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Abstract

Background: Acute myeloid leukemia (AML), caused by the abnormal proliferation of immature myeloid cells in
the blood or bone marrow, is one of the most common hematologic malignancies. Currently, the interactions
between malignant myeloid cells and the immune microenvironment, especially T cells and B cells, remain poorly
characterized.

Methods: In this study, we systematically analyzed the T cell receptor and B cell receptor (TCR and BCR) repertoires
from the RNA-seq data of 145 pediatric and 151 adult AML samples as well as 73 non-tumor peripheral blood samples.

Results: We inferred over 225,000 complementarity-determining region 3 (CDR3) sequences in TCR α, β, γ, and δ
chains and 1,210,000 CDR3 sequences in B cell immunoglobulin (Ig) heavy and light chains. We found higher clonal
expansion of both T cells and B cells in the AML microenvironment and observed many differences between pediatric
and adult AML. Most notably, adult AML samples have significantly higher level of B cell activation and more secondary
Ig class switch events than pediatric AML or non-tumor samples. Furthermore, adult AML with highly expanded IgA2 B
cells, which might represent an immunosuppressive microenvironment, are associated with regulatory T cells and
worse overall survival.

Conclusions: Our comprehensive characterization of the AML immune receptor repertoires improved our understanding
of T cell and B cell immunity in AML, which may provide insights into immunotherapies in hematological malignancies.

Keywords: Acute myeloid leukemia, T cell receptor repertoires, B cell receptor repertoires, Complementarity-determining
region 3

Background
Acute myeloid leukemia (AML), caused by the abnormal
proliferation of immature myeloid cells in the blood or
bone marrow (BM), is the most common acute leukemia in
adults and the second most common in children [1]. For
many years, the standard therapy for AML has been
chemotherapy regimens with or without allogeneic
hematopoietic stem cell transplantation [2]. This strategy

often induces complete remission, but a majority of patients
will ultimately relapse and succumb to the disease [2–5].
Advances in immunotherapies, particularly immune check-
point blockade (ICB) and engineered T cells, have revolu-
tionized cancer therapy in recent years [6, 7]. However, the
treatment of AML with immunotherapies so far has been
promising but very challenging [8]. In contrast to the
success of ICB therapy in many solid tumors, the only pub-
lished phase I study of pidilizumab (anti-PD1) in AML
showed peripheral blast reduction only in one out of eight
patients [9]. Though low mutational burden was considered
the cause of low endogenous immune responses for ICB
treatment in AML [10], the intrinsic resistance mechanisms
of the leukemic blasts against immune responses remains
poorly understood. In addition, due to the lack of specific
target antigen, treatment with chimeric antigen receptor
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(CAR) T cells is still challenging for AML compared to the
prominent effect of CAR T therapies targeting CD19/CD20
in B cell leukemia and lymphoma [11]. Hence, better un-
derstanding of the interactions between AML malignant
cells and the immune microenvironment has the potential
to improve patient outcome and inform novel immuno-
therapy strategies for AML patients [12].
T cell and B cell are key components of the adaptive im-

munity. With the development of ICB therapy, the antitu-
mor properties of infiltrating T cells have been well
confirmed in many solid tumors such as melanoma and
non-small cell lung cancer [6]. Upon binding to tumor neo-
antigens, cytotoxic T cells can eliminate the cancer cells
[13]. Though infiltrating B cells have been frequently ob-
served in multiple tumor tissues [14, 15], their functional
impact remains controversial [16–18]. The most variable re-
gion in the T cell receptor and B cell receptor (TCR and
BCR, respectively) is the complementarity-determining re-
gion 3 (CDR3), which plays a key role in antigen recognition
[19, 20]. Therefore, characterizing tumor TCR and BCR
repertoires, particularly the CDR3s, is critical to understand-
ing antigen recognition and tumor–immune interactions.
Efforts have been made to study the tumor-infiltrating TCR
or BCR repertoires using either targeted deep sequencing
(TCR-seq or BCR-seq) or unselected RNA-seq data in many
solid tumors [21–24]. However, less is known about the im-
mune repertoire changes in hematologic malignancies, and
a systematic characterization of both TCR and BCR reper-
toires in the AML microenvironment is still lacking.
In this study, we characterized TCR and BCR repertoires

in both pediatric and adult AML by detecting and analyzing
the CDR3 sequences in TCR α, β, γ, and δ chains and B cell
immunoglobulin (Ig) heavy (IgH) and light (IgL, IgK) chains
from the RNA-seq data in AML patients and non-tumor
donors. We investigated the clonal expansion patterns of T
cells and B cells in the AML microenvironment and de-
scribed the differences between AML and non-tumor sam-
ples. We also compared the differences between pediatric
and adult AML samples and identified the association of
tumor immune receptor repertoires with clinical outcome.
These results provided insights into the immune receptor
repertoires and T/B cell functions in AML.

Methods
In silico validation using single cell RNA-seq data
We previously developed a computational algorithm
TRUST [22, 24–26] to extract TCR and BCR hypervari-
able CDR3 sequences from unselected bulk tumor RNA-
seq data. In order to further validate the accuracy of our
method for assembling TCR and BCR from RNA-seq
data, we collected one SMART-seq dataset of CD45-
positive white blood cells from 19 pre-treatment melan-
oma patients [27]. For each patient, we merged the sin-
gle cell RNA-seq (scRNA-seq) data of the CD45-positive

cells into one “bulk” sample and applied TRUST to extract
the TCR/BCR reads as if it were regular RNA-seq data. In
the single cell data, all the T/B cells have been identified
based on known gene markers, providing the true fractions
of T/B cells in each merged “bulk” sample. We then esti-
mated the T/B cell fraction in each “bulk” sample using the
number of reads mapped to TCR/BCR region from TRUST
divided by the total number of sequencing reads. Moreover,
we followed the instructions by Sade-Feldman et al. [27] to
reconstruct T and B cell receptors from all the identified T
and B cells. Only cells with unique sequence on both chains
(e.g., it has been reported in [28] that some T cells have
two different alpha chains) were counted in the down-
stream analysis of single cell data. In order to estimate the
T/B cell clonotype diversity from single cell data, we calcu-
lated the Shannon entropy using the frequencies of TCR β
chain and IgH CDR3 amino acid sequences. Samples with
fewer than two single T/B cells were excluded in this ana-
lysis. In the simulated “bulk” data, we applied CPK (TCR/
BCR CDR3s per kilo of TCR/BCR reads) [22] to estimate
the clonotype diversity of T/B cells.

Data collection and preprocessing
Our study investigated a total of 296 primary AML samples
(Additional file 1: Table S1), including 145 pediatric sam-
ples from Therapeutically Applicable Research To Generate
Effective Treatments (TARGET) [29] and 151 adult sam-
ples from The Cancer Genome Atlas (TCGA) [30]. The
RNA-seq reads in BAM files, gene expression read counts,
and clinical data of all the AML samples were downloaded
from Genomic Data Commons (GDC, https://portal.gdc.
cancer.gov/, Jun 2017). RNA-seq reads have been previ-
ously aligned to hg38 human reference genome using
STAR2 [31] with the same parameters. As a control of the
AML samples, RNA-seq data of 73 peripheral blood (PB) of
non-tumor samples (Additional file 1: Table S2) were
downloaded from Sequence Read Archive repository (SRA,
https://www.ncbi.nlm.nih.gov/sra, PRJNA263846) and suc-
cessfully processed using the GDC mRNA analysis pipeline
(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/
Expression_mRNA_Pipeline). The limited available clinical
annotation on these normal samples only allowed categor-
ical information such as male/female and children/adults to
be parsed out. Since the maturity of the adaptive immunity
is dependent on age, especially in early age, the pediatric
AML samples were further divided into infants (0–3 years
old, n = 37) and children (3–20 years old, n = 108) group in
the downstream analyses. Control samples were not divided
due to the lack of age information.

Detection and analysis of TCR and BCR CDR3 sequences
from AML and non-tumor RNA-seq data
To characterize the immune receptor repertoires, we ap-
plied TRUST3.0.1 (https://bitbucket.org/liulab/trust) to

Zhang et al. Genome Medicine           (2019) 11:73 Page 2 of 11

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/sra
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline
https://bitbucket.org/liulab/trust


all the AML and non-tumor RNA-seq samples. Formatted
txt files with CDR3 calls were used in the downstream ana-
lyses, in which the est_lib_size column represents the num-
ber of reads mapped to TCR/BCR region. The number of
total sequencing reads was obtained from each bam file
using samtools [32], and those mapped to each variable (V),
joining (J), or constant (C) genes were tallied in the “covera-
ge.txt” file for each sample. The definition of the columns
in these files was described in the TRUST documentation.
In order to compare the richness of TCR/BCR between

AML and non-tumor samples, we normalized the number
of CDR3s by the number of total sequencing reads and
one minus blast percentage (pathologically estimated
tumor purity) in each sample. The clonotype diversity of
T/B cells was estimated by TCR/BCR CDR3s per kilo
TCR/BCR reads (CPK) [22] in each sample. Complete
CDR3 sequence was defined as CDR3 annotated with both
V and J genes. γδ T cell fraction was estimated by the total
number of γ or δ-CDR3s divided by the total number of
TCR CDR3s in each sample.
To identify B cell lineage clusters in each sample, we ex-

tracted an octamer starting from the first position (not
counting the starting "C") in each complete IgH CDR3 as
motifs. All the IgH CDR3 sequences (either partial or
complete) which contain amino acid matches to the motif
with 0-1 mismatch (e.g., motifs RDMWLVGW and
RDMWIVGW were considered matches) were collected.
Each motif with 3 or more sequences was considered a B
cell cluster. This approach provided flexibility in detecting
amino acid changes from non-synonymous mutations, yet
maintained low computational complexity.
Somatic hypermutation (SHM) [33] was defined as mis-

matches in B cell clusters. Mutations between two se-
quences with only one nucleotide mismatch were counted
to avoid overestimation on SHM rate due the aggregated
mutations during the B cell clonal expansion. SHM rate per
sample was calculated as the SHM count divided by the
total number of assembled CDR3 bases, which avoided the
bias of unknown mutations outside partial CDR3 assem-
bles. IgH CDR3 calls with unique isotype annotation were
used in the isotype fraction and class switch recombination
(CSR) analyses [34]. Cooccurrences of unambiguously
assigned different Ig classes or subclasses in the same IgH
CDR3 cluster were considered as CSR. The number of CSR
events was normalized by the total number of IgH clusters
in each group, and samples with less than 10 unique IgH
CDR3s were excluded from downstream analyses.

Statistical analysis
Wilcoxon rank-sum test was used to compare the differ-
ences between TCR/BCR CPK, γδ CDR3 fractions, and
SHM rates among AML and non-tumor groups. Spear-
man’s rank correlation was used to check the association
among αβ, γδ, or IgH and IgK/IgL CDR3 calls, and

partial Spearman’s rank correlation was used to check
the association between different Ig isotype fractions in
the AML and non-tumor groups. Survival analyses were
visualized using Kaplan–Meier curves, and the statistical
significance was estimated using Log-rank test. Details
for the other analyses were described in supplementary
methods (Additional file 3).

Results
In silico validation on the accuracy of TRUST for
assembling TCR and BCR CDR3s from RNA-seq data
The overall approach in our study has been repeatedly val-
idated in our previous work [22, 24–26]. In this study, we
applied the same approach to investigate the potential
functional roles of T/B cells in AML using a large number
of publicly available RNA-seq samples. Here, we also per-
formed in silico validation on the accuracy of our method
for assembling TCR and BCR from RNA-seq data by
using publicly available scRNA-seq datasets on immune
cells. We collected one SMART-seq dataset of CD45-
positive white blood cells from pre-treatment melanoma
patients [27]. Although these cells were derived from the
infiltrating immune cells, they covered most of the cell
types (macrophage, monocyte, dendritic cells, neutrophil,
T/B lymphocytes, natural killer cells, etc.) composed of
the AML immune microenvironment. We found that the
fraction of both T and B cell estimated from single cell re-
sults and TRUST callings from “bulk” samples are signifi-
cantly positively correlated (Additional file 2: Figure S1a).
We then compared the associations of the number of
TCR/BCR CDR3s between single cell data and TRUST
callings from “bulk” samples. Again, they are also signifi-
cantly positively correlated (Additional file 2: Figure S1b),
indicating that the CDR3s detected by TRUST from bulk
RNA-seq data provide a good approximation to the real
T/B cell numbers in each sample. In order to estimate the
T/B cell clonotype diversity from single cell data, we cal-
culated the Shannon entropy using the frequencies of
TCR β chain and BCR heavy chain CDR3 amino acid se-
quences. In the simulated “bulk” data, we applied CPK
[22] to estimate the clonotype diversity of T/B cells. Con-
sistently, we observed a significantly positive correlation
between TCR/ BCR entropy and CPK (Additional file 2:
Figure S1c). Based on these results and our previous work,
we conclude that our approach has sufficient power to re-
cover TCR and BCR CDR3s to evaluate the fraction and
diversity of both T and B cells from bulk RNA-seq data,
which allowed us to identify the changes of T and B cells
between AML and non-tumor samples.

Overview of TCR α, β, γ, and δ chain CDR3 sequences in
AML and non-tumor samples
TRUST identified a total of 225,000 TCR CDR3 sequences
from AML (55,000) and non-tumor samples (170,000).
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Despite deeper sequencing coverage of AML than non-
tumor samples (Additional file 2: Figure S2a), we observed
significantly fewer TCR CDR3 calls in AML (Add-
itional file 2: Figure S2b), potentially due to the high malig-
nant cell content in AML. In order to compare the richness
of TCR between AML and non-tumor samples, we normal-
ized the number of CDR3s by the sequencing depth and
one minus blast percentage (pathologically estimated tumor
purity) in each sample. As shown in Fig. 1a, the normalized
TCR CDR3 counts are still significantly lower in AML sam-
ples. γδ chain CDR3s account for 5.8% of the total calls in
AML and 6.6% in the non-tumor group (Additional file 2:
Figure S2c), consistent with the previous estimation that γδ
T cells constitute less than 10% of the total T cells in hu-
man PB [35]. In addition, we observed a positive correlation
between α and β CDR3s and between γ and δ CDR3s from
each sample in both AML and non-tumor groups
(Additional file 2: Figure S2d, e), although we could not pair
the αβ or γδ CDR3s with RNA-seq data. Overall, the length
distribution of complete TCR α, β, γ, and δ chain CDR3s
and their sequence conservation patterns are similar

between the AML and non-tumor groups (Additional file 2:
Figure S2f, g).

The clonotype diversity of TCR repertoire in AML and
non-tumor samples
T cell clonotype diversity is an important feature of the
TCR repertoire which was previously reported to have po-
tential clinical implications [36, 37]. We investigated the
differences in T cell clonotype diversity between AML and
non-tumor groups. Using CPK to approximate TCR
clonal diversity [22], we observed significantly lower diver-
sity in both pediatric and adult AML samples compared
to non-tumor samples (Fig. 1b). This result suggests that
T cells are more clonal in the AML microenvironment.
No significant difference was observed in TCR diversity
between PB and BM samples in the pediatric AML (Add-
itional file 2: Figure S3a) or between pediatric and adult
non-tumor samples (Fig. 1b). Interestingly, we found that
infant AML samples have significantly higher TCR CPK
than children or adult AML (Fig. 1b). This result suggests
that T cells are less expanded in infant AML, which might

Fig. 1 T cell diversity analysis in AML and non-tumor samples. a Normalized TCR CDR3 count in AML and non-tumor groups. The number of CDR3s was
normalized by the number of total sequencing reads and one minus blast percentage (pathologically estimated tumor purity) in each sample. b TCR
CDR3s per thousand (kilo) TCR reads (CPK, as a measure of clonotype diversity) in AML and non-tumor groups. c Barplot showing the ratio of virus-related
β-CDR3 in AML and non-tumor groups. Virus-related β-CDR3 ratio was defined by the number of virus (cytomegalovirus, Epstein-Barr virus, and influenza)-
related β-CDR3s divided by the total number of unique complete β-CDR3s in each group. d Comparison of β-CPK between samples with and without
CBFB-MYH11 gene fusions. The p values in a, b, and d were calculated using the two-sided Wilcoxon rank-sum test. *p< 0.05, **p< 0.01, ***p< 0.001, n.s.
indicates not significant
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be due to limited bacterial and viral antigen exposure dur-
ing infancy. Consistently, we also observed lower fraction
of β-CDR3s specific to common viral epitopes from cyto-
megalovirus, Epstein–Barr virus, or influenza [38], in in-
fant AML than in children or adult AML (Fig. 1c).
Neo-antigens arising from somatic mutations can induce

T cell-mediated elimination of cancer cells [39]. A direct
consequence of antigen-specific T cell activation is clonal
expansion, which can be approximated by the inverse of
CPK. We therefore sought to investigate whether specific
missense mutation or gene fusion, which has been linked to
patient survival, was associated with αβ T cell activation in
AML samples. Due to the lack of detailed mutation infor-
mation from pediatric AML samples, we could only check
the mutation status available on five genes with high clinical
relevance (FLT3, NPM1, KIT, CEBPA, and WT1) and on
three oncogenic gene fusions (RUNX1-RUNX1T1, CBFB-
MYH11, and PML-RARA). We found that pediatric AML
samples with CBFB-MYH11 fusions have significantly
lower TCRβ CPK value (Fig. 1d), suggesting this fusion as
potentially immunogenic. The same trend was also ob-
served in infant and adult AML, although the difference is
not as significant due to the limited sample size.

γδ T cell analysis in AML and non-tumor samples
γδ T cells constitute a small percentage of total T cells in
human PB, and their roles in antitumor immune
responses have not been well characterized. Although the
fraction of γδ CDR3s are similar between AML and non-
tumor samples (Fig. 2a) and between PB and BM samples
in pediatric AML (Additional file 2: Figure S3b), there are
intriguing age-related differences. In the non-tumor
group, the fraction of γδ CDR3s is higher in children
compared to adults (Fig. 2a), which is consistent with the
previous report that γδ T cell frequency and diversity
decrease with age [40]. In contrast, the opposite was ob-
served in AML where the fraction of γδ CDR3s increases
with age (Fig. 2a). A recent study reported that Vγ9Vδ2 T
cells are able to recognize and kill AML blasts through a
TCR-dependent manner [41]. Together with our observa-
tions, this suggests that since γδ T cells could interact with
and eradicate AML blasts, leukemic cells might alter γδ T
cell development or distribution in AML.
To further investigate the potential impact of γδ T cells

in AML, we clustered all the complete δ-CDR3s based on
their pairwise sequence similarity. This revealed two major
clusters of the δ-CDR3 sequences (Fig. 2b), with Cluster1

Fig. 2 γδ T cell analysis in AML and non-tumor samples. a γδ T cell fraction in AML and non-tumor groups. γδ T cell fraction was estimated by
the summed number of γ or δ-CDR3s divided by the number of total TCR CDR3s in each sample. The p values were calculated using the two-
sided Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, ***p < 0.001, n.s. indicates not significant. b Heatmap of δ-CDR3 amino acid sequences
similarity matrix. Local alignment and BLOSUM62 were used to calculate the similarity between each pair of the complete δ-CDR3 amino acid
sequences. Blue color indicates high similarity. c Sequence motif analysis of δ-CDR3s in Cluster1. d Kaplan–Meier curves showing AML samples
with δ-CDR3 belonging to the Cluster1 have better overall survival (n = 19, yellow line, p value was evaluated using Log-rank test)
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containing 26 sequences from 19 patients. All the δ-
CDR3s in Cluster1 were annotated to be associated with
TRDV2 and TRDJ3. Sequence motif analysis of Cluster1
δ-CDR3s revealed the first 4 and last 8 amino acids to be
conserved (Fig. 2c), as well as a glycine (G) in the middle.
Intriguingly, these individuals have significantly better
overall survival (Fig. 2d) compared to the other patients.
These results suggest that the δ-CDR3s containing the
specific pattern in Cluster1 might serve as a potential
prognosis marker or potential therapeutic target for AML
patients.

Overview of BCR IgL, IgK, and IgH CDR3 sequences in
AML and non-tumor samples
We next investigated the changes of BCR repertoires in the
AML microenvironment. TRUST derived a total of 1,210,
000 BCR (IgL, IgK, and IgH) CDR3s from the AML (974,
000) and non-tumor (236,000) samples (Additional file 2:
Figure S4a). Similar to the lower number of TCR CDR3
calls in AML, the number of BCR CDR3 calls is also signifi-
cantly lower in the AML samples compared to non-tumor

samples (Fig. 3a, Additional file 2: Figure S4b). In addition,
the number of Ig light chain (IgL and IgK) and Ig heavy
chain (IgH) CDR3s from each sample, despite not paired, is
significantly positively correlated in both AML and non-
tumor groups (Additional file 2: Figure S4c). There is no
significant difference in IgL to IgK CDR3 ratio between
AML and non-tumor samples (Additional file 2: Figure
S4d) or between PB and BM samples in pediatric AML
(Additional file 2: Figure S5a). However, IgL to IgK ratio is
significantly lower in adult than in pediatric samples in both
AML and non-tumor groups (Additional file 2: Figure S4d),
indicating the age-related difference in IgL vs IgK usage.
The length distribution of complete IgL and IgK CDR3s
and their sequence conservation patterns are similar be-
tween the AML and non-tumor groups (Additional file 2:
Figure S4e, f). In contrast, complete IgH CDR3s are signifi-
cantly longer in AML than in non-tumor samples (Add-
itional file 2: Figure S4e, IgH), as well as in PB than in BM
samples in pediatric AML (Additional file 2: Figure S5b).
We previously reported IgH CDR3 sequences from ex-
panded tumor-infiltrating B cell clones to be significantly

Fig. 3 The abnormal activation of B cells in AML samples. a Normalized BCR CDR3 count in AML and non-tumor groups. The number of CDR3s
was normalized by the number of total sequencing reads and one minus blast percentage (pathologically estimated tumor purity) in each
sample. b BCR CPK in AML and non-tumor groups. c IgH SHM rate in AML and non-tumor groups. The p values in a, b, and c were calculated
using the two-sided Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, ***p < 0.001, n.s. indicates not significant. d Distribution of 9 Ig isotypes across
AML and non-tumor groups. e The regression curves of 8 Ig isotype fractions against age in AML samples. IgE was excluded due to the
extremely low fraction in most samples. f Visualization of Ig isotype class switching in AML and non-tumor groups. Circle size represents the
fraction of Ig isotypes, which is the number of IgH clusters carrying a given Ig isotype divided by the total number of IgH clusters in each group.
Lines connecting two circles indicate co-existence of two isotypes in one cluster, with line width proportional to the number of such cluster
divided by the total number of IgH clusters in each group
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longer than the non-expanded clones in solid tumors [24].
Thus, the longer IgH CDR3s we observed in AML might
be a consequence of the higher level of B cell clonal expan-
sion in the AML microenvironment.

B cell activation and clonal expansion patterns in the
AML samples
We further investigated the potential impact of B cells in
AML. Similar to the lower TCR diversity, BCR CDR3 di-
versity in terms of CPK is also lower in AML samples than
in non-tumor samples (Fig. 3b). Unlike T cells, B cells,
upon binding to a foreign antigen, undergo SHM and CSR
to produce high affinity antibodies against the antigen.
Therefore, SHM and CSR are important signatures of B
cell activation and clonal expansion. To investigate SHM
rate, we counted the cases where two IgH CDR3 se-
quences differ by only one nucleotide, and divided the
count by the total assembled CDR3 bases in each sample.
Using this measure, we observed significantly higher SHM
rate in adult AML samples compared to pediatric AML
samples or non-tumor samples (Fig. 3c). Consistent with
this result, AICDA [42], the gene responsible for SHM,
also has significantly higher expression in the adult AML
samples compared to pediatric AML samples (Add-
itional file 2: Figure S6). To investigate CSR, we examined
the approximately 346,000 IgH sequences that were suc-
cessfully aligned to specific Ig isotypes. We observed sig-
nificant differences in the isotype distributions among
AML and non-tumor groups (Fig. 3d). Specifically, in the
non-tumor samples, IgM and IgD, which are the first two
heavy chain constant segments in the immunoglobulin
locus and usually expressed on naïve mature B cells [43],
account for the majority of the total IgH sequences
(Fig. 3d). Infant AML samples also have higher IgM and
IgD B cells, but as AML patients age, the fraction of IgG
and IgA increase (Fig. 3e). IgG1 and IgA1 become the
dominant Ig isotypes in children and adult AML samples
(Fig. 3d, e). When normalizing against the expression of
housekeeping genes, we found that the level of IgM and
IgD only decreased slightly, suggesting that the increase of
IgG and IgA fraction is mostly due to the expansion of B
cells with IgA and IgG isotypes (Additional file 2: Figure
S7). In addition, AML samples show more CSR events
than non-tumor samples (Fig. 3f). Taken together, the in-
creased IgH CDR3 length, decreased IgH CDR3 diversity,
increased SHM, and increased CSR in AML, especially
with IgG and IgA isotypes in adult AML, all indicate
higher levels of B cell activation and clonal expansion in
the AML microenvironment.

Association between high IgA fraction and worse clinical
survival in AML patients
The abnormal activation of IgA and IgG B cells in the
AML microenvironment prompted us to examine their

association with clinical features. IgA can be divided into
IgA1 and IgA2 subclasses, while IgG isotype can be fur-
ther divided into IgG1, IgG2, IgG3, and IgG4 subclasses.
Although different subclasses share high sequence simi-
larity, they still have different heavy chain structures and
distinct effector functions [44]. Although different IgA
subclasses or IgG subclasses are highly correlated in in-
fant AML, subclass correlation is lower in children AML
and even lower in adult AML (Fig. 4a). In addition, sig-
nificant differences in patients’ overall survival exist be-
tween pediatric and adult AML (Fig. 4b). We thus
examined the impact of different IgA and IgG subclasses
on pediatric and adult patients’ survival separately. No
significant association was observed between IgG isotype
or subclasses and patients’ overall survival. However, we
found that pediatric AML patients with higher fraction
of IgA1 (Fig. 4c) and adult AML patients with higher
fraction of IgA2 (Fig. 4d) have significantly worse overall
survival (Additional file 2: Figure S8). Higher IgA ratio
has been reported to be associated with worse clinical
outcome in melanoma [45]. Therefore, our observation
of IgA association with worse clinical outcome suggests
that IgA B cells might be associated with a suppressive
immune microenvironment in AML.

IgA2 fraction and immunosuppressive microenvironment
in adult AML
Recent mouse studies reported that TGFβ-induced IgA-
producing plasma cells can function as potent immuno-
suppressors through the secretion of PD-L1 [46, 47]. Con-
sistent with these reports, in adult AML samples, we
observed a significantly positive correlation between
TGFB1 expression and IgA2 fraction (Fig. 5a). In AML
samples with higher IgA2, besides having a lower level of
IgG (Additional file 2: Figure S9) which is known to pro-
mote T cell-mediated antitumor immunity [48], the CSR
events of IgM B cells are almost restricted to IgA1 and
IgA2 (Fig. 5b). Moreover, GSEA [49] analysis revealed that
genes positively correlated with IgA2 in adult AML are
significantly enriched in the negative regulation of type I
interferon production (Fig. 5c, d, Additional file 2: Figure
S10) which is an important regulator of innate and adap-
tive immune responses [50]. To evaluate whether PD-L1
is the downstream effector of TGFβ and IgA production,
we further examined whether IgA2 high AML tumors also
have higher PD-L1 expression, but found no significant
difference (Additional file 2: Figure S11). Instead, in the
IgA2 high AML tumors, the expression of the regula-
tory T cell (Treg) marker FOXP3 is significantly higher
(Fig. 5e). This suggests that Treg recruitment might be
an alternative mechanism of TGFβ/IgA-induced
immunosuppression which contributes to the worse
overall survival in adult AML.
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Discussion
AML is a common hematologic malignancy, although the
interactions between malignant myeloid cells and the im-
mune microenvironment, especially T cells and B cells, re-
main poorly characterized. In this study, we conducted
the first comprehensive characterization of TCR (α, β, γ,
and δ chains) and BCR (IgL, IgK, and IgH) CDR3 from
the bulk RNA-seq data from both pediatric and adult
AML samples as well as non-tumor controls. The human
immune system evolves with age, as exposures to multiple
self and foreign antigen challenges promote the matur-
ation of immune-related cells and organs [40]. We found
higher clonal expansion of both T cells and B cells in the
AML microenvironment, but observed wide differences
between pediatric and adult AML. In particular, we found
that adult AML samples have higher fraction of γδ T cells
(Fig. 2a) and higher level of IgH SHM rate and CSR events

compared to pediatric AML (Fig. 3). One limitation of our
study is that we do not have age information for the non-
tumor samples, so we could not analyze the age effect in
normal donors, although this does not bias any of our
findings. Another limitation of this work is that due to the
use of bulk RNA-seq data, it is not possible to match the
full clonal type (TCR αβ, γδ chain, and BCR heavy light
chain) or distinguish subtypes of T and B cells in our ana-
lysis. Despite these limitations, our findings help improve
our understanding of T and B cell immunity in AML as
well as the distinct immune responses of T cells and B
cells to AML between children and adults. Our results
might provide insights into immunotherapy development
in hematological malignancies.
Notably, we found that pediatric AML with highly ex-

panded IgA1 B cells and adult AML with highly expanded
IgA2 B cells, which might represent an immunosuppressive

Fig. 4 Worse clinical outcome for AML samples with high fraction of IgA1 or IgA2. a Heatmaps showing the correlations of different Ig isotype
fractions in AML and non-tumor groups. Partial Spearman’s rank correlation was used to check the association between different Ig isotypes.
Correlation coefficient, controlling for age, was shown in heatmaps for AML and non-tumor groups. b Kaplan–Meier curves showing the survival
difference among infant, children, and adult AMLs. Infants and children showed better overall survival compared to adults, without significant
difference between the two groups. Statistical significance comparing different groups was evaluated using Log-rank test. c, d Kaplan–Meier
curves showing the pediatric AML samples with high IgA1 fraction (c) and the adult AML samples with high IgA2 fraction (d) have worse overall
survival. Samples were divided into IgA1 (or IgA2) ratio high and IgA1 (or IgA2) ratio low group by the median fraction of this ratio in pediatric/
adult AMLs. The IgA1 (or IgA2) ratios were calculated using the number of IgA1 (or IgA2) CDR3s divided by the total number of IgH CDR3s with
unique Ig class annotation in each sample. Statistical significance comparing different groups was evaluated using multivariate Cox regression
corrected for patient gender and age at diagnosis
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microenvironment, are associated with worse overall sur-
vival. Recent studies reported that IgA-producing plasma
cells can function as potent immunosuppressors through
the secretion of PD-L1 in prostate [46] and liver cancer
mouse models [47]. Unlike mouse IgA which has only one
subclass, human IgA comprises two subclasses (IgA1 and
IgA2) encoded by two distinct genes. The lack of elongated
hinge regions in IgA2 Fc ligand forms the major structure
difference between the two subclasses [51]. We found the
survival-related B cells are restricted to IgA1 in pediatric
but to IgA2 in adult AML samples (Fig. 4c, d). Together
with many differences observed between pediatric and adult
AML, we interpret this as potentially related to the different
immune response patterns between children and adults.
The IgA CSR is known to be related to the secreted cyto-
kine TGFβ1 [52], and we observed a significant positive
correlation between TGFB1 gene expression and IgA2

fraction in adult AML (Fig. 5a). In addition, in a single cell
expression data from one M6 AML patient [53], we found
TGFB1 to be highly expressed in three major cell clusters,
including CD4+CD14+ monocytes, PRSS57+MYC+ neu-
trophils, and CD3+CD7+ T cells (Additional file 2: Figure
S12), suggesting a complex regulation of IgA2 B cell prolif-
eration in AML. Our findings may shed light on the unique
immune regulation in hematological malignancies.

Conclusions
In summary, our comprehensive analyses of TCR and BCR
CDR3 sequences from AML RNA-seq samples provided
the first overview of the immune receptor repertoires in
both pediatric and adult AML microenvironments. We
found a higher clonal expansion of both T cells and B cells
in the AML microenvironment. In addition, adult AML
samples have a significantly higher level of B cell activation

Fig. 5 High fraction of IgA2 associated with immunosuppressive microenvironment in adult AML. a Scatter plot showing the positive correlation
between IgA2 fraction and TGFB1 expression in adult AML. Statistical significance was evaluated using Spearman’s correlation test. b Visualization
of Ig isotype class switching in adult AML groups. Adult AML samples were divided into IgA2 low (0–5%, n = 64), medium (5%–10%, n = 64), and
high (> 10%, n = 23) groups. Circle size represents the fraction of Ig isotypes, which was calculated by the number of IgH clusters carrying a given
Ig isotype divided by the total number of IgH clusters in each group. Lines connecting two circles indicate co-existence of two isotypes in one
cluster, with line width proportional to the number of such cluster divided by the total number of IgH clusters in each group. Network size
represents the overall B cell activation, which is defined by the number of IgH CDR3 clusters divided by the number of IgH CDR3s in each group.
The pie charts in black dot circles show the fraction of IgM class switching across different groups. c, d The enriched GO terms with IgA2 fraction
in adult AML. e Boxplot showing FOXP3 expression level across pediatric AML IgA1 low, high, and adult AML IgA2 low, high groups. The p values
were calculated using the two-sided Wilcoxon rank-sum test
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and more secondary Ig class switch events than pediatric
AML or non-tumor samples. Furthermore, we found that
pediatric AML with highly expanded IgA1 B cells and adult
AML with highly expanded IgA2 B cells are associated with
worse overall survival. The identified TCR/BCR repertoires
and the observed associations from this work provide useful
resources and insights into the future development of novel
immunotherapies for hematological malignancies.
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