GAPDH, HK2), which are well-characterized HIF-1 targets (1), as
the most highly enriched subsets in our HIF-1 ChIP hits (Table 1).
Within our list of direct HIF-1 targets (Table S3), there were 19
genes (Fig. 3A) associated with various glycolysis functional anno-
tation groups (Table 1). Surprisingly, several GO annotations for
2-oxoglutarate and ferrous iron-dependent dioxygenases (2-OG-
dioxygenases), were also highly enriched in the DAVID analysis
(Table 1). We found 11 2-OG-dioxygenase genes with direct HIF-1
binding (Fig. 3B and Table S3), and these were associated with
several functional annotation groups that in some cases were as
significantly enriched as that for the glycolytic enzymes (Table 1).

The 2-OG-dioxygenases catalyze oxidation–reduction reactions
and can be subgrouped based on specific enzymatic activities.
HIF-1 was found to bind to genes within most enzymatic subgroups
within the family (Fig. 3B), including the prolyl-hydroxylases,
procollagen lysyl-hydroxylases, DNA demethylase, and Jumonji-
domain (JmjC)-containing demethylases. To verify the binding of
HIF-1 to these 2-OG-dioxygenases, we performed HIF-1 ChIP-
chip in a second cell type, U87 glioma cells. High-affinity binding
of HIF-1 was verified at all loci under hypoxic conditions (Fig. 3C).
Furthermore, the abundance of mRNA encoding most of these

2-OG-dioxygenases was induced under hypoxic conditions in 3
different cell types (Fig. 3B), with some cell-type variation in the
degree of induction. Together, these results demonstrate that
multiple members of the 2-OG-dioxygenase family are direct HIF-1
targets and are coordinately up-regulated under hypoxic condi-
tions.

JmjC-Containing Histone Demethylases (JHDMs) Are Direct HIF-1 Targets.
We noted that 4 JmjC-containing proteins (JARID1B, JMJD1A,
JMJD2B, and JMJD2C) were direct HIF-1 target genes with robust
HIF-1 binding within their promoters and up-regulated expression
under hypoxic conditions. An expanded analysis of the JmjC family
revealed strong enrichment for up-regulated mRNA expression
under hypoxic conditions in both HepG2 and U87 cells (Fig. 4 A
and B). This included both the direct HIF-1 targets (JARID1B,
JMJD1A, JMJD2B, and JMJD2C) and other family members
without evidence of direct HIF-1 binding. In HepG2 cells, 17 of the
22 JmjC family members had significantly increased mRNA abun-
dance under hypoxic conditions (Fig. 4B). These results are sup-
ported by recent studies demonstrating that HIF-1 up-regulates
JMJD1A (18) and JMJD2B (19) in vitro.

To determine the potential relevance of these findings in vivo, we
also examined the expression of JmjC proteins in human tumors,
because most solid tumors are hypoxic compared with normal
tissues (1). In glioblastoma multiforme, a disease in which hypoxia
is a prominent feature (20), the expression of multiple JmjC
proteins was significantly increased in hypoxic tumor samples
compared with corresponding normal brain (Fig. 4C and Fig S3).
The significance of increase was comparable with other well-
characterized HIF-1 targets, such as hexokinase 2 and VEGF (Fig. 4C).
Thus, the expression of multiple JmjC proteins is increased not only in
vitro in hypoxic cell lines but also in vivo within hypoxic human tumors.
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Quantitative RT-PCR was used to verify increased mRNA
abundance of HIF-1-targeted JmjC proteins under hypoxic condi-
tions (Fig. 4D). We used shRNA knockdown of HIF-1� and
HIF-2� to determine the specificity of hypoxia-induced expression.
Individually, shRNA depletion of HIF-1� or HIF-2� did not
significant affect hypoxia-induced expression, whereas knockdown
of both HIF-1� and HIF-2� abolished hypoxia inducibility of
JARID1B, JMJD1A, JMJD2B, and JMJD2C (Fig. 4E). The hyp-
oxia inducibility of these JHDMs was also abolished by knockdown
of ARNT (Fig. 4E), which is the common �-subunit for both HIF-1
and HIF-2. These results demonstrate that these JmjC proteins are
redundantly transactivated by both HIF-1 and HIF-2 under hypoxic
conditions.

Up-Regulation of JHDMs Maintains Histone Methylation Homeostasis.
The JmjC-containing proteins function as histone demethylases
(JHDMs) (21–26). Because the hydroxylation and demethylation
reactions catalyzed by 2-OG-dioxygenases require molecular oxy-
gen, we hypothesized that the up-regulated expression of these
enzymes may be a compensatory mechanism in response to de-
creasing oxygen tension. That is, with decreasing levels of molecular
oxygen, increasing the concentration of the enzyme may help
partially compensate by maintaining forward drive of the chemical
reaction. To experimentally test this hypothesis, we first assessed the
effect of hypoxia on global histone methylation. Relative to nor-
moxic conditions, overall methylation of histone H3 lysines 4, 9, and
36 were found to increase with decreasing oxygen tension, especially
at 0.5–1% oxygen (Fig. 5 A and B). These results are consistent with
prior studies (27, 28) and suggest that histone demethylation
decreases as oxygen levels drop, analogous to the decrease in
prolyl-hydroxylation of HIF-1� by EGLN1–3 under subphysiologi-
cal oxygen tensions.
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2�, or ARNT was used to determine HIF-dependent up-regulation of JmjC pro-
teins. Data represent fold change comparing hypoxic with normoxic samples
(mean 	 SD).
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Fig. 5. Histone hypermethylations from loss of JHDM induction in hypoxia. (A)
A representative immunoblot analysis of total histone H3 and the specified
modifications in biological replicates (1 and 2) under normoxic (N) and hypoxic
conditions (O2 levels indicated). (B) Quantitation of a single representative study
is shown,withresults foreachmodificationnormalizedtototalhistoneH3within
each sample (mean 	 SD). (C) Accumulation of JARID1B protein under hypoxia
was verified by Western blot analysis with a JARID1B-specific antibody, with
specificity verified by shRNA depletion of JARID1B (Left). Knockdown of ARNT
(sh-ARNT) (Right) reducesaccumulationofJARID1Binhypoxia. (D)Globalhistone
H3 and H3K4me3 levels were determined in unmodified HepG2 cells, control
shRNAcells (sh-GFP),andARNTdepletedcells (sh-ARNT).Westernblotanalysis for
histone H3 and H3K4me3 of duplicate biological replicates (1 and 2) is shown for
a representative experiment. (E) Quantitated results represented as mean 	 SD.
(F) A HA-JARID1B expression construct was transfected into HepG2 sh-ARNT cells.
Normoxic and hypoxic cells were stained with anti-HA (red) and anti-H3K4me3
(green) antibodies. In both conditions, overexpression of JARID1B reduced the
H3K4me3 level by comparing transfected cells (with arrows) to nontransfected
cells.
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To evaluate the role of HIF-induced expression of JHDMs in
maintaining histone methylation under hypoxic conditions, we
focused on JARID1B, which has a robust HIF-1-binding site within
its promoter (Fig. 3C), has up-regulated mRNA expression in
multiple cell types (Fig. 3B), and is a well-defined demethylase for
trimethylated histone H3 lysine 4 (H3K4me3) (29). We used
immunoblots to first verify increased protein abundance in hypoxia.
Normal tissues have oxygen levels of �3–5%. Stabilization of
HIF-1� and increased abundance of JARID1B was apparent
starting at 2% oxygen, and significantly increased at 1% and 0.5%
oxygen (Fig. 5C). Because HIF-1 and HIF-2 appear to transactivate
JARID1B (Fig. 4E), we assessed the effects of shRNA depletion of
ARNT on JARID1B protein levels. Consistent with reduced
accumulation of JARID1B mRNA (Fig. 4E), shRNA knockdown
of ARNT reduced JARID1B protein accumulation under hypoxic
conditions (Fig. 5C).

If up-regulated expression of JARID1B is a compensatory
mechanism for maintaining H3K4 methylation levels under con-
ditions of decreasing oxygen, we predicted that decreasing the
induction of JARID1B by HIF would result in hypermethylation of
H3K4 under hypoxic conditions. We compared control HepG2
cells with cells in which ARNT was depleted by shRNA to block
both HIF-1 and HIF-2 activity. Knockdown of ARNT had no
appreciable effect on basal H3K4 methylation under normoxic
conditions (Fig. 5D). With increasing hypoxia, there was a global
increase in H3K4me3 levels (Fig. 5 D and E). Inhibiting HIF
transactivation through knockdown of ARNT resulted in an in-
crease in global H3K4me3 levels at specific levels of hypoxia (Fig.
5 D and E). To determine whether ectopic expression of JARID1B
could reverse hypoxia-induced H3K4 hypermethylation, an expres-
sion plasmid was transfected into HepG2 cells in which ARNT was
depleted by shRNA. Under conditions of hypoxia, cells ectopically
expressing JARID1B had decreased levels of H3K4 methylation
(Fig. 5F). Together, these results support the hypothesis that
up-regulated expression of JARID1B helps compensate for
decreased levels of molecular oxygen in maintaining H3K4
methylation.

Discussion
Adequate oxygenation is essential for normal cell physiology,
and a coordinated transcriptional response to hypoxia is critical
for maintaining cellular homeostasis under conditions of de-
creased oxygen tension. To achieve a fuller understanding of
hypoxia-induced gene expression, we used ChIP-chip and
mRNA expression profiling to define HIF-1 chromatin binding
and gene transactivation on a genome-wide scale. Given the
promiscuity of the established core HIF-1-binding motif, it is of
interest that our analysis revealed only a few hundred high-
confidence HIF-1-binding sites across the human genome. This
list of HIF-1-binding sites is certainly not comprehensive, be-
cause it was generated from a single time point (the peak of
HIF-1 protein abundance), and it is likely that additional HIF-1
sites are occupied after prolonged hypoxia. There are also clearly
cell type-specific differences in HIF-1 binding. Furthermore, to
increase the specificity of our analysis, we imposed a stringent
analysis pipeline that decreased the overall sensitivity of the
methodology. Nonetheless, the number of HIF-1-binding sites
observed is of similar magnitude to the �540 sites acutely bound
by p53 (30), and the �1,200 loci bound by Foxp3 in mouse T cells
(31). Genome-wide analysis of estrogen receptor (ER) revealed
�3,600 binding sites (32). By comparison, E2F1 and MYC bind
to �15,000 sites each (33), and the insulator protein CTCF binds
to �13,000 sites (34). Together, these studies suggest that
DNA-binding proteins may partition into those with higher
promiscuity (E2F1, MYC, CTCF) and lower promiscuity (HIF-1,
p53, ER, Foxp3). It is also relevant to note that in the case of
HIF-1, p53, and ER, the studies were driven by specific stimuli
(hypoxia for 4 h, 5-FU for 6 h, and estrogen for 45 min,

respectively). Thus, the distinction between these 2 groups may
also reflect a difference between acute versus tonic chromatin
binding.

We have found that a majority of HIF-1-binding sites exist in
close association with genes, predominantly within promoter and
intragenic regions, similar to the binding pattern of p53, Foxp3,
E2F1, and NF-�B (30, 31, 33, 35). Because many loci have alter-
native transcriptional start sites, many intragenic binding sites might
in fact represent promoters for these alternative coding (or non-
coding) transcripts. These results are in distinct contrast to ER
binding (32, 36), where genome-wide analysis revealed that only a
small minority of binding occurs within promoter regions and the
vast majority of binding sites are long-range in relationship to
known genes. Approximately half of all binding sites for MYC (33),
CTCF (34), and Foxp3 (31) exist in long-range relationships to
genes. Based on the conventional view of transcriptional transac-
tivation as a promoter-driven process, many ChIP-chip studies have
made use of microarrays focused on promoter regions. Even in the
case of HIF-1, which shows a strong bias toward promoter regions,
nearly half of the binding sites would have been missed if proximal
promoter arrays had been used, underscoring the importance of
comprehensive assessment across the entire genome.

In contrast to ER (36) and p53 (30), which are almost equally
associated with gene up- and down-regulation, we find no statistical
enrichment of HIF-1-binding sites in genes whose expression are
down-regulated by hypoxia. Although the numbers of mRNAs that
are up- and down-regulated under hypoxic conditions are approx-
imately equal, HIF-1 binding is enriched only in genes whose
expression increases. These results suggest that HIF-1 functions
predominantly as a transcriptional activator and rarely as a tran-
scriptional repressor (e.g., through recruitment of corepressor
complexes), as is the case with other transcription factors such as
p53 and ER (30, 36).

Even with a more comprehensive understanding of the direct
targets of HIF-1 binding, only a minority of hypoxia-induced gene
expression changes can be accounted for through the direct effects
of HIF-1. It is likely that another portion of the transcriptional
changes are due to HIF-2 mediated transactivation. However,
recent studies suggest that HIF-1 and HIF-2 bind to the same
HREs, and differential gene transactivation is conferred by inter-
acting with distinct transcriptional cofactors (37). Thus, the HIF-
1-binding sites defined in this study may largely encompass HIF-
2-binding sites as well. It is also difficult to associate long-range
binding sites with specific genes, and thus long-range transactiva-
tional mechanisms may account for another portion of hypoxia-
inducible genes. However, because there are �5- to 10-fold more genes
that are up-regulated by hypoxia compared with HIF-1-binding sites, it
is likely that most transcriptional changes are secondary in nature.
Several transcription factors are direct HIF-1 target genes, provid-
ing likely candidates for secondary transactivation.

Using the expanded list of direct HIF-1 targets, we noted that the
family of 2-OG-dioxygenases are coordinately up-regulated by HIF.
The diversity of known HIF-1 target genes can be broadly inte-
grated into 2 major homeostatic programs that facilitate adaptation
to hypoxia. The first encompasses a ‘‘metabolic program’’ in which
metabolism is switched from predominantly oxidative phosphory-
lation to anaerobic glycolysis (i.e., through induction of glycolytic
enzymes, pH regulating proteins and negative mitochondrial reg-
ulators). The second homeostatic program is an ‘‘oxygen-delivery
program’’ that increases oxygen delivery acutely through vasodila-
tation (iNOS) and vascular permeability (VEGF), and long-term
through induction of angiogenesis and erythropoiesis (VEGF,
EPO). Our study suggests a third major adaptive program consist-
ing of coordinated up-regulation of multiple members of the
2-OG-dioxygenase family. Although the specific enzymatic reac-
tions catalyzed by individual family members differ, they all have in
common a requirement for molecular oxygen. As oxygen levels
drop, increased expression of the enzymes may help maintain
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forward drive of critical hydroxylation and demethylation reactions.
For example, the striking enrichment for JHDMs suggests that
coordinated up-regulation of these enzymes counterbalances de-
creased levels of oxygen to maintain global histone methylation
patterns. Together, these results suggest that in the face of hypoxia,
cellular homeostasis is maintained in part through a third major
adaptive program—a ‘‘dioxygenase homeostasis program’’—that
helps maintain the forward drive of certain critical oxygen-
dependent dioxygenases.

Methods
Detailed experimental methods are contained in SI Materials and Methods.

ChIP-chip. HepG2 and U87 cells (ATCC) were cultured under normoxic (ambient)
or hypoxic (0.5%O2, 4 h) conditions. HIF-1� ChIP-chip was performed with a
HIF-1� pAb (Table S4) as previously described (32). HepG2 HIF-1� ChIPed DNA
replicates and inputs were amplified and hybridized onto the Affymetrix Gene-
Chip Human Tiling 2.0R Array Set. U87 HIF-1 ChIP samples were hybridized onto
Affymetrix GeneChip Human Promoter 1.0R Array. The MAT algorithm (12) was
used to identify peaks of probe intensity (‘‘hits’’). ChIP hits were associated with
RefSeq genes from the University of California Santa Cruz (UCSC) RefGene table
for HG18 based on chromosomal position.

qPCR Validation of ChIP Hits. Quantitative PCR primers were designed against
regions of interest and also 2 negative control regions (5 and 10 kb upstream of
the VEGF gene). All primer sequences are specified in Table S1. HIF-1-specific
binding was defined as �2-fold enrichment when HIF-1 ChIP and matched input
samples were compared, and a �2-fold greater binding in hypoxic samples
relative to either normoxic cells or hypoxic HIF-1� knockdown (sh-HIF1�) cells.

Identification of Putative Core HREs and Motif Search. A PWM was generated from
68 reported human functional HRE sequences (10). We used Match (16) to locate

sites in our ChIP hits matching this PWM, using a core score cutoff of 0.9 and
matrix score of 0.85.

mRNA Expression Profiling. HepG2, U87, and MDA-MB231 cells were collected
under normoxic conditions (0 h) and after 4, 8, and 12 h of hypoxia (0.5% O2).
Triplicates were hybridize to Affymetrix HG-U133Plus2 arrays. For analysis of
human tumor material, a dataset for Grade IV glioblastoma multiforme (38) was
downloaded from the National Center for Biotechnology Information.

GSEA and Functional Annotation Clustering. We created gene sets containing all
genes that could be associated with a ChIP hit (HRE� hits or HRE� hits, within 50
kb). These sets along with a gene set containing all known JHDMs were added to
a file of gene sets (c5.mf.v2.5.symbols.gmt) downloaded from the GSEA web site
at the Broad Institute (www.broad.mit.edu/). We used the command line version
of GSEA2.0 with gene set permutation to derive significance, with signal-to-noise
as the distance metric and maximum expression to collapse probe sets to genes.
For functional annotation clustering, the gene sets containing all genes associ-
ated with a ChIP hit (with 50 kb) were uploaded onto the David Go Annotation
site (http://david.abcc.ncifcrf.gov).

Western Blot Analyses and Immunofluorescence. Histones were isolated by a
standard acid extraction protocol and standardized amounts of protein were
fractionated by SDS/PAGE followed by Western blot analysis. All antibodies used
are specified in Table S3. Densitometric quantitation of each histone modifica-
tion was normalized to total histone H3 to correct for loading. HepG2-shARNT
cells were transfected with a JARID1B expression plasmid pCS2 � 3HA-JARID1B (a
gift from Yang Shi, Harvard Medical School). Cells were incubated for 24 h under
either normoxic or hypoxic (0.5%O2) conditions, fixed, and stained with anti-HA
mAb and H3K4me3 pAb.
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