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Abstract

A novel normalization method based on the GC-content of probes is developed for two-color tiling-arrays.

The proposed method, together with robust estimates of the model parameters, is shown to perform superbly on

published data sets. A robust algorithm for detecting peak regions is also formulated and shown to perform well

compared to other approaches. The tools have been implemented as a stand-alone Java program, which can

display various plots of statistical analysis for quality control.

Background

High-density oligonucleotide tiling-microarrays currently provide the most powerful method of investigating

genome-wide protein-DNA interactions and chromatin structure in vivo. As illustrated in Figure 1, the

technology allows tiling regions of interest on DNA with probes separated by short chromosome distances.

A typical NimbleGen array has about 400,000 probes which are 40∼60 nucleotides long and separated by

10∼100 base pairs in the genome. Both NimbleGen and Agilent provide 2-color microarrays with flexible
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designs where one can choose probes which are partially overlapping for high resolution studies of

chromatin structure. The experimental protocol requires labeling the treatment and control samples with

fluorescent dyes, usually green and red, and then hybridizing them on a microarray. Each probe’s intensity

of fluorescence upon scanning the microarray will give an approximate measure of the abundance of DNA

that hybridized to the probe. Because each probe had an associated genomic coordinate, one can plot the

intensities as a function of chromosome locations and then reconstruct the enrichment of particular DNA

or RNA fragments compared to the genomic background. As in Figure 1, the enriched regions appear as

peaks, which can represent protein-bound DNA fragments.

The technology is continuing to develop rapidly, but certainly not without difficulties which are

imposed by the inherent complexity of biological systems and, as such, must be addressed by

computational means for the foreseeable future. The main computational challenge lies in properly

normalizing the data and distinguishing true peaks from the noisy background. Many problems which

confound this type of microarray data actually arise from probe-specific biases, such as differential

sequence copy numbers in the genome or variable melting temperature dependent upon the GC-content.

For Affymetrix tiling-arrays, several good model-based methods already exist to account for probe biases

and thus to adjust for probe-specific baseline signals. The recently introduced MAT [1], for instance,

estimates probe affinity from probe sequence and copy number and provides a powerful tool for finding

enriched regions in chromatin immunoprecipitation (ChIP) and other applications on Affymetrix

tiling-array experiments. Incidentally, similar problems are also found in Affymetrix expression arrays, for

which extensive effort has been previously exerted by various groups to develop robust methods for

background correction and probe-level normalization; e.g. [2–5]. It is relative hard and expensive for

Affymetrix to provide custom designed microarrays.

Commercial custom tiling-arrays are relatively new in the field of microarray biotechnology and, just

as expression arrays allow global assays of gene expression, provide an invaluable tool for investigating the

locations and roles of DNA-binding proteins in the whole genome at high resolution. All currently available

custom tiling-arrays use the 2-color technology. Considering the utility and power of high-resolution

tiling-arrays, it is thus imperative that reliable computational methods be developed now to facilitate the

extraction of precise and accurate conclusions from such experiments.

It turns out that two-color arrays also exhibit a sequence bias, particularly dependent upon the

GC-content of probes. More precisely, probes with high GC-counts tend to have high intensity; and

furthermore, as Figure 2 indicates, the two channels show a higher correlation in the high-GC probes than
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in the low-GC probes. However, no satisfactory normalization and peak-detection methods are yet

available for two-color tiling arrays. For example, even though NimbleGen provides flexible custom designs,

with long probes to minimize cross-hybridization and variable probe spacing to allow dense tiling, a robust

method of analysis has not been hitherto developed for the platform. Indeed, NimbleGen currently uses a

simple method of globally scaling all probe ratios by the median, attempting to remove any dye-bias across

arrays but neglecting other probe-specific biases. As illustrated in Figure 3, the median scaled ratios retain

the bimodal distribution attributable to GC probe effects, and thus, this approach is inadequate in

removing all dye and sample biases in the data.

For dual-channel cDNA arrays, several normalization methods have been proposed, e.g. [2, 6]; but

these procedures typically utilize methods which neglect probe sequence information and which are also

computationally expensive and thus unsuitable for currently available high-density tiling arrays. One

common way of locally normalizing two-color arrays is the so-called M -A loess normalization. The

fundamental assumption behind this procedure is that most probes should have similar values between the

two-channels, an assumption violated in studies of chromatin structure such as nucleosome mapping

described in [7] and [8]. This method also does not account for sequence-specific effects, which may be

significant in high-density tiling arrays, and also does not normalize the variance of M .

Single-channel normalization methods can be also applied to 2-color arrays, such as those proposed

by [9] and [3]; but, they ignore the fact that the two channels are paired, and such approaches are thus

likely to retain residual effects or correlation. Recently, [10] have introduced a normalization method which

adjusts for intensity-dependent dye bias and array-to-array variations. However, their method, which was

developed for expression arrays, does not model sequence-specific probe effects and is based on smoothing

procedures which can be computationally demanding for tiling arrays; the approach also requires a dye

swap and, thus, cannot be applied to single array experiments, which are often performed as test runs. In

fact, as far as we are aware, there are to date only two published tools, MPeak [11,12] and ChIPOTle [13],

for analyzing 2-color high-density tiling-arrays but neither considers probe-specific normalization or is able

to combine replicate experiments directly. This problem is rather serious since biological replicate

experiments are perceived to be indispensable in any sound research utilizing microarrays.

In this paper, we address many of the issues discussed above and present robust algorithms for

normalizing the raw data at probe-level and detecting peaks. Because our normalization method

standardizes the probe intensities, our peak-detection algorithm naturally generalizes to combine replicate

arrays.
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Results and Discussion
Comparison of Normalization Methods

To test the effectiveness of MA2C normalization procedure, we compared the MA2C normalized data using

the non-robust and robust C = 2 methods with the raw and median scaled log-ratio data; Figure 4 shows

the corresponding density plots of log ratios for 8 samples published in [12]. Figure 4 illustrates that our

method standardizes the data much more effectively than median scaling and removes much of the

GC-effect discussed in Figure 3. In particular, Figure 4D shows that the log-ratios normalized with

MA2C’s robust option follow a normal distribution.

Spike-in Experiment

We used the data (GEO GSE7523) from a recent spike-in experiment to test MA2C. The spike-in samples

contained 96 clones in the ENCODE region of approximately 500 base pairs, at 8 different concentrations

corresponding to (2n + 1)-fold enrichment compared to the human genomic DNA, for n = 1, . . . , 8, and 12

different clones per concentration. The control sample contained sonicated genomic DNA without

spike-ins. The spike-in and control samples were differentially labeled, and hybridized to NimbleGen

ENCODE tiling array in triplicates, and the resulting data were used to assess the performance of MA2C

against other currently available algorithms.

MA2C and MPeak Version 2.0 [11,12] were run using default parameters, and ChIPOTle v1.0 [13]

using window size 500, step length 100, p-value cutoff 10−4 and Gaussian background distribution. As seen

in Table 1, while having a comparable sensitivity, MA2C has a higher positive predictive value and thus

fewer false negative peaks than ChIPOTle. After removing ambiguous overlapping regions from the 96

spike-in regions, we used the remaining 47 unique regions to measure the correlation between spike-in

fold-changes and the corresponding algorithm-assigned scores for detected peaks. MA2C not only found all

the unique sites but also showed a better correlation than ChIPOTle, which missed some of the sites in the

first sample.

The positive predictive value of MPeak was comparable to MA2C, but MA2C was more sensitive and

also found more unique sites. MA2C again showed a better correlation with spike-in fold-changes than

MPeak and thus provided better quantitative information about the enriched regions than both ChIPOTle

and MPeak. We also tested the MA2C peak detection algorithm on the global median-scaled data without

any GC-correction (the same data analyzed with MPeak and ChIPOTle) and still found MA2C to be more

sensitive and to have higher positive predictive value, indicating that MA2C can outperform other
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available algorithms even without its GC-specific normalization step (see Table 1).

Furthermore, neither MPeak nor ChIPOTle can combine replicate data in a single test. As seen in

Table 1, pooling data from replicate experiments can often increase the sensitivity and quantitativeness of

analysis, and this option implemented in MA2C will prove to be useful. Since ChIP-chip experiments

require biological replicates, which are much noisier than the technical triplicate spike-ins presented here,

the ability to combine replicates at the probe-level will provide more sensitive and robust peak predictions

than other methods of combining peaks. In addition, ChIP-chip experiments contain a PCR amplification

step which often increases the GC-bias of probes; in this regard, MA2C’s GC-based probe normalization

shows distinct advantages over ChIPOTle and MPeak on PCR amplified samples, as observed in a separate

PCR amplified spike-in experiment (unpublished data).

ChIP-Chip Data in C. elegans

The protein DPY-27 functions as an essential dosage-compensator that suppresses the expression of genes

on each X chromosome in hermaphrodite XX-embryos of C. elegans, thereby reducing the expression level

of the X-linked genes by half to the level in XO (male) counterparts. [14] have shown that the basic

suppression mechanism involves localization of DPY-27 to X chromosomes, likely leading to a subsequent

modification of the chromatin structure of X chromosomes mediated by DPY-27. [15] later showed that

SDC-3 also localizes to X chromosomes in XX hermaphrodites and associates with a dosage compensating

complex (DCC) involving DPY-27.

A recent study by [16] suggests that SDC-3 in fact preferentially binds in the promoter regions of active

genes. This observation has an important biological implication that SDC-3 and DPY-27 may modulate

transcriptional activities and that the mechanism by which the DCC spreads along the X chromosome may

involve initial localization to promoters followed by RNA polymerase-coupled dispersion. Their conclusion

thus relies on the fact that a significant fraction of the total SDC-3 binding sites resides in proximal

promoter regions. We tested MA2C and MPeak on their triplicate data to see whether we can improve the

fraction and number of SDC-3 binding sites in promoters – a finding which could strengthen the claim

made in [16]. We compared the results with the ChIPOTle analysis provided to us by [16]; as previously

mentioned, ChIPOTle cannot directly combine replicate experiments, so the authors first found peaks from

median z-scores and selected the peaks which occur in 2 of the 3 replicates. It should be noted that the

number of SDC-3 binding sites quoted here is different from that reported in [16], because in that paper,

the peaks that appeared in negative control experiments without antibody were removed from the list. We
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ran MA2C using a window-size of 600 base pairs at p-value cutoffs 10−5 and 10−4; all other parameters

were set to default settings. MPeak was run using default parameters. As seen in Table 2A, compared to

both programs, MA2C can find not only a greater number but a higher fraction of SDC-3 binding sites in

promoter regions, further strengthening the conclusion propounded in [16]. In addition, Table 2B shows

that MA2C can also detect almost all the regions found by ChIPOTLe and MPeak. MA2C’s high

sensitivity and power can thus provide a valuable tool for discovering novel biological phenomena.

Conclusions
Novel Applications

The ChIP-chip technology has quickly become popular among biologists, and high-density tiling

microarrays are increasingly being used in novel genomic research. Some of the interesting applications

involve finding novel transcripts in the genome, DNA methylation sites, nucleosome positions, DNA

hypersensitivity regions, and alternative splicing events; see [17], [18], [7], [8], [19] and [20].

In all of these studies, which tend to combine experiments performed at various time points and under

different conditions, the variability of array performance and sequence-specific effects must be addressed

properly in order to remove any technical artifacts and to be able to formulate biologically sound

conclusions. The problem of probe effects becomes more pronounced as the density of tiling increases, as

one does not have the option of selecting probe sequences for similar melting temperature, or when the

tiled regions predominantly cover promoter regions, which are known to be GC-rich. Our method of

standardization explicitly accounts for such sequence-specific biases and inter-array variability. Together

with the accompanying robust peak-detection algorithm, MA2C’s standardization procedure is especially

important for data sets with a significant noise level – for instance, stemming from PCR amplification

which tends to increase probe-effects.

Normalization Revisited

One issue we have not discussed so far is adjusting for the copy-number of probes or cross-hybridization of

DNA with similar sequences. We chose not to model the sequence copy-number because both NimbleGen

and Agilent use sufficiently long probes and also usually exclude repeat regions from their array design.

It is also instructive to note why our normalization method in Equation (1), or Equation (3), gives a

higher weight to the probes which are highly correlated between the 2-channels. Relying on the fact that

the probes are long, NimbleGen tends to wash their arrays rather harshly after hybridization, minimizing
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cross-hybridization but also possibly leaving behind only random noise and causing a low correlation in

low-GC probes between the 2-channels. Thus, as illustrated in Figure 2 and Figure 3A, low-GC probes are

mostly measuring the background noise and also show a low inter-channel correlation; this relation between

low intensity distribution and low inter-channel correlation in low-GC bins is the motivation behind

MA2C’s normalization method.

Epilogue

MA2C is a novel model-based approach to analyzing 2-color tiling microarray data, incorporating

sequence-specific probe effects and powerful peak detection algorithms. The GC-based normalization

method can be also generalized to other long-oligonucleotide microarray applications such as array-CGH

and expression profiling. MA2C is also compatible with isothermal designs, where probe bias may be

reduced but nevertheless still present. We have shown that the overall performance of MA2C is better than

other currently available software. In addition to an easy, user-friendly interface, MA2C also provides

informative graphical summaries of statistical analyses for array quality control. As ChIP-chip and other

ways of studying chromatin structure become widely-spread common tools in biology, a program which can

reliably analyze single or replicate experiment data from 2-color microarrays will be a welcoming

contribution to the growing field.

Materials and Methods
Normalization

We propose a normalization procedure that standardizes the data by modeling the GC-specific background

hybridization intensities. Given an array, let pi denote its i th-probe and define GCi to be the total number

of G and C nucleotides in pi. Denote the paired single channel log-intensities of pi as (xi1, xi2), where xi1

corresponds to the control and xi2 the treatment. Henceforth, let i index the probes, j the channels, and k

the GC-content bins. Then, our model assumes that the log-intensities (xi1, xi2), i ∈ {i|GCi = k}, follow a

bivariate distribution with GC-specific means (µ1k, µ2k), variances (σ2
1k, σ2

2k), and covariance ξk between

the two channels. Also implicit in the model is that, although different GC-bins are allowed to have

different proportions of non-background probes, the signals of non-background probes are shifted across

GC-bins by the same mean, variance, and covariance as the background. Based on these assumptions, our

model combines the single channel log-intensities to form a normalized, correlation weighted log-ratio ti as
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follows:

ti =
(xi2 − xi1)− (µ̂2k − µ̂1k)√

σ̂2
1k + σ̂2

2k − 2 ξ̂k

(1)

where the parameters can be simply estimated as

µ̂jk =
∑

{i|GCi=k}

xij

nk
,

σ̂2
jk =

∑
{i|GCi=k}

(xij − µ̂jk)2

nk
, and

ξ̂k =
∑

{i|GCi=k}

(xi1 − µ̂1k)(xi2 − µ̂2k)
nk

, (2)

where nk is the number of probes with GC = k. We further scale the t-values globally so that the rescaled

t-values have variance 1.

This method has the following geometrical interpretation as seen in Figure 6: assuming that Cy3 is

the control and Cy5 the treatment channel, let {e1, e2} define an orthonormal basis of R2, where each

probe pi, with log intensities xi1 = log(Cy3i) and xi2 = log(Cy5i), corresponds to a point

Xi = xi1e1 + xi2e2 ∈ R2. Define a new orthonormal basis {u, v}, where u = (e1 + e2)/
√

2 and

v = (e2 − e1)/
√

2 are obtained by rotating the original coordinate system by 45 degrees; and, define a

projection operator Pv : R2 → R onto v-axis as Pv(Xi) = (xi2 − xi1)v/
√

2. The projected vector thus

measures the difference between log control and treatment signals. Let X̄i be the average of all vectors in

the GC-bin to which pi belongs. We now consider Zi := Pv(Xi − X̄i), which is just a dye-bias adjusted

log-ratio, and finally define our normalized score as

ti := Zi/
√

var(Zi). (3)

The t-values thus yield log-ratios adjusted by the mean and normalized by the standard deviation within

each GC-bin.

Note that in Equation (1), the covariance term ξk has the effect of amplifying the difference between

experiment and control probe intensities in GC-bins that have a high baseline correlation between the two

channels, while suppressing the difference in GC-bins with low correlation. Therefore, the log-fold changes

xi2 − xi1 are given more weight in GC-bins with high correlation ξk between the two channels than in

low-correlation GC-bins.

We have checked that more complicated normalization methods based on position-specific

ACGT-effects, as in [1], dinucleotides or individual G and C counts yield results which are quite similar to

the above simple and effective method (See Figure 7).
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Robust Estimation of Parameters

With data symmetric in the two channels, the estimators given in Equation (2) for µjk, σ2
jk, and ξk should

work very well. However, microarray data often tend to be skewed in one channel, even on the log scale,

and the simple estimators can be sensitive to outliers. For this reason. we have developed a robust method

for estimating these parameters. Our method generalizes Tukey’s theory of bi-weight estimation, which is

very robust for skewed data and has been successfully applied to microarray data previously by [21]. In one

dimension, Tukey’s bi-weight estimation proceeds as follows: define a scaled distance di between each data

point xi and the current mean estimate µ∗ as

di =
xi − µ∗

C ×M
, (4)

where C is a fixed constant and M = mediani|xi − µ∗|, the median absolute distance. We then calculate

the bi-weight for each data point as wi = (1− d2
i )

2 for −1 ≤ di ≤ 1 and wi = 0 otherwise. Then, the mean

is re-estimated as µ∗ =
∑

i wixi/
∑

i wi, and the process is repeated until a certain convergence criterion is

satisfied.

We generalize the above approach to two dimensions and develop a similar procedure for estimating

the parameters in Equation (1) within each GC-bin by using the elliptical or Mahalanobis distance given by

di =
Zt

iΣ
−1Zi

(σ∗2
1kσ∗2

2k − ξ∗2k )× C ×M
. (5)

where

Zt
iΣ

−1Zi := σ∗2
2k (xi1 − µ∗1k)2 + σ∗2

1k (xi2 − µ∗2k)2 − 2ξ∗k(xi1 − µ∗1k)(xi2 − µ∗2k) (6)

and M = mediani|Zt
iΣ

−1Zi|. Here, Zi is the projected vector previously described and Σ its variance

matrix. In each iteration step, the mean is estimated as before, the variance as

σ∗2 =
∑

i wi(xi − µ∗)2/
∑

i wi, and likewise for the covariance. Strictly speaking, the variance and

covariance computed in this way are not consistent estimators, but as shown in the Results section, they do

provide reasonable estimates of the parameters requisite for standardizing the data within and across

arrays.

Detection of Peak Regions

To detect peak regions, we have implemented several adaptations of the powerful window-based approach

proposed by [1] for Affymetrix tiling arrays. More precisely, we consider a sliding window of some
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user-defined length (400 bp to 1000 bp) centered at each probe. A MA2Cscore is assigned using a

user-selected scoring function based on median, pseudo-median, median polish, or trimmed mean of the

probes in the window. The median and trimmed mean options are implemented by calculating the median

or trimmed mean of all the probes in the window; when replicates are available, the median t-value or

trimmed mean of all pooled probes in identical windows across replicates is used. The pseudo-median of a

distribution is the median of all pairwise arithmetic means, as discussed in [22]. Median polish has been

successfully applied in Robust Multi-chip Analysis (RMA) for Affymetrix gene expression arrays [23]. We

recommend using median polish for experiments with a large number of replicate samples, while trimmed

mean is recommended for arrays with densely tiled probes. The pseudo-median and median provide robust

alternatives that can be applied in experiments that are not densely tiled and have few available replicates.

To compare the performance of different scoring functions, the triplicate H3 acetylation data at 38 bp

spacing from [24] were analyzed using window-size 1000 bp and p-value cutoff 10−3. Median polish gave

the most number of peaks while trimmed mean gave the least, the difference in number being around 3%.

The agreement among median, pseudo-median and trimmed mean was around 97–99%, while median

polish agreed with other methods by 93–97%. Comparable results were obtained, with 1–2% less

agreement, when the data were re-analyzed at 76 bp spacing by skipping probes. The best agreement was

found betwen trimmed mean and pseudo-median at 99–100% while the worst agreement was between

median and median polish at 90–93%.

To increase reliability, windows containing less than k probes are discarded, where k is again defined

by the user. Just like MATscores, MA2Cscores approximately follow a normal distribution, with the

representative scores of peak regions corresponding to the right tail. This fact easily allows us to assign a

p-value to each MA2Cscore using the normal probability distribution. The lower-bound of MA2Cscores for

determining peaks may be based on either false discovery rate FDR or p-value computations. As in [1], we

empirically estimate FDR as follows: for a given cutoff value M > 0 of MA2Cscore, we find all peaks with

MA2Cscore greater than M and all peaks with MA2Cscore less than −M . Then, FDR is estimated as

#(negative MA2Cscore peaks)/#(positive MA2Cscore peaks), and the number of true positive peaks as

#(positive MA2Cscore peaks) − #(negative MA2Cscore peaks). The FDR table along with other

informative histograms are generated by MA2C.
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Implementation

We have implemented our method as a user-friendly, stand-alone Java package called MA2C, which is fully

automated and only requires the user to select the directory path and treatment channels.

The file structure of NimbleGen data consists of three main components: DesignFiles/, PairData/,

and SampleKey.txt, which should all reside in the same parent directory. The text file SampleKey.txt

contains the relevant design information about individual arrays; in particular, the file must contain

DESIGN ID, CHIP ID and DYE for each array. The directory DesignFiles/ contains the sequence and

position files corresponding to each DESIGN ID, while PairData/ contains the single channel data for each

CHIP ID. Even though MA2C is primarily designed for NimbleGen arrays, we have also successfully tested

the program on Agilent data by reformatting the necessary files and obtained excellent results.

When the user begins by selecting SampleKey.txt, MA2C reads the file and displays the content in a

table. If DesignFiles/ and PairData/ are present in the parent path, MA2C also automatically lists the

directory contents in two separate tables; otherwise, the user has to choose the corresponding folder

locations. The user then selects the treatment channel for each experiment to be analyzed and clicks the

Run button which prompts MA2C to perform the normalization and peak detection steps as follows:

1. DesignFiles/ : For each DESIGN ID, MA2C automatically reads the corresponding .ndf and .pos

files and generates a .tpmap file containing the sequence, chromosome, position, and array coordinate

information of probes.

2. PairData/ : For each chosen treatment channel with given CHIP ID and DYE, MA2C searches for

the correct two-channel data files. It is thus important that the pair data files contain a column

corresponding to IMAGE ID. For fast future access and also for compressed storage, the program combines

each two-channel data into a single file named MA2C CHIP ID raw.txt. Normalized data are similarly

stored in files with the extension normalized.txt.

3. MA2C output/ : MA2C automatically creates this directory for writing files used in quality control

of normalization and peak detection steps. The enriched regions are output in both .xls and .bed files which

contain the chromosome, start, end, p-value, MA2Cscore and peak-center information for each detected

peak. MA2Cscore.bar and ratio.bar files are created for visualization using Affymetrix’s Integrated Genome

Browser [25].

MA2C is an open source Java package which can be downloaded from [26]. MA2C runs on all

platforms that support Java Runtime Environment 5.0 or higher and has been successfully tested on OS X,

Linux and Windows operating systems. The program is written so as to economize the size of required
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files; once the .tpmap and raw.txt files have been created, the subsequent runs of MA2C will use only those

files and the user may remove the .ndf, .pos, and other pair data files. This approach can save hundreds of

megabytes of disk space. In addition, our program is fast, the total execution time being usually less than

a couple of minutes for multiple arrays. For example, on a laptop with a 2.13 GHz Intel M processor and 2

GB RAM, it takes 18 seconds to build a sequence file for 370,000 probes, 16 seconds to normalized the raw

data, and 14 seconds to find peaks.

Additional Data Files

The spike-in experiment data used in this paper can be downloaded from Gene Expression Omnibus

(GSE7523).
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Figures
Figure 1 - ChIP-chip

Regions of interest on DNA are densely tiled with probes separated by short distances. In this figure, each

bar corresponds to the log-ratio hybridization signals of two channels measured by a probe. Small

sub-regions which are over-represented compared to the genomic background will appear as pronounced

peaks (in this example, the middle peak represents the DNA fragments containing a protein binding site).

The computational challenge is to normalize the data properly and to detect confident enriched regions by

filtering out false peaks (left and right peaks in this example)
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Figure 2 - Scatter plots of the Cy5 vs. Cy3 channels

Scatter plots of the Cy5 vs. Cy3 channels for 50-mer probes from [12] with (A) 28256 Input vs.

28256 ChIP for G + C = 11 bases and (B) 28256 Input vs. 28256 ChIP for G + C = 39 bases. The

correlation is 0.364 in (A) and 0.860 in (B). (C) Plot of the inter-channel correlation (28256 Input,

28256 ChIP) across GC-bins within the same array. The higher GC-count probes are more correlated and

therefore should be more reliable in detecting differentially expressed or enriched probes. That is, in

ChIP-chip, more than 99% of probes just measure the background and, thus, should ideally give similar

results for the two channels. The correlation between the two channels, however, depends on the

GC-content of the probes. Since the 2-channel correlation for high-GC probes is much higher than that for

low-GC probes, significant 2-channel fold-changes in the former category are much more reliable than those

in the latter category, where large fold-changes may readily occur by chance.

Figure 3 - Histograms of intensities

(A) Histogram of single-channel log-intensity values for a single array from 28256 Input [12]. The red bars

represent the log-intensities for the probes with G + C less than 20, indicating that the bimodal behavior is

caused by the GC-content of probes. (B) Density plot of single channel log-intensities for two channels on

the same array (28256 ChIP black, 28256 Input red). Notice that both the scale and the mean of the

individual channels must be adjusted to properly normalize the arrays. (C) The raw data log-ratio values

(28256 ChIP/28256 Input) for the same array in (B). Note that the ’bump’ at 0 is not caused by

enrichment but by lack of channel specific normalization of the data.

Figure 4 - Log-ratio density plots

All samples from [12]: (A) raw data, (B) median adjusted data, (C) QQ normalized data, (D) Lowess

normalized data, (E) MA2C (Simple) normalized data, and (F) MA2C (Robust C = 2) normalized data.

Different colors correspond to different samples.

Figure 5 - Workflow chart of MA2C

MA2C is fully automated and performs the tasks as shown.
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Figure 6 - Geometrical interpretation of the normalization method

Our method first subtracts the baseline from log intensity vectors within each GC-bin and then projects

the adjusted vectors onto v-axis, yielding log mean-scaled ratios of the Cy5 and Cy3 signals within each

GC-bin. Finally, the projected values are adjusted for variance.

Figure 7 - Average intensities of the control channel data from [12] as a function of position-specific
GC-counts.

Each 50-mer probe is partitioned into 5 equal parts of 10 nucleotides, and average intensities are computed

as a function of GC-counts in each part. Different colors represent different samples. The GC-related

variations of intensities behave similarly across the 5 locations on probes, and we thus see that the

GC-effect is not position specific.

Tables
Table 1 - Comparison of MA2C with other algorithms using a spike-in experiment with total 96
regions and 47 unique non-overlapping regions.

PPV (Positive Predictive Value) = # True positive peaks/# Total peaks.

Sensitivity = # Detected true positive regions/96.

Unique = Number of unique regions found.

Correlation = Correlation coefficient of the spike-in log fold-changes and algorithm-assigned scores for the

47 unique regions.

Algorithm CHIP ID PPV Sensitivity Unique Correlation
ChIPOTle 49875 71% 85% 40 0.72

49880 69% 98% 47 0.76
49883 73% 98% 47 0.79

MPeak 49875 100% 91% 46 0.74
49880 96% 89% 46 0.71
49883 98% 89% 46 0.79

MA2C 49875 99% 91% 47 0.78
(C = 2 normalized) 49880 96% 94% 47 0.79

49883 99% 95% 47 0.81
All 3 96% 96% 47 0.81

MA2C 49875 99% 92% 46 0.77
(Global median-scaled) 49880 100% 93% 46 0.79

49883 99% 92% 46 0.81
All 3 100% 95% 47 0.80
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Table 2 - Binding sites of SDC-3

(A) Numbers and annotation of SDC-3 binding sites detected by different methods. (B) Percentage of

SDC-3 binding sites from a method in columns overlapping with those from a method in rows (MPeak 1

denotes MPeak results from Replicate 1, and so forth; 2 regions were considered to be overlapping if they

shared at least 1 bp). For annotation, promoter regions of 1kb upstream from translation start sites of

genes were used, because the annotation of transcription start sites in C. elegans has not yet been well

established.

(A)
Algorithm Sample #Peaks In Promoter
ChIPOTle Combined triplicate 1219 33.63%
MPeak Replicate 1 1819 30.35%

Replicate 2 921 29.32%
Replicate 3 557 34.11%

MA2C Combined triplicate (p = 10−5) 1181 38.5%
MA2C Combined triplicate (p = 10−4) 1588 35.1%

(B)
ChIPOTle MPeak 1 MPeak 2 MPeak 3 MA2C (p = 10−5)

ChIPOTle 100% 65.97% 87.08% 92.28% 67.06%
MPeak 1 56.69% 100% 17.26% 26.57% 68.25%
MPeak 2 37.16% 8.74% 100% 21.01% 36.07%
MPeak 3 25.84% 8.14% 12.70% 100% 24.72%
MA2C (p = 10−5) 97.54% 97.91% 98.05% 99.64% 100%
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(C) QQ Normalized Data
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(D) Lowess Normalized Data
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Find peaks and create

DesignFiles/*.ndf, *.pos
Check CHIP_ID in

PairData/*.txt
Check IMAGE_ID in

For each DESIGN_ID, create
MA2C_DESIGN_ID.tpmap MA2C_CHIP_ID_raw.txt

For each CHIP_ID, create

SampleKey.txt

MA2C_CHIP_ID_normalized.txt
Create

MA2C_CHIP_ID.bed

Read CHIP_ID, DESIGN_ID, DYE
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