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Despite the rapid accumulation of tumor-profiling data and tran-
scription factor (TF) ChIP-seq profiles, efforts integrating TF binding
with the tumor-profiling data to understand how TFs regulate tumor
gene expression are still limited. To systematically search for cancer-
associated TFs, we comprehensively integrated 686 ENCODE ChIP-
seq profiles representing 150 TFs with 7484 TCGA tumor data in 18
cancer types. For efficient and accurate inference on gene regulatory
rules across a large number and variety of datasets, we developed
an algorithm, RABIT (regression analysis with background integra-
tion). In each tumor sample, RABIT tests whether the TF target genes
from ChIP-seq show strong differential regulation after controlling
for background effect from copy number alteration and DNA
methylation. When multiple ChIP-seq profiles are available for a
TF, RABIT prioritizes the most relevant ChIP-seq profile in each
tumor. In each cancer type, RABIT further tests whether the TF
expression and somatic mutation variations are correlated with
differential expression patterns of its target genes across tumors.
Our predicted TF impact on tumor gene expression is highly
consistent with the knowledge from cancer-related gene databases
and reveals many previously unidentified aspects of transcriptional
regulation in tumor progression. We also applied RABIT on RNA-
binding protein motifs and found that some alternative splicing fac-
tors could affect tumor-specific gene expression by binding to target
gene 3′UTR regions. Thus, RABIT (rabit.dfci.harvard.edu) is a general
platform for predicting the oncogenic role of gene expression
regulators.
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Tumorigenesis is a multistep process requiring alterations in
gene expression programs (1, 2). Transcription factors (TFs)

are instrumental in driving these gene expression programs, and
misregulation of these TFs can result in the acquisition of tumor-
related properties (3). For example, E2F1 is overexpressed in many
cancer types and promotes tumor proliferation by regulating ex-
pression of genes involved in cell differentiation, metabolism, and
development (4). As another example, FOXM1 plays an important
role in promoting cell proliferation and cell cycle progression
through transcriptional activation of many G2/M-specific genes.
Increased FOXM1 gene expression was detected in numerous
cancer types, and FOXM1 is a promising therapeutic target for
cancer treatment (5). TFs also play critical roles in inducing the
tumor microenvironment for metastasis. For example, SNAI1/2,
TWIST, and ZEB1/2 orchestrate the expression of genes involved in
cell polarity, cell–cell contact, cytoskeleton structure, and extracel-
lular matrix degradation. The joint effect of these TFs promotes
cancer cell motility and invasion in the metastatic process (2, 6).
With the rapid development of high-throughput technologies,

large amounts of datasets have been generated for regulatory
proteins. For example, the ENCODE project generated 689
ChIP-seq TF-binding profiles (7, 8). Additionally, several studies
have profiled the recognition motifs for hundreds of TFs, which
could be integrated together to elucidate the genome-wide reg-
ulatory network (9). Meanwhile, the TCGA project generated
datasets for over 18 cancer types, which include gene expression,
copy number alteration (CNA), DNA methylation, and somatic

mutation profiles (10). All of these resources provided a rich
base for cancer integrative analysis (11, 12).
Despite the rapid growth of genomic data, the knowledge on

how gene expression programs in tumors are controlled by TFs is
still limited. As one challenge, the experimental condition of public
ChIP-seq data, such as stem cell line, may not match the physio-
logical condition of a specific cancer type. Even though analysis can
be done between ChIP-seq data and cancer type with similar con-
ditions (13), it remains to be seen how to use most public ChIP-seq
profiles across diverse cancer types. Meanwhile, the cancer genome
is highly unstable, and the gene expression change could arise from
CNAs not under the direct effect of TF regulation (14). To over-
come these difficulties and search for TFs driving tumor-specific
gene expression patterns, we developed an integration framework,
RABIT (regression analysis with background integration). We also
applied RABIT to RNA-binding protein (RBP) recognition motifs
to predict cancer-associated RBPs, demonstrating its potential as a
general platform for finding expression regulators in cancers.

Results
Landscape of Transcriptional Regulation in Cancer. To systematically
search for TFs that drive tumor-specific gene expression patterns,
we developed an integration framework, RABIT (rabit.dfci.harvard.
edu). As a key distinction from other algorithms integrating gene
expression and TF ChIP-seq data (15–18), RABIT better captures
the properties of cancer cells, such as CNA and DNA methylation,
that shape tumor gene expression independently from TF regula-
tion. Additionally, somatic mutations of the TF-coding region can
perturb transcriptional regulation. As another difficulty of tran-
scriptional regulation analysis in cancer, most public ChIP-seq
datasets were generated under experimental conditions distinct
from those in cancers. To model and control the above confounding
factors, RABIT uses three steps to identify TFs that drive tumor-
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specific gene expression patterns at both the individual tumor level
and the whole cancer-type level (Fig. 1). In step 1, RABIT screens
for TFs that significantly affect the gene expression patterns in each
tumor and select the most relevant ChIP-seq profile if multiple
profiles exists for the same TF. In step 2, RABIT further selected a
subset of TFs among those screened in step 1 to achieve an opti-
mized model error. In step 3, RABIT investigates how well the
public ChIP-seq profiles can capture the active TF targets in each
cancer type and clean up insignificant TFs.
We first collected 686 ChIP-seq profiles from the ENCODE

project, representing 150 TFs and 90 cell types (7). For a given
TF ChIP-seq dataset, candidate target genes are identified by
weighting the number of binding sites by their distance to the
transcription start site (TSS) of each gene, using the BETA
method we developed (19). Then, in each tumor sample, RABIT
tests whether the putative target genes of a TF show significant
differential expression compared with the normal controls (step
1 in Fig. 1). To correct for the influence of gene CNA, promoter
DNA methylation, promoter CpG content, and promoter de-
gree (total number of ChIP-seq peaks near the gene TSS) on
gene expression (SI Appendix, Fig. S1), RABIT uses multivari-
ate linear regression (Table 1 and SI Appendix, Fig. S2A). Be-
cause this linear regression needs to be conducted against many
ChIP-seq profiles and in a large collection of tumor samples,
RABIT uses the efficient Frisch–Waugh–Lovell (FWL) method
for regression (20). FWL separates factors that are invariant in
each tumor, such as CNA and promoter degree, and only re-
gresses against each variable ChIP-seq profile to speed up the
calculation (Fig. 1B).

After running the regression in each tumor, a regulatory ac-
tivity score can be defined for each TF, which is the t value of the
linear regression coefficient t test (coefficient/SE). When one TF
has several ChIP-seq profiles from different cell lines and con-
ditions, RABIT only keeps the ChIP-seq profile that gives the
largest absolute value of regulatory activity score on target genes
(Fig. 1B). For example, among 20 ENCODE MYC ChIP-seq
profiles, the MCF7 cell profile is selected for most TCGA breast
tumors (SI Appendix, Fig. S3). To achieve an optimized model
error in predicting tumor gene expression patterns, RABIT
further applies stepwise forward selection to find a subset of TFs
among those screened previously (step 2 in Fig. 1B).

Fig. 1. Search transcription factors driving tumor-specific gene expression patterns. (A) The input to RABIT framework includes TF ChIP-seq profiles, rec-
ognition motifs, and tumor-profiling datasets. RABIT uses three steps to identify TFs that drive tumor-specific gene expression patterns at both the individual
tumor level and the whole cancer-type level. In steps 1 and 2, for each tumor sample, RABIT tests whether the TF target genes are significantly up-regulated or
down-regulated compared with the normal controls. In step 3, for each cancer type, RABIT tests whether the TF gene expression and somatic mutation are
correlated with the scores of TF regulatory activity on target genes across all tumors and cleans up TFs with poor correlation. (B) In step 1, the efficient Frisch–
Waugh–Lovell method of linear regression is applied to test the impact of TFs on target gene regulation after controlling for background factors. A set of TFs
with significant regulatory activity is screened. If one TF has several ChIP-seq profiles from different conditions, RABIT only keeps the profile that gives the
largest statistical effect of regulatory activity on target genes. In step 2, RABIT further selects a subset of TFs among those screened in step 1 by stepwise
forward selection to achieve an optimized model error.

Table 1. Multivariate linear regression for TF regulatory activity

Covariate Coefficient SE t value P value

Promoter degree 0.0013 0.0003 4.99 6.14e-07
CpG content 0.1823 0.0384 4.75 2.05e-06
Gene CNA 0.7281 0.0211 34.55 7.92e-252
Promoter methylation −0.6742 0.0744 −9.07 1.37e-19
Regulatory potential 0.6359 0.0417 15.24 4.79e-52

Using linear regression, the effect of TF regulatory potential on target gene
expression is evaluated after controlling for background effects of promoter
degree, promoter CpG content, gene CNA, and promoter methylation. In this
example, the ENCODEMYC ChIP-seq in theMCF-7 cell line is analyzed together
with TCGA data of breast tumor TCGA-AO-A03P-01A. The significance of the
regression coefficient is evaluated by the t test, and the TF regulatory activity
score is defined as the t value (regression coefficient/SE) of the TF regulatory
potential, which is shown in the bold text row.
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After modeling the TF activity on individual tumor level,
RABIT investigates how well the public ChIP-seq profiles used
can capture the active TF targets in each cancer type (step 3 in
Fig. 1). RABIT tests whether the TF gene expression and so-
matic mutations are correlated with the differential expression of
TF target genes across all tumors in one cancer type. As an ex-
ample, the GATA3 expression level is positively associated with
its target gene differential expression across breast tumors, and
the presence of GATA3 somatic mutation is negatively associ-
ated with its target gene differential expression (Table 2 and SI
Appendix, Fig. S2B). Those TFs with insignificant cross-tumor
correlation are removed from the results.
With the RABIT framework, we integrated 686 ENCODE

ChIP-seq profiles with 7484 TCGA tumor profiles over 18 cancer
types (Fig. 2 and SI Appendix, Table S1) (7, 10). The impact of
TFs on tumor gene expression predicted by our framework is
highly consistent with previous knowledge. For example, RABIT
predicted the target genes of MYC to be significantly up-regu-
lated in numerous cancers (star in Fig. 2), consistent with the
known role of MYC as an oncogenic TF (21). FOXM1 also up-
regulates its target genes in many cancer types (star in Fig. 2) and
could become a potential therapeutic target for many cancer

types (5). ForMYC and FOXM1, they are clustered together with
several other TFs by their regulatory similarity across cancer
types (cluster 1 in SI Appendix, Fig. S4). The target genes of TFs
in this cluster are preferentially up-regulated in most cancer types,
which indicates these TFs as pervasive oncogenic regulators. An-
other example, RAD21, a member of the cohesion complex with
important roles in chromosome maintenance (22), has its target
genes repressed in breast cancer (BRCA) (Fig. 2 and SI Appendix,
Fig. S5). One recent study reported a high level of RAD21 ex-
pression to be indicative of poor prognosis and resistance to
chemotherapy in breast cancers (23), which is consistent with our
findings. We found RAD21 is clustered with a set of TFs, whose
target genes are generally repressed in most cancer types (cluster
3 in SI Appendix, Fig. S4).
Besides capturing knowledge from previous studies, our anal-

ysis also predicted putative TF functions in cancer. For example,
the target genes of SPI1 are significantly up-regulated in Glio-
blastoma (GBM) and kidney renal clear cell carcinoma (KIRC), as
predicted by RABIT (Fig. 2). SPI1 is clustered with several other
TFs, featured by significant up-regulation of target genes in both
GBM and KIRC (cluster 4 in SI Appendix, Fig. S4). We found that
high SPI1 expression is associated with poor patient survival in
GBM and KIRC (SI Appendix, Fig. S6 A–D). To our knowledge,
the role of SPI1 is not well studied in these cancers. Our result
indicates SPI1 as a promising target for further study.
As another example of predictions from RABIT, we explored

our results on breast cancer, which is an intensively studied
cancer type in the past decade. We found that 80 out of 150 TFs
analyzed have support from the National Cancer Institute (NCI)
cancer gene index or Google search with gene name to be related
to breast cancer. Among the rest, there are 21 TFs whose target
genes show significant differential expression in TCGA and
METABRIC cohorts (SI Appendix, Fig. S7), but little is known
about their role in breast cancer from the literature. For example,

Table 2. Multivariate linear regression for TF regulatory activity

Covariate Coefficient SE t value P value

TF gene expression 0.9444 0.0480 19.66 4.95e-64
TF somatic mutation −1.4455 0.2485 −5.82 1.08e-08

In each cancer type, the number of nonsynonymous mutation on the TF-
coding region is counted in each tumor and evaluated together with TF
gene expression against the response variable of the TF regulatory activity
scores (t values in Table 1) across tumors by linear regression. GATA3 analysis
with TCGA breast tumors is used as example here.

Fig. 2. The landscape of transcriptional regulation in cancer. RABIT calculates the percentage of tumors with TF targets differentially regulated in each
cancer type. The upper red triangle represents the percentage of tumors with target genes up-regulated, and the lower blue triangle represents the per-
centage down-regulated. Only TFs with targets differentially regulated in greater than 50% of tumors in more than two cancer types are shown. The cancer
name is displayed by TCGA abbreviation with the platform used for gene expression profiling.
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the histone demethylase PHF8 target genes are up-regulated in
more than 60% of breast tumors (SI Appendix, Fig. S7). There has
been no study implicating PHF8 in breast cancer to the best of our
knowledge, but PHF8 is a known oncogene and potential thera-
peutic target for esophageal squamous cell carcinoma and pros-
tate cancer (24, 25). Our prediction suggests that PHF8might also
be an oncogene in breast cancer.

Quality Assessment of RABIT Result and Method Comparison. En-
couraged by the consistency of RABIT output with a few pre-
vious studies, we set out to systemically check the quality of our
computational predictions. To measure the cancer relevance
level of a TF, we computed the percentage of tumors with the
TF target genes differentially regulated and averaged across all
TCGA cancer types. We tested whether the cancer relevance
levels defined above are consistent with cancer gene databases.
The NCI cancer gene index project assigned a number for each
gene as the count of sentences from MEDLINE abstracts in which
the gene name and a cancer term cooccurred (26). We also in-
cluded databases with annotations of cancer-related genes, in-
cluding the Bushman Laboratory cancer driver gene list (27, 28), the
COSMIC somatic mutation catalog (29), and the CCGD mouse
cancer driver genes (30). We found TFs with higher percentage of
tumors showing target differential expression are associated with
the cancer gene annotations in all databases (Fig. 3A and SI Ap-
pendix, Fig. S8A).
Because our predicted TF cancer relevance is highly consistent

with the annotations from cancer gene databases, we use the
knowledge from these databases as the gold standard to compare
RABIT performance with several other methods. The gold-
standard positive set is defined as TFs annotated as cancer-
associated in at least two out of four cancer gene databases de-
scribed above, and the negative set is defined as the rest of the
TFs. Using receiver-operating characteristic (ROC) curve and
precision-recall (PR) curve, we compared the ability of predicting
cancer-associated TFs among several methods (details provided in
in SI Appendix, SI Methods). RABIT has the largest area under
curve (AUC) among all methods (Fig. 3B and SI Appendix, Fig. S8
B and C). The second-best methods are LAR and LASSO, which
are very popular regression-based feature selection algorithms (31,
32). Because the first two steps of RABIT framework (without
step 3) also composed a general feature selection algorithm (Fig.
1B), we compared among RABIT, LAR, and LASSO on the
performance of feature selection. Using each algorithm, we select
the top 10 most significant TFs to predict the tumor gene ex-
pression patterns. RABIT achieved better cross-validation error
and shorter running time than LAR and LASSO in all cases tested
(SI Appendix, Fig. S9).
To check whether RABIT can accurately identify important

TFs in a condition studied, we compared the RABIT results with
the growth phenotypes after TF knockout in cell lines. There are
two recent works of genome-wide CRISPR screening in K562
cell and HL60 cell (33, 34). In a screening experiment, each gene
is assigned a score to represent whether the cell growth rate is
affected after knocking out that gene. The ENCODE project
also generated gene expression profiles for K562 and HL60, and
we applied RABIT to identify TFs that shape the gene expres-
sion patterns in these cell lines. We found that for TFs selected
by RABIT, the TF regulatory activity scores are significantly
negatively correlated with the TF gene CRISPR screening scores
(Fig. 3 C and D). This means if RABIT assigns a TF as highly
active, knocking out that TF will significantly slow down the
cell growth.
To check whether our results on TCGA datasets are consis-

tent with other tumor-profiling cohorts, we applied RABIT on
METABRIC breast cancer data (35), Rembrandt glioma data
(36), Gravendeel glioma data (37), and Genotype-Tissue Ex-
pression (GTEx) normal tissue data (38) (SI Appendix, Fig. S10

A and B). As expected, the TCGA results show positive corre-
lation with other tumor cohort results but negative correlation
with GTEx normal tissue cohorts (SI Appendix, Fig. S10 C and
D). For example, oncogenes in breast cancer (such as MYC,
FOXM1, and RAD21) and oncogenes in GBM (such as SPI1) show
the same direction of up- or down-regulation of their target genes in
both TCGA and other tumor cohorts, but no regulatory activity is
observed in GTEx normal tissue (SI Appendix, Fig. S10 A and B).
Besides ChIP-seq data, TF recognition motifs can also model

TF-binding specificity. To check whether our findings based on
ChIP-seq data are consistent with the TF regulatory motifs’ re-
sult, we collected recognition motifs of 505 TFs from several
studies (9, 39, 40). We searched the matches of TF motifs near
gene transcription start sites and applied RABIT to characterize
TF activity in regulating tumor gene expression (SI Appendix,
Fig. S11A). Between ChIP-seq results and regulatory motif re-
sults of a TF in each tumor, we computed the correlation of TF
regulatory activity scores (t value of TF regulatory potential on
target genes; example in Table 1). We found the correlations are
positive for all tumors in each cancer type (SI Appendix, Fig.
S11B), indicating consistency between ChIP-seq and recognition

Fig. 3. Reliable performance of RABIT framework. (A) All TFs are classified
into three categories by NCI cancer index. The category “Zero” includes all
TFs with zero index value. We then ranked the rest of the TFs by their NCI
cancer indices and assigned the top half to the “High” category and the
lower half to the “Low” category. For each category, we plotted the per-
centage of tumors with target genes differentially regulated and averaged
across all cancer types. The bottom and top of the boxes are the 25th and
75th percentiles (interquartile range). Whiskers on the top and bottom
represent the maximum and minimum data points within the range repre-
sented by 1.5 times the interquartile range. The P value is computed by the
Spearman’s rank correlation test. (B) As the gold standard of cancer-associ-
ated TFs, we took TFs annotated as cancer-related in at least two out of four
cancer gene databases (NCI Cancer Index, Bushman, COSMIC, and CCGD).
The performance of identifying cancer-related TFs is compared among sev-
eral methods, and the areas under the ROC curve of each method are
plotted. (C) For cell lines K562 and HL60, there are gene expression-profiling
data profiled by ENCODE and genome-wide CRISPR-screening data available
from previous studies. We applied RABIT to infer the TF regulatory impact in
shaping the expression patterns in each cell line. The Spearman’s rank cor-
relations between the TF regulatory activity scores and the CRISPR-screening
scores are calculated, and the P values of the correlation test are attached
after each correlation ratio. The result is shown for the K562 cell. (D) The
CRISPR correlation result is shown for the HL60 cell.
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motif analysis. This result is not surprising because ChIP-seq–
binding peaks and TF motif-binding sites significantly correlate
with each other (SI Appendix, Fig. S11C). Thus, our result of TF
activity correlation could be derived from the similarity of TF
target genes.

Landscape of Posttranscriptional Regulation in Cancer. Besides TFs,
RBPs can also control gene expression through posttranscriptional
regulation. Recent years saw increasing studies demonstrating
RBPs as important players in tumorigenesis (41), although the
function and targets of the vast majority of RBPs are still unchar-
acterized. To this end, we collected 172 recognition motifs for 133
RBPs (42) and predicted the putative targets of each by searching
the recognition motifs over gene 3′UTR regions (43). We then
analyzed the regulatory activity of RBPs in the same way as TFs,
using RABIT.
As an example of RBP regulatory activity in cancer, there are

four RBPs (RBFOX1, RBFOX2, RBFOX3, and EIF2S1) with
almost the same binding preference of GCAUG sequence, and
their motifs are clustered together (Fig. 4A). The gene targets of
this motif cluster are strongly down-regulated in most cancer
types, especially in GBM (Fig. 4B). We found that a higher level
of motif targets down-regulation indicated worse patient survival
in GBM (Fig. 4C and SI Appendix, Fig. S6 E and F). Because
there are several RBP members in this cluster, we applied the
forward selection algorithm and found RBFOX1, RBFOX2, and
RBFOX3, but not EIF2S1, are the relevant factors driving reg-
ulatory activity (SI Appendix, Table S2). RBFOX1, RBFOX2, and

RBFOX3 are known as evolutionarily conserved tissue-specific
alternative splicing regulators in metazoans (44). A previous
study showed that RBFOX1 suppresses malignancy in glioma by
regulating the alternative splicing of TPM1 (45). Our analysis
suggests that besides regulating alternative splicing, RBFOX1
and its homologs could bind the gene 3′UTR regions and in-
crease mRNA stability (SI Appendix, Table S2). The loss of
RBFOX1 target stabilization is universal among GBM tumors
and serves as an indicator of poor patient survival (Fig. 4).
Besides the RBFOX1 regulatory motif cluster, there are many

other RBP motifs showing significant regulatory impact in can-
cer. For example, cluster 1, which is composed of nine RBPs, has
its target genes significantly up-regulated in most cancer types
(Fig. 4B). Among cluster 1 members, HuR (ELAV1) is a well-
known oncogenic RBP that promotes tumor proliferation and
malignancy in many human cancers (46). Besides these examples
of cancer-associated RBPs, the RABIT framework provides a
regulatory map between 133 RBPs and 18 cancer types, which
will facilitate further exploration of posttranscriptional regula-
tion in cancers.

Discussion
This study comprehensively integrated TF ChIP-seq and binding
motifs with TCGA tumor-profiling data for systematic identifi-
cation of cancer-associated TFs. RABIT has shown superior
performance compared with other state-of-the-art methods.
We also applied RABIT to identify a set of RBPs that might
play important roles in shaping gene expression in tumors,
demonstrating RABIT as a versatile framework for finding cancer-
associated gene expression regulators. Notably, there are abun-
dant previous works on integrating ChIP-seq and gene expres-
sion data to understand gene regulatory mechanisms (15). For
example, ChIP-seq profiles of 12 TFs and RNA-seq expression
profiles in mouse embryonic stem cells have been analyzed to-
gether, using the regression method (16–18). However, these
previous studies were conducted when ChIP-seq and expression-
profiling data were generated in the same condition, without fur-
ther requirement of removing any background confounding effect.
Thus, compared to previous works, RABIT is specially designed
for large-scale regulatory analysis across diverse cancer types.
As a limitation of RABIT, the linear model used assumes a TF

either up-regulates or down-regulates its target genes, which can
be represented by one regression coefficient with a positive or
negative sign. However, certain TFs may up-regulate and down-
regulate target genes depending on different contexts or co-
factors. Thus, more versatile models considering the binding
context of TFs will be necessary as future works.
With the development of high-throughput sequencing tech-

nologies, high-quality transcriptome and mutation profiles of
tumor samples have been rapidly generated for diverse cancer
types. However, a big gap still exists between getting the tumor
profiles and understanding the molecular mechanism of tumor-
igenesis. Public resources such as ChIP-seq and recognition
motifs provide a rich base for bridging this gap and under-
standing how cancer genes are regulated. Our study provides a
cost-effective and systematic framework for integrating regula-
tory genomics resources with tumor-profiling data to better un-
derstand gene regulation in cancers.

Methods
Background Factors of Tumor Gene Expression. A large portion of tumor gene
expression variation is derived from the gene CNA and promoter DNA
methylation, which are not direct effects of TF regulation (14). We also found
promoter degree (total number of ChIP-seq peaks near the gene TSS) is
positively correlated with tumor expression patterns in most cancer types
(SI Appendix, Fig. S1A). The promoter CpG content, defined as (CpG di-
nucleotide frequency)/(C frequency × G frequency) 1kb around gene TSS,
also has a strong positive correlation with gene expression in cancer types

A

C

B

Fig. 4. The landscape of posttranscriptional regulation in cancer. (A) As an
example of RNA-binding protein (RBP) motif clusters, there are five motifs
with similar binding preference of GCAUG. We grouped them together as
cluster 9. (B) The percentage of tumors with RBP motif target genes differ-
entially regulated is shown for each cancer type in the same way as Fig. 2.
Each RBP motif cluster is labeled with the consensus sequence of centroid
motif averaged among all members, followed with RBP name or cluster in-
dex if there are multiple members. Besides the TCGA data result, we also
included METABRIC breast tumor data and Rembrandt and Gravendeel gli-
oma data results for comparison. (C) The GBM patients are ordered by the
levels of target down-regulation of motif cluster 9. The top half of patients
are classified as “High,” and the bottom half are classified as “Low.” The
overall survival days are plotted by a Kaplan–Meier curve, and the P value is
estimated by the Weibull model, with age and sex as background factors.
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such as lung squamous cell carcinoma (LUSC) (SI Appendix, Fig. S1B). When
testing the TF regulatory impact on gene expression, RABIT controls the
effect from these background factors (gene CNA, promoter DNA methyla-
tion, promoter degree, and CpG content).

Search TFs Driving Tumor Gene Expression Patterns. RABIT uses three steps to
identify TFs that drive tumor-specific gene expression patterns at both the
individual tumor level and the whole cancer-type level. In step 1, RABIT
screens for TFs that significantly affect the gene expression patterns in each
tumor and selects themost relevant ChIP-seq profile, if multiple profiles exists
for the same TF. In step 2, RABIT further selects a subset of TFs among those
screened in step 1 to achieve an optimized model error. In step 3, RABIT
investigates how well the public ChIP-seq profiles can capture the active TF
targets in each cancer type and cleans up insignificant TFs.

In step 1, RABIT runs a TF screening by testing the regulatory impact for
each individual TF with a linear regression (Fig. 1B). The regression units are
human genes, and the response variable is gene expression difference be-
tween tumor and normal sample (SI Appendix, Fig. S2A). The regression
covariates include the regulatory potential scores of an individual TF over
gene promoters and four background factors defined in the section above
(five covariates in total). The regression coefficients and their SEs are esti-
mated by the least squares method. We defined the t value (coefficient/SE)
as the regulatory activity score for each TF and assessed its significance by
the t test (Table 1). The P values are converted to false discovery rates (FDR)
by the Benjamini–Hochberg procedure. We screen a set of significant TFs
with an FDR threshold of 0.05. If several ChIP-seq profiles exist for the same
TF, we select the profile with the highest absolute value of TF regulatory
activity score (Fig. 1B and SI Appendix, Fig. S3).

In step 2, to achieve an optimized error in predicting tumor gene ex-
pression patterns, we apply stepwise forward selection to find a subset of TFs
among those screened in step 1 (47) (Fig. 1B). We use Mallow’s Cp as a model
selection criterion to decide which covariates (screened TFs) should be in-
cluded in the model (47). For each tumor, we start with four covariates of
gene expression background factors (promoter degree, CpG content, gene
CNA, promoter methylation), and search through the TFs screened in step 1.
At each round, one TF is selected from the candidate set to best minimize
the Mallow’s Cp. The process is repeated until no TFs can be added to further
reduce the Mallow’s Cp.

In step 3, RABIT cleans up cases where the target genes decided frompublic
ChIP-seq profiles cannot represent active TF target genes in a cancer type
because most public ChIP-seq data were generated under experimental
conditions distinct from those in cancers. For each TF, RABIT computed its
regulatory activity score in each tumor in step 1, which measures the level of
TF target genes’ differential expression (Table 1). We regressed the TF reg-
ulatory activity score against the two covariates, TF gene expression value
and TF somatic mutation count, across all tumor samples in the same cancer
type (Table 2 and SI Appendix, Fig. S2B). The significance level of each
covariate is assessed by the t test, and the P values of all covariates are
grouped together and converted to FDRs by the Benjamini–Hochberg
procedure. Those TFs with insignificant coefficients on both covariates
(gene expression and somatic mutation) are excluded from results (FDR
threshold, 0.05).
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